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To the reader 

1. The Elements of Mathematics Series takes up mathematics at the beginning, 
and gives complete proofs. In principle, it requires no particula knowledge of 
mathematics on the readers' part, but only a certain familiarity witn mathematical 
reasoning and a certain capacity for abstract thought. Nevertheless, it is directed 
especially to those who have a good knowledge of at least the content of the first 
year or two of a university mathematics course. 

2. The method of exposition we have chosen is axiomatic, and normally proceeds 
from the general to the particular. The demands of proof impose a rigorously fixed 
order on the subject matter. It follows that the utility of certain considerations will 
not be immediately apparent to the reader unless he has already a fairly extended 
knowledge of mathematics. 

3. The series is divided into Books and each Book into chapters. The Books 
already published, either in whole or in part, in the French edition, are listed below. 
When an English translation is available, the corresponding English title is men­
tioned between parentheses. Throughout the volume a reference indicates the English 
edition, when available, and the French edition otherwise. 

Theorie des Ensembles (Theory of Sets) 
Algebre (Algebra(l) 
Topologie Generale (General Topology) 
F onctions d'une Variable Reelle 
Espaces Vectoriels Topologiques (Topological Vec-

tor Spaces) 
Integration 
Algebre Commutative (Commutative Algebra(2) 
Varietes Diflhentielles et Analytiques 
Groupes et Algebres de Lie (Lie Groups and Lie 

Algebras (3) 

Theories Spectrales 

e) So far, chapters I to III only have been translated. 
CZ) SO far, chapters I to VII only have been translated. 
e) So far, chapters I to III only have been translated. 

designated by E (S) 
A (A) 
TG (GT) 
FVR 

EVT (TVS) 
INT 
AC (CA) 
VAR 

LIE (LIE) 
TS 
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In the first six books (according to the above order), every statement in the text 
assumes as known only those results which have already been discussed in the same 
chapter, or in the previous chapters ordered as follows: S; A, chapters I to III; GT, 
chapters I to III; A, from chapters IV on; GT, from chapter IV on; FVR; TVS; 
INT. 

From the seventh Book on, the reader will usually find a precise indication of its 
logical relationship to the other Books (the first six Books being always assumed 
to be known). 

4. However we have sometimes inserted examples in the text which refer to facts 
the reader may already know but which have not yet been discussed in the series. 
Such examples are placed between two asterisks: * ... *. Most readers will undoub­
tedly find that these examples will help them to understand the text. In other cases, 
the passages between * ... * refer to results which are discussed elsewhere in the 
Series. We hope the reader will be able to verify the absence of any vicious circle. 

5. The logical framework of each chapter consists of the definitions, the axioms, 
and the theorems of the chapter. These are the parts that have mainly to be borne 
in mind for subsequent use. Less important results and those which can easily be 
deduced from the theorems are labelled as « propositions », «lemmas », « corolla­
ries », « remarks », etc. Those which may be omitted at a first reading are printed in 
small type. A commentary on a particularly important theorem appears occasionally 
under the name of « scholium ». 

To avoid tedious repetitions it is sometimes convenient to introduce notations or 
abbreviations which are in force only within a certain chapter or a certain section 
of a chapter (for example, in a chapter which is concerned only with commutative 
rings, the word« ring» would always signify« commutative ring »). Such conventions 
are always explicitly mentioned, generally at the beginning of the chapter in which 
they occur. 

6. Some passages in the text are designed to forewarn the reader against serious 
errors. These passages are signposted in the margin with the sign Z (<< dangerous 
bend »). 

7. The Exercises are designed both to enable the reader to satisfy himself that he 
has digested the text and to bring to his notice results which have no place in the 
text but which are nonetheless of interest. The most difficult exercises bear the sign ~. 

8. In general, we have adhered to the commonly accepted terminology, except 
where there appeared to be good reasons for deviating from it. 

9. We have made a particular effort always to use rigorously correct language, 
without sacrificing simplicity. As far as possible we have drawn attention in the 
text to abuses of language, without which any mathematical text runs the risk of 
pedantry, not to say unreadability. 

10. Since in principle the text consists of the dogmatic exposition of a theory, 
it contains in general no references to the literature. Bibliographical references are 
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gathered together in Historical Notes. The bibliography which follows each historical 
note contains in general only those books and original memoirs which have been 
of the greatest importance in the evolution of the theory under discussion. It makes 
no sort of pretence to completeness. 

As to the exercises, we have not thought it worthwhile in general to indicate 
their origins, since they have been taken from many different sources (original 
papers, textbooks, collections of exercises). 

11. In the present Book, references to theorems, axioms, definitions, ... are given 
by quoting successively : 

- the Book (using the abbreviation listed in Section 3), chapter and page, where 
they can be found, when referring to the French edition; 

- the chapter and page only when referring to the present Book; 
- the chapter, paragraph and section, when referring to the English edition. 

The Summaries of Results are quoted by the letter R; thus Set Theory, R signifies 
« Summary of Results of the Theory of Sets ». 



CHAPTER I 

Topological vector spaces 
over a valued division ring 

§ 1. TOPOLOGICAL VECTOR SPACES 

1. Definition of a topological vector space 

DEFINITION 1. - Given a topological division ring K (GT, III, § 6.7) and a set E 
such that E has 

10 the structure of a left vector space on K; 
20 a topology compatible with the structure of the additive group of E (GT, III, 

§ 1. 1) and satisfying in addition the following axiom : 
(EVT) the mapping (A, x) ~ AX of K x E in E is continuous, 

then E is called a left topological vector space over (or on) K. 

It is equivalent to saying that E is a topological left K-module (GT, III, § 6.6). 
A left vector space structure relative to K and a given topology on a set E, are 

said to be compatible if the topology and the additive group structure ofE are compa­
tible and if, in addition, the axiom (EVT) is valid. This is the same as saying that 
the two mappings (x, y) ~ x + y and (A, x) ~ AX of E x E and of K x E, respec­
tively, in E are continuous, for then the mapping x ~ - x = (- 1) x, is continuous 
and the topology of E is compatible with its additive group structure. 

If E is a left topological vector space over K, we say that E provided only with 
its vector space structure, underlies the topological vector space E. 

Examples. - 1) If E is a left vector space over a discrete topological division ring K, 
the discrete topology on E is compatible with the vector space structure of E (this is 
not so if K is non-discrete and E is not the single point 0). 

2) Let A be a topological ring (GT, III, § 6.3) and let K be a sub ring of A that is 
also a division ring and such that the topology induced on K by that of A is compatible 
with the division ring structure of K; then the topology of A is compatible with its 
left vector space structure on K. 

3) Let K be any topological division ring and I an arbitrary set. On the product 
vector space K~ (A, II, § 1 .5), the product topology is compatible with the vector space 
structure (GT, III, § 6.4). Or we can say that the space K! of mappings of I in K with 
pointwise or simple convergence topology is a topological vector space on K (TG, 
X, p. 4). 

4) Let X be a topological space; on the set E = ~(X; R) of finite real-valued conti­
nuous functions defined over X, the compact convergence topology (GT, X, § 1.3) is 
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compatible with the vector space structure of E on R. For, let Uo be a point of E, let H 
be a compact subset of X and I': be an arbitrary strictly positive number. The real-valued 
function Uo is bounded in H; let a = sup luo(t)1 ; if u is any point of E then for all t E H 

tEH 

IAU(t) - Aouo(t)1 :0( IAI·lu(t) - uo(t) I + alA - Aol· 

Hence, if IA - Aol :0( I': and lu(t) - uo(t) I :0( I': for all t E H, then for t E H, 
IAU(t) - AOUO(t) I :0( 1':(1': + IAol + a), which shows that the axiom (EVT) is satisfied; 
similarly it can be verified that the compact convergence topology is compatible with 
the additive group structure of E. 

On the other hand, if X is not compact, the uniform convergence topology (in X) 
is not necessarily compatible with the vector space structure of E ; for example if X = R 
and if Uo is an unbounded continuous function in R, then the mapping A f-7 'Auo of R 
in E is not continuous in the uniform convergence topology on E. 

5) Let E be a vector space of finite dimension n over a topological division ring K; 
there exists an isomorphism u: K~ ---+ E of vector K-spaces and moreover, if v is a 
second isomorphism of K~ on E, then we can write v = u 0 f, where f is an automor­
phism of the vector K-space K~. Consider, on K~, the product topology that is compa­
tible with its vector space structure (Example 3); since every linear mapping of K~ 
in itself is continuous for this topology, every automorphism of the vector space K~ 
is bicontinuous. Hence, if we transfer the product topology of K~ to E, by means of 
any isomorphism whatever of K~ on E, the topology obtained on E is independent 
of the particular isomorphism used; we call it the canonical topology on E; we shall 
characterize it differently (1, § 1.3) when K is a non-discrete complete division ring 
with a valuation. Every linear mapping of E in a topological vector space over K is 
continuous for the canonical topology on E. 

In the same way as in def 1, a right topological vector space over K, a topological 
division ring, can be defined; but every right vector space on K can be considered 
as a left vector space on the division ring KO opposite to K (A, II, § 1.1) and the topo­
logy of K is compatible with the structure of the division ring KO. For this reason 
we usually consider only left topological vector spaces; when we speak of « topo­
logical vector space» without qualification, it is to be understood that we refer to 
a left vector space. 

If K' is a sub-division ring of K, and E a topological vector space over K, then 
it is clear that the topology of E is still compatible with the vector space structure 
of E relative to K', obtained by restricting the field of scalars to K'; we say that 
the topological vector space on K', obtained by this procedure, underlies the topo­
logical vector space E on K. 

In order that a topological vector space E be Hausdorff, it is necessary and suffi­
cient that for all x#-O of E, there exists a neighbourhood of 0 not containing x 

(GT, III, § l.2). 
Consider a topology, on a vector space E over a topological division ring K, 

that is compatible with the additive group structure of E. Because of the identity 

Ax - AoXo = (A - Ao) Xo + Ao(X - x o) + (A - Ao) (x - x o) 

axiom (EVT) is equivalent to the following system of three axioms. 
(EVT;) For all Xo E E, the mapping A f---+ AXo is continuous at A = O. 
(EVT;I) For all Ao E K, the mapping x f---+ AoX is continuous at x = o. 
(EVT;n) The mapping (A, x) f---+ Ax is continuous at (0, 0). 
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In particular : 

PROPOSITION 1. - For all r:x E K and every point bEE, the mapping x ~ r:xx + b 
of E in itself is continuous. Further, if r:x #- 0, this mapping is a homeomorphism of E 
on itself. 

The second part of the proposition is a result of the fact that if r:x #- 0, then 
x ~ r:x- 1 x - r:x-1b is the inverse mapping of x ~ r:xx + b. 

COROLLARY. - If A is an open (resp. closed) set in E, then r:xA is open (resp. closed) 
in E for every r:x #- ° in K. 

Let E and F be two topological vector spaces on the same topological division 
ring K. A bijection f of E on F is an isomorphism of the topological vector space E 
on the topological vector space F if and only if f is linear and bicontinuous. In parti­
cular, if y#-O belongs to the centre of K, the homothety x ~ yx is an automorphism 
of the topological vector space structure of E. 

2. Normed spaces on a valued division ring 

Recall (GT, IX. § 3.2) that an absolute value on a division ring K is a mapping 
~ ~ I~I of K in R+. such that I~I = ° if. and only if, ~ = 0, and that I~ll I = 1~1·lll I, 
and I~ + 11 I ~ I~ I + III I; an absolute value defines a distance I~ - 11 I on K, and 
hence a Hausdorff topology compatible with the division ring structure of K. If 
I~ I = 1 for all ~ #- 0, the absolute value is called improper, and the topology that 
it defines on K is the discrete topology; if, on the other hand, there exists r:x #- ° 
in K such that Ir:xl #- 1. then there exists ~ #- ° in K such that I~I < 1 (it is sufficient 
to take ~ = r:x or ~ = r:x - 1). and the sequence (~n)n ~ 1 converges to 0, thus the topo­
logy of K is not discrete. 

We recall on the other hand (GT, IX. § 3.3) that if E is a vector space on a non­
discrete valued division ring K then a norm on E is a mapping x ~ Ilxll of E in R+. 
such that Ilxll = ° if. and only if, x = 0, and such that IIAxII = IAI.llxll for every 
scalar A E K. and Ilx + yll ~ Ilxll + Ilyli. A distance Ilx - yll, is defined on E by 
the norm, and hence a topology that is compatible with the vector space structure 
of E (loc. cit.). Unless the contrary is expressly stated, a normed space is considered 
in terms of the structure of the topological vector space defined by its norm. The 
normed spaces are among the most important of topological vector spaces. 

It is known (GT, IX, § 3.3) that two distinct norms on E can define the same topo­
logy on E; for this it is necessary and sufficient that the two norms be equivalent (lac. 
cit.). The structure of normed spaces is thus richer than the structure of topological 
vector spaces; if E and F are two normed spaces one must be careful to distinguish 
between the idea of isomorphism of the normed space structure of E with that of F, 
and the idea of isomorphism of the topological vector space structure of E with that 
of F. 



TVS 1.4 TOPOLOGICAL VECTOR SPACES § 1 

Example. - Let I be an arbitrary set of indices; it is known (GT, X, § 3.2) that a norm 
Ilxll can be defined, on the set of bounded mappings x = (~,) of I in K, '@(I; K) (also 
written .@K(I) or f;(I»), by Ilxll = sup I~J When I is a topological space, the set of 

'EI 

bounded, continuous mappings of I in K is a closed subspace of the space .@(I; K) 
(GT, X, § 3.1, cor. 2). Another subspace of .@(I; K) is the setfi(I) of absolutely summable 
families x = (~) (GT, X, § 3.6); we can define on this subspace another norm 
Ilxlll = I I~,I, that in general is not equivalent to the norm Ilxll = sup I~,I (I, p. 23, 

lEI lEI 

exerc. 6); when considering fiO) as a normed space, without specifying its norm, 
it is always the norm Ilxll, that is meant. We write .@(I) and £1(I) in place of .@(I; R) 
andf~(I). 

3. Vector subspaces and quotient spaces of a topological vector space; products of 
topological vector spaces; topological direct sums of subspaces 

Everything that has been said for topological modules (GT, III, § 6.6) applies 
in particular to topological vector spaces. If M is a vector subspace of a topological 
vector space E, the topology induced on M by that of E is compatible with the 
vector space structure of M, and the closure M of M in E is a vector subspace of E. 
The quotient topology of that of E by M is compatible with the vector space structure 
ofE/M. 

If E is a topological vector space, the closure N of {O} in E (intersection of neigh­
bourhoods of 0) is a closed vector subspace of E; the quotient vector subspace E/N, 
which is necessarily Hausdorff whether E is or not, is called the Hausdorff vector 
space associated with E. 

Let (EJ'Ei be a family of topological vector spaces over the same topological 
division ring K, and let E be the product vector space of the E,. The product topo­
logy of the topologies of the E, is compatible with the vector space structure of E. 
In the product space E, the subspace F, the direct sum of the E, is everywhere dense 
(GT, III, § 2.9, prop. 25). 

F or certain types of topological vector spaces on the field R or the field C we define 
(in II, p. 29) a topology on the direct sum of a family (E) of topological vector spaces 
that is, in general, distinct from the topology induced by the product topology of the E,. 

Everything that has been said on the finite direct sums of stable subgroups of 
topological groups with operators (GT, III, § 6.2) applies to topological vector spaces, 
replacing « stable subgroup» throughout by «vector subspace ». 

Remark. - Given a closed vector subspace M ofa Hausdorff topological vector space E, 
it is not necessarily the case that there exists an (algebraic) complementary vector 
subspace to M that is closed in E (even ifE is a normed space; cf IV, p. 55, exerc. 16 (c»); 
a fortiori there does not necessarily exist a topological complement of M in E (cf I, 
p. 26, exerc. 8). However we shall see in § 2 that when K is a non-discrete valued division 
ring, then every closed subspace M ofE, with finite co dimension, does have a topological 
complement in E (I, p, 14, prop. 3). 
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4. Uniform structure and completion of a topological vector space 

Since the topology of the topological vector space E is compatible with the addi­
tive group structure on E, it defines a uniform structure on E (GT, III, § 3); when 
we speak of the uniform structure of a topological vector space we always mean 
this structure unless the contrary is expressly stated. Every continuous linear mapping 
of a topological vector space E in a topological vector space F is uniformly continuous 
(GT, III, § 3.1, prop. 3); every mapping of E in itself of the form x ~ r:lX + b is 
uniformly continuous. An equicontinuous set of linear mappings of E in F is uniformly 
equicon tinuous (G T, X, § 2.2, prop. 5). 

Remarks. - 1) If B is a precompact set of K, then for every neighbourhood V of 0 
in E, there is a neighbourhood U of 0 in E such that BU c V. For, if W is a neigh­
bourhood of 0 in E such that W + W c V; then from (EVT;n) there is a neighbourhood 
To of 0 in K and a neighbourhood U 0 of 0 in E such that To U 0 c W. As B is precompact, 
there are finitely many points Ai E B (1 ~ i ~ n) such that the Ai + To cover B; from 
(EVT;I) it follows that there is a neighbourhood U c U 0 of 0 in E, such that Ai U c W 
for all i; clearly U has the required properties. In a similar manner (using (EVT;) 
instead of (EVT;I)) it can be shown that if H is a precompact set of E, then for every 
neighbourhood V of 0 in E, there exists a neighbourhood T of 0 in K such that TH c V. 

2) From 1) it follows that, if B is a precompact set of K and H is a precompact set 
of E, then the mapping (A, x) ~ AX restricted to B x H is uniformly continuous. For, 
if V is a neighbourhood of 0 in E then there are neighbourhoods T of 0 in K, and U 
of 0 in E such that TH + BU c V. Since we can write Ax - A'x' = (A - A') x + A'(x - x'), 
we s.ee that for A, A' in B, x, x' in H, A - A' E T and x - x' E U, we have AX - A'x' E V, 
which proves our assertion. 

A topological vector space is called complete if, considering its uniform structure, 
it is a complete uniform space. 

DEFINITION 2. - A complete normed space on a non-discrete valued division ring is 
called a Banach space. 

Examples. - If K is a non-discrete valued division ring then the space .?l(l; K) (I, p. 4, 
Example) is complete (OT, X, § 3.1, cor. 1). This is also true for the space Rk(l) (I, p. 4, 
Example) with the norm Ilxll! = I I~,I : for, if xn is a Cauchy sequence in this space and 

'EI 
xn = (~n.)'EI' then for alii E I 

thus, for each I E I, the sequence (~nt)n" 1 converges to a limit ~, in K. Further, for each 
finite subset J of I 

and it follows immediately that there exists a constant a > 0, independent of J, m, n 
such that I I~ml - ~nll ~ a. Letting m tend to + 00, we deduce I I~, - ~ml ~ E 

~ ~ 

from which I I~,l ~ a + Ilxnll \0 which shows that z = (~J'EI belongs to Rk(I); further, 
lEI 

for all E > 0, there exists no such that for n ;;, no and for every finite set J of I, we have 
I I~, - ~rnl ~ E; passing to the limit with respect to the directed set of finite subsets of!, 
'E J 
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we see that liz - x.lll ~ E for n ~ no, which shows that z is the limit ofthe sequence (x.) 
in the normed space£~.CI). 

Let K be a Hausdorff topological division ring, E a topological vector space on K 
and suppose that the completed ring K is a division ring (this is so when K is a valued 
division ring, GT, IX, § 3.3) then the Hausdorff completion E of E carries the struc­
ture of a complete topological vector space on K (GT, III, § 6.5); we say that E, with 
this structure, is the Hausdorff completion ofthe topological vector space E, or simply 
the completion ofE when E is Hausdorff. 

5. Neighbourhoods of the origin in a topological vector space over a valued division 
ring 

DEFINITION 3. - Let K be a valued division ring and E a left vector space over K ; 
we say that a subset M of E is balanced if, for all x E M and all A E K such that IAI ::::; 1, 
it is true that AX E M (or in other words if AM c M when IAI ::::; 1). 

PROPOSITION 2. - I n a topological vector space E over a valued division ring K, the 
closure of a balanced set M, is a balanced set. 

If B is the set of ~ E K with I~I ::::; 1 ; then B is closed in K. But B x M is mapped 
into M by the continuous mapping (A, x) H AX; and therefore B x M is mapped 
into M (GT, I, § 2.1, tho 1) which proves that M is balanced. 

When M is an arbitrary set in the vector space E over a valued division ring K, 
the set M1 of the AX with x E M and A E K such that IAI ::::; 1, is clearly the smallest 
balanced set containing M; Ml is called the balanced envelope ofM. 

PROPOSITION 3. - Let K be a valued locally compact and non-discrete division ring 
and E be a Hausdorff topological vector space (resp. a topological vector space) over K. 
For every compact (resp. precompact) set H in E, the balanced envelope of H is compact 
(resp. precompact). 

If B denotes the ball I~I ::::; 1 in K, the balanced envelope of H is H1, the image 
of B x H under the continuous mapping m: (A, x) H AX. If E is Hausdorff, if B is 
compact and ifH is compact then so is B x H and therefore H l . IfH is precompact 
the restriction of m to B x H is uniformly continuous (I, p. 5, Remark 2) and as 
B x H is precompact, so also is its image under m (G T, II, § 4.2, prop. 2). 

Note that the balanced envelope of a closed set is not necessarily closed. For example, 
in R2, the balanced envelope of the hyperbqla defined by the equation xy = 1 is not 
closed. 

The union of a family of balanced sets in E is balanced, which implies that for 
every set M of E there is a largest balanced subset N of M called the balanced core of 
M; also N is not empty if and only if 0 E M. To say that x E N means that for all 
A E K such that IAI ::::; 1, we have Ax EM, or again (if 0 E M) that, for allll E K with 
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Ij.ll ~ 1, we have x E j.lM. If 0 EM, the balanced core N of M is therefore the inter­
section n j.lM. This shows in particular that if M is closed, so also is N. 

11-'1'" 1 

DEFINITION 4. - Let K be a non-discrete valued division ring and E be a left vector 
space on K with two subsets A and B. We say that A absorbs B if there exists r:i > 0 
such that AA ::::J B for every A E K with IAI ~ r:i (or equivalently tf j.lB c A for j.l #- 0 
and I j.ll :::; r:i - 1). A set A of E is called absorbent if it absorbs every set consisting of a 
single point. 

Let A be a balanced set of E; for it to absorb a set B of E it is sufficient that there 
exists A#-O such that AA ::::J B; in fact, for Ij.ll ~ IAI, we have AA = (Aj.l-1) j.lA, and 
as j.lA is balanced and IAj.l- 11 :::; 1, it follows that AA c j.lA, and thus B c j.lA. In 
particular for a balanced set A of E to be absorbent, it is necessary and sufficient 
that for every x E E, there exists A#-O in K such that AX E A. Every absorbent set 
of E generates the vector space E. Every finite intersection of absorbent sets is an 
absorbent set. 

PROPOSITION 4. - Ina topological vector space E on a non-discrete valued division 
ring K there exists a fundamental system m of closed neighbourhoods of 0 such that : 

(EV,) Every set V Em is balanced and absorbent. 
(EVIl) For every V E m and A#-O in K, we have A V E m (in variance of m under 

homotheties of non zero ratio). 
(EVm) For every V Em, there exists WE m such that W + W c V. 
Conversely, let E be a vector space on K, and let m be a filter base on E satisfying 

the conditions (EV,), (EVIl) and (EVm)' Then there exists a topology (and it is unique) 
on E, compatible with the vector space structure ofE, andfor which m is a fundamental 
system of neighbourhoods of O. 

By axiom (EVT;I1) we show firstly that the balanced core, V1, of V, a neighbourhood 
of 0, is itself a neighbourhood of O. For there exist r:i > 0 and a neighbourhood W 
of 0 such that, if IAI :::; r:i and x E W, then AX E V. Since K is non-discrete, there exists 
j.l #- 0 in K with Ij.ll :::; r:i and j.l W is a neighbourhood of 0 for which j.l W c V. Also 
if v E K and Ivi :::; 1 then IVj.l1 :::; r:i and thus Vj.lW ::::J V. Hence j.lW ::::J Vi and V1 

is a neighbourhood of O. Also as V is closed so also V 1 is closed. Thus the set m of 
closed balanced neighbourhoods of 0 form a fundamental system of neighbourhoods 
of 0 in E. By (EVT;) every neighbourhood of 0 is absorbent; furthermore m satisfies 
(EVIl) (cf I, p. 3, cor.); finally, because of the continuity of (x, y) I----> X + y at the 
point (0, 0), every fundamental system of neighbourhoods of 0 in E satisfies (EVm). 
The set m satisfies the conditions of the proposition. 

Now let E be a vector space over K, and m be a filter base on E satisfying (EV,), 
(EVIl) and (EVm). The axiom (EV,) shows firstly that for all V E m, we have - V = V 
and 0 E V ; these relations and the axiom (EVm) show that m is a fundamental system 
of neighbourhoods of 0, for a topology on E compatible with the additive group 
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structure of E (GT, III, § 1.2). On the other hand the axioms (EVT;), (EVT;,) and 
(EVT;n) are immediate consequences of (EV,) and (EVn), thus the topology defined 
above satisfies the axiom (EVT), and the proposition is proved. 

Remarks. - 1) In a normed space on a non-discrete valued division ring the set of 
open balls (resp. closed balls) with centre 0 is a fundamental system of neighbourhoods of 
o which satisfy the conditions (EV1), (EVu) and (EVm). 

2) When the division ring of scalars K is the field R or the field C, every filter base 
m on E which satisfies just the two axioms (EV1) and (EVm) is a fundamental system 
of neighbourhoods of 0 for a topology compatible with the vector space structure of E. 
In fact, we need only prove that, in these conditions, for every A # 0 in K and every 
V Em there exists WE m such that AW c V. Now from (EVm) there exists WI Em 
with 2 WI C V, and we deduce, inductively, that for every positive integer n, there exists 
Wn E m such that 2nW n c V. As V is balanced, if we take n so large that 2n = 12n l > IAI, 
then W = Wn satisfies the condition, as required. 

This result does not hold for every non-discrete valued division ring K, for in such a 
division ring it is no longer necessarily true that Imtl = m for every positive integer m 
(t indicates the unit element of the division ring; cf I, p. 22, exerc. 1). 

3) If K is a discrete division ring, conditions (EVTD and (EVT;u) are true for any 
topology on E. Arguing as in prop. 4, one easily sees that if E is a topological vector 
space on K, then there exists m, a fundamental system of closed neighbourhoods of 0 
in E satisfying conditions (EVu) and (EVm). Conversely, if a filter base m on a vector 
space E over K is such that 0 belongs to all the sets of m and (EVu), (EVm) are true, 
then m is a fundamental system of neighbourhoods of 0 in a topology compatible 
with the vector space structure of E. 

6. Criteria of continuity and equicontinuity 

Let E and F be topological vector spaces over the same division ring K; for a 
linear mapping f of E in F to be continuous, it is sufficient for it to be continuous 
at the origin (GT, III, § 2.8, prop. 23). This proposition generalizes as follows : 

PROPOSITION 5. - Let Ei (1 ~ i ~ n) and F be topological vector spaces on a non-
n 

discrete valuedfieldK. In order that a multilinear mappingf of TI Ei in F should be conti­
i= 1 

n 

nuous in the product space TI Ei it is sufficient for it to be continuous at (0, 0, ... , 0). 
i= 1 

n 

Let (al' a2 , ... , an) be an arbitrary point of TI Ei ; we must show that for every 
i= 1 

neighbourhood W of ° in F there exist neighbourhoods Vi of ° in Ei (1 ~ i ~ n) 
such that the relations Zi E V imply 

Now, we can write 
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where H varies over the 2n - 1 subsets of the set of integers { 1, 2, ... , n }, excluding 
the set { 1,2, ... , n} itself, and where uH = f(Y1' YZ' ... , Yn)' with Yi = ai if i E Hand 
Yi = Zi if i 1= H. There exist 2n - 1 balanced neighbourhoods W H of ° in F such 
that L WH C W; on the other hand as f is continuous at (0,0, ... , 0) by hypothesis, 

there ~xists in each Ei a neighbourhood U i of ° (1 ~ i ~ n) such that the n relations 
Xi E U i imply that f(x!, ... , xn) En WHo As U i is absorbent, there exists Ai =1= ° in K 

H 

such that Aiai E Ui' Let A be an element ofK such that IAI ;;: TI IAr 1 for each subset 
iEH 

H; we show that the neighbourhoods Vi = A -n Ui' fulfill the required condition. 
We can write uH = J.lf(x1, ... , xn) where Xi E U i for 1 ~ i ~ nand J.l = A -np(TI Ai- 1), 

iEH 

P being the number of integers of { 1,2, ... , n } not in H. From the above 1J.l1 ~ 1, 
hence UH E J.lWH C WH since WH is balanced. The proposition is established. 

PROPOSITION 6. ~ With the same hypotheses on Ei (1 ~ i ~ n) and on F as in prop. 5, in 
n 

order that a set Iff of multilinear maps of TI Ei in F be equicontinuous it is sufficient 
i= 1 

that the set be equicontinuous at (0,0, ... , 0). 
For, in the demonstration of prop. 5 the U i (1 ~ i ~ n) can be taken such that 

the relation Xi E U i (1 ~ i ~ n) imply f(x 1, ... , xn) En WH for every mapping f E Iff. 
H 

7. Initial topologies of vector spaces 

PROPOSITION 7. ~ Let (EJ'EI be a family of topological vector spaces on a topological 
division ring K. Let E be a vector space on K andfor each 1 E I, let J; be a linear map­
ping of E in E, . Then the coarsest topology on E which makes each function J; conti­
nuous, is a topology :Y compatible with the vector space structure of E. Further, if 
for every X E E, <I>(x) denotes the point (J;(x)) of the product space F = TI E" then 

lEI 
the topology :Y is the inverse image of the topology of the subspace <I>(E) of F under 

the linear mapping <1>. 

The last part of the proposition is a particular case of GT, I, § 4.1, prop. 3. The 
proposition then follows from the next lemma. 

Lemma. ~ Let M and N be two vector spaces, and g a linear mapping of M in N. 
If:Yo is a topology compatible with the vector space structure ofN, then the inverse 
image of :Ya by g is compatible with the vector space structure of M. 

We show, for example, that (A, x) ~ AX is continuous at each point (Aa , x a) of 
K x M. Put Ya = g(xo). Every neighbourhood ofO in M contains a neighbourhood 

- 1 
of the form g(U) where U is a neighbourhood of ° in N; by hypothesis there exists 
a neighbourhood V of ° in K and a neighbourhood W of ° in N such that the rela­
tions A-Ao E V, and y-Yo E W imply AY- AaYo E U. Thus the relations A-Ao E V, 

-1 -1 

x-xo E g(W) imply 'Ax-Aoxo E g(U). We can show similarly that (x, y) ~ X-Y 
is continuous in M x M. 
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F or each index lEI, let ~, be a fundamental system of neighbourhoods of 0 in E, . 
From the definition of the topology !T, the filter of neighbourhoods of 0 for this 

-1 
topology is generated by unions of sets of the families .r.(~J; in other words, the 

-1 
sets of the form n j; (V, ) form a fundamental system of neighbourhoods of 0 for !T, 

k k k 

the (lk) 1 q~n being any finite sequence of indices of I, and, for each index k, V'k 
any set of ~'k' 

COROLLARY 1. - Let G be a topological vector space on K. In order that a set H of 
mappings of G in E be equicontinuous, it is necessary and sufficient that, for alll E I, 
the set f. 0 u where u varies in H should be equicontinuous. 

This is a particular case of GT, X, § 2.2, prop. 3. 

COROLLARY 2. - If the spaces E, are Hausdorff, then in order that !T be Hausdorff, 
it is necessary and sufficient that, for every x =F 0 in E, there should exist an index 
lEI, such that fJx) =F O. 

For <I>(E) is then a Hausdorff space, and in order that !T be Hausdorff, it is evi­
dently necessary and sufficient that <I> be injective; note that we can then identify E 
(with 3'"") with the subspace <I>(E) of IT E, by the mapping <1>. 

'EI 
COROLLARY 3. - Suppose the E, are complete and <I>(E) is closed in F = IT E,. Then 

'EI 
E is complete in the topology !T. 

For the subspace <I>(E) of F is then complete (GT, II, § 3.4, prop. 8 and § 3.5, 
prop. 10), therefore the same is true of E in the inverse image topology (GT, I, § 7.6, 
prop. 10 and GT, II, § 3.1, prop. 4). 

* Example. - Let ~ '(R) be the space of distributions on R; for p a number such that 
I ,,; p ,,; + CfJ, let j: U(R) ---> ~ '(R) be the canonical injection, which is continuous 
(when U(R) carries its normed space topology and ~'(R) the strong topology). For 
every distribution f E ~ '(R), denote the derivative of f by D(f); recall that f f-+ DU) 
is a continuous endomorphism of ~'(R). Then let E be the vector subspace of U(R) 
formed from those f E U(R) for which DU) E U(R), and confer on E the coarsest 
topology making the canonical injection i: E ---> U(R) and the mapping D : E ---> U(R) 
continuous (U(R) carries its normed space topology). For this topology, the space E 
is complete. For, the image of E in F = U(R) x U(R) by the mapping <P:f f-+ (f, D(f») 
is closed, since it is the trace on U(R) x U(R) of the image G of ~ '(R) in ~ '(R) x ~ '(R) 
by the mapping 

now G is the graph of <Po, therefore closed in ~'(R) x ~'(R) (GT, I, § 8.1, cor. 2 of 
prop. 2), and as <p(E) is the inverse image of G by i x i, which is continuous, we see that 
<p(E) is closed in F. * 

COROLLARY 4. - Let E be a vector space over a topological division ring K, and let 
(!T'\EI be a family of topologies compatible with the vector space structure of E; then 
the upper bound !T of the topologies !T, is compatible with the vector space structure 
ofE. 
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For, if E, denotes the topological vector space obtained from E by the topology 
9";, and ft the identity map ofE on E" then '!T is the coarsest topology making the 1. 
continuous. 

§ 2. LINEAR VARIETIES IN A TOPOLOGICAL VECTOR SPACE 

1. The closure of a linear variety 

Recall (A, II, § 9.3) that in a vector space E over a division ring K, a non-empty 
affine linear variety (called « linear variety» when this can cause no confusion) is the 
image under a translation of a vector subspace of E. 

PROPOSITION 1. - In a topological vector space E, the closure of a linear variety is 
a linear variety. 

Since every translation is a homeomorphism of E, it is sufficient to demonstrate 
the proposition for a vector subspace M of E, and in this case, the proposition has 
been proved in I, p. 4. 

COROLLARY. - In a topological vector space E, every hyperplane is either closed or 
everywhere dense. 

In fact, the closure of a homogeneous hyperplane H can only be H or the whole 
space E, since it is a vector subspace containing H (prop. 1). 

A hyperplane H is closed in E if, and only if, CH contains an interior point. 
The vector subspace M generated by a set A, in a topological vector space E, 

is the set of linear combinations of points of A (A, II, § 1 .7, prop. 9); the closure of 
Min E is, by prop. 1, the smallest closed vector subspace containing A; we say that 
this is the closed vector subspace generated by A. 

DEFINITION 1. - A set A, in a topological vector space E, is total if, and only if, the 
closed vector subspace generated by A coincides with E (i.e. the set of linear combi­
nations of elements of A is everywhere dense). 

Examples. - 1) In the normed space 96'(1; C) (on the field C) offunctions, continuous 
on 1=(0, 1), with values in C, the restrictions to I of the functions x" (n E N) form 
a total set, by the Weierstrass-Stone theorem (GT, X, § 4.2, tho 3). Similarly, the res­
trictions to I of the functions e2nnix (n E Z) form a total set (GT, X, § 4.4, prop. 8), in 
the subspace P of 96'(1, C) formed of functions such that 1(0) = 1(1). 

2) Every absorbent set in a topological vector space E over a non-discrete valued 
division ring (and in particular every neighbourhood of ° in E) is a total set since it 
generates E (I, p. 7). Thus a linear variety that is not dense in E is necessarily a nowhere 
dense set in E (GT, IX, § 5.1) since its closure cannot contain an interior point. 

DEFINITION 2. - A family (aJ'EI of points of a topological vector space E is called 
topologically independent if for any K E I, the closed vector subspace generated by the 

at' with 1 =f= K, does not contain aK • 
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Example. - 3) In the normed space 'I&'(I; C) of continuous functions defined over 
1 = (0, 1), the restrictions to I of the functions e2nnix (n E Z) form a topologically inde­
pendent family. If f(x) is the linear combination I Ck e2knix (where all but finitely 

many of the Ck are zero) then 

( le2nniX - f(x)j2 dx = 1 + I Ick l2 ;, I 
Jo k::;f:n 

and, a fortiori, by the mean value theorem 

sup le2nnix - f(x) I ;, I 
XEI 

which shows that e2ninx does not belong to the closed vector subspace of 'I&'(l; C) gene­
rated by e2knix, k i= n. 

The set of elements of a topologically independent family is called a topologically 
independent set of E. Every subset of a topologically independent subset is topolo­
gically independent; every subset consisting of a single point x =1= 0 is topologically 
independent if E is a Hausdorff space. 

A topologically independent family is independent (in the algebraic sense; cf A, 
II, § 7.1, Remark), but the converse is incorrect. 

Example. - 4) In the normed space 'I&'(I; C) of functions that are continuous over 
I = (0, I), the restriction to I of the functions xn (n E N) form an algebraically inde­
pendent family. But there exists a sequence of polynomials (Pn) such that pnCX2) con­
verges uniformly to x in I (GT, X, § 4.2, lemma 2) which shows that x belongs to the 
closed vector subspace of '1&'(1; C) generated by the functions x 2" (n EN). 

Remarks. - 1) The family of topologically independent sets of a topological vector 
space is not necessarily inductive for the relation of inclusion (I, p. 25, exerc. 2); this 
situation is thus different to that for algebraically independent sets. Moreover there 
does not necessarily exist in E a maximal topologically independent subset (I, p. 25, 
exerc. 4), thus there does not necessarily exist a subset that is both total and topolo­
gically independent. 

2) Let M be a closed vector subspace of E and (a,ltEI a topologically independent 
family in the quotient space ElM. If at is any element of the class at' then from def. 2, 
and the fact that the canonical mapping of E on ElM is continuous, it follows that 
the family (a,),eT is topologically independent. But note that if N is the closed vector 
subspace generated by the at it can happen that M n N i= {o} (I, p. 25, exerc. 2), and 
hence the sum M + N is not necessarily direct in the algebraic sense (nor a fortiori 
in the topological sense). 

2. Lines and closed hyperplanes 

PROPOSITION 2. - Every Hausdorff topological vector space E of dimension lover a 
non-discrete valued division ring K is isomorphic to Ks; in fact, for every a =1= 0 in E, 
the mapping ~ ~ ~a of Ks on E is an isomorphism (in other words every linear mapping 
of Ks on E is an isomorphism). 

As the mapping ~ ~ ~a of Ks on E is bijective and continuous (I, p. 1, def. l), it 
is sufficient to show that it is bicontinuous. Let rJ. be a real number > 0, we show 
that there exists a neighbourhood V of 0 in E such that if ~a E V then I~I < rJ.. As K 
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is not discrete, there exists an element ~o E K such that 0 < I~ol < ri; but, as E is 
Hausdorff, there is a neighbourhood V of 0 such that ~oa does not belong to V. 
We can suppose that V is balanced (I, p. 7, prop. 4). But then if ~a E V and I~I ~ I~ol 
we have I~o~ -11 ~ 1, and ~oa = (~o~ -1 )(~a) E V; since this last statement is false 
we see that ~a E V implies I~I < I~ol < ri. This completes the proof. 

COROLLARY 1. - In a Hausdorff topological vector space E, over a non-discrete 
valued division ring K, every vector subspace D of dimension 1 is isomorphic to Ks' 

COROLLARY 2. - Let E be a topological vector space over a non-discrete valued divi­
sion ring. Every vector subspace D (of dimension 1) which is the algebraic complement of 
a closed homogeneous hyperplane H is also the topological complement of H. 

In D, the set {O} is closed, being the intersection of D and the closed set H; D is 
therefore Hausdorff. But as E/H is also Hausdorff, the canonical mapping of D 
on E/H, which is linear, is also an isomorphism by prop. 2, from which the conclusion 
follows (GT, III, § 6.2). 

THEOREM 1. - Let E be a topological vector space over a non-discrete valued division 
ring. Let H be a hyperplane in E defined by the equation f(x) = ri where f is a linear 
form not identically zero. Then H is closed in E if and only !f f is continuous. 

The condition is evidently sufficient (GT, I, § 2. 1, tho 1); we show that it is necessary. 
We can suppose that H is a closed homogeneous hyperplane with the equation 
f(x) = O. The quotient space E/H is then a Hausdorff topological vector space of 
dimension 1 on K. We can write f = go <1>, where <I> is the canonical mapping of 
E on E/H and g is a linear mapping of E/H on Ks; from prop. 2, g is continuous, 
thus the same is true of f. 

COROLLARY. - Every continuous linear form on E that is not identically zero is a 
strict morphism of E on Ks' 

Remark. - There are examples of normed topological vector spaces over a complete 
non-discrete valued division ring, in which every continuous linear form is identically 
zero (I, p. 25, exerc. 4) ; in such a space therefore, every hyperplane is everywhere dense 
(I, p. 11 , corollary). . 

3. Vector subspaces of finite dimension 

THEOREM 2. - Every Hausdorff topological vector space E, of finite dimension n, 

over a complete non-discrete valued division ring K, is isomorphic to K~ ; in 
n 

fact, for every basis (e)Hi~n of E on K, the linear mapping (~) f--+ L: ~iei is an iso-
i= 1 

morphism of K~ on E. 

Proposition 2 of I, p. 12, implies that tho 2 is true for n = 1; we argue by induction 
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on n. Let H be the vector subspace of E generated by e1 , e2 , .•. , en-I; the induction 
n-1 

hypothesis is that the mapping (~)1 ~i~n-1 f-4 L ~iei is an isomorphism of K~-1 
i= 1 

on H. The subspace H, being isomorphic to a product of complete spaces, is complete 
(GT, II, § 3.5, prop. 10); hence it is closed in E (GT, n, § 3.4, prop. 8). Let 0 be 
the subspace Ken complementary to H in E; E is the topological direct sum ofH and 
0(1, p. 13, cor. 2), therefore the mapping 

II 

(~)1 ~i~n f-4 L ~iei 
i= 1 

of K~-l x Ks on E is an isomorphism. 

When n > I the hypothesis that K is complete is essential for the validity of theorem 2. 
In fact, let K be a non-complete valued division ring. and let K be its completion: 
for each a i= 0 of K the sct K.a is everywhere dense in K, since x f-+ xa is a homeo­
morphism of K on itself If a ¢: K, the subspace K + Ka of the topological vector space K 
on K is of dimension 2 on K, but it is not isomorphic to K; since every subspace of 
dimension I in K + Ka is dense in K + Ka. 

COROLLARY 1. -in a Hausdo~tJ topological vector space E over a complete non­
discrete valued division ring K, every vector subspace F of finite dimension is closed in E. 

For, if F is of dimension n then it is isomorphic to K~; it is therefore complete 
and hence closed in E (GT, II, § 3.4, prop. 8). 

COROLLARY 2. - Let K be a complete non-discrete valued division ring, and E be a 
Hausdorff topological vector space of finite dimension over K. If F is any topological 
vector space over K, then every linear mapping of E in F is continuous. 

COROLLARY 3. -in a Hausdorff topological vector space E, over a complete non­
discrete valued division ring, el'ery finite independent set is topological!.v independent. 

COROLLARY 4. - Let E be a topological vector space over a complete non-discrete 
valued division ring. If M is a closed vector subspace of E and F is a vector subspace of E 
of finite dimension, then the subspace M + F is closed in E. 

Write ¢ for the canonical homomorphism of E on the quotient space ElM (neces­
-1 

sarily Hausdorff). Then the subspace M + F is identical with ¢(¢(F)). Now ¢(F) 
is of finite dimension in ElM, therefore (cor. 1) ¢(F) is closed in ElM, and, in conse­

-1 
quence, ¢(¢(F)) is closed in E. 

z We note that, if M and N are any two closed vector subspaces in a Hausdorff topo­
logical vector space E. then M + N is not necessarily closed in E. * even if E is a Hilbert 
space * (cf. I V, p. 64. exerc. 13, d)). 

PROPOSITION 3. - Let E be a topological vector space over a complete non-discrete 
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valued division ring K. Let M be a closed veclor subspace of finite codimension n in E. 
T hen every subspace N that is an algebraic complement of M in E is also a topological 
complement. 

In N, the set {O} is closed, since it is the intersection of N and the set M which 
is closed in E; thus N is Hausdorff. As ElM is also Hausdorff, the canonical mapping 
of N on ElM, which is linear and bijective, is bicontinuous (I, p. 14, cor. 2), from 
which the proposition follows. 

COROLLARY. - Let E and F be two topological vector spaces over a complete 110n­

discrete valued division ring. If F is Hausdorff and of finite dimension, then every 
continuous linear mapping of E on F is a strict morphism. 

Remark. The results of Nos 2, 3 are no longer valid when K is discrete. For example, 
let K 1 be a non-discrete valued division ring and K be the discrete division ring obtained 
by endowing K1 with the improper absolute value on K 1 . Then K1 is a topological 
vector space of dimension lover K, but it is not isomorphic to Ks' However, we can 
show that the results of Nos 2, 3 are valid even when K is discrete, provided that we 
impose on the topological vector spaces considered. the property of having a funda­
mental system of balanced neighbourhoods of 0 (i.e. neighbourhoods V such that 
K. V = V) (I, p. 27, exerc. 14); this condition (which is always satisfied when K is a non­
discrete valued division ring (1 I, p. 7, prop. 4) is not valid for all topological vector 
spaces over K as the preceding example shows. 

4. Locally compact topological vector spaces 

THEOREM 3. Let K be a complete non-discrete valued division ring. If E is a Haus­
dorff topological vector space over K, which is such that some neighbourhood V of 0 
in E is precompact, then E is of finite dimension. If E =1= { 0 }, then both K and E are 

locally compact. 
In proving the first assertion, we need consider only the case when E is complete; 

for E is an everywhere dense subspace of its completion E, and the closure V of V 
in E is compact and is a neighbourhood of 0 in E (GT, Ill, § 3.4, prop. 7). 

We can suppose then that there is a compact neighbourhood V of 0 in E. Let 
0: E K be such that 0 < 10:1 < 1; then there are finitely many points ai E V such that 

V c U (a i + aV) . 
i 

Let M be the finite dimensional subspace ofE generated by the ai ; it is closed in E 
(T, p. 14, cor. 1). In the Hausdorff topological vector space EjM the canonical image 
of V is a compact neighbourhood W of 0, such that W c aW; hence 0:- 1 W c W, 
and, by induction on n, ":1-" W c W for every positive integer n. As W is absorbent, 
we conclude that W = EjM; and thus ElM is compact. To complete the proof of 
the first assertion in the theorem, it is sufficient, therefore, to establish the following 
lemma. 

Lemma 1. - Any compact topological vector space E over a non-discrete valued divi­
sion ring, is just the set { 0 }. 
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Since E is complete we can suppose K is complete (I, p. 6). If E #- {O} then E 
contains a line that is closed in E (I, p. 14, cor. 1) and therefore compact. This line is 
isomorphic to Ks (I, p. 12, prop. 2) and hence K must be compact. Now the mapping 
~ f---> I~I of K in R is continuous and thus the image of K must be bounded, on the 
other hand there exists y E K with Iyl > 1, and the set ly"1 = Iyl", n E N, is unbounded. 
This contradiction shows that E = {O}. 

To prove the second assertion in the theorem, if E #- {O} then from the first part 
of the theorem E is isomorphic to K: with n > 0; now K is complete, hence so is E, 
and thus E is locally compact. But Ks is isomorphic to a line in E (I, p. 12, prop. 2) 
which is necessarily closed in E (I, p. 14, cor. 1) ; it follows that K is locally compact. 

Remark. - The result ofth. 3 is no longer true if K is a discrete division ring as is shown 
by the example ofR (with the usual topology) considered as a topological vector space 
over the discrete field Q. 

§ 3. METRISABLE TOPOLOGICAL VECTOR SPACES 

1. Neighbourhoods of 0 in a metrisable topological vector space 

We say that a topological vector space E is metrisable if its topology is metrisable. 
Relative to the structure of its additive group and of its topology, E is, therefore, 
a metrisable group (GT, IX, § 3.1). 

We know that, for a topological group to be metrisable, it is necessary and suffi­
cient that there exists an enumerable fundamental system of neighbourhoods of 
the neutral element e, whose intersection is the single element e (GT, IX, § 3.1, 
prop. 1). 

Also we know that the uniform structure of a metrisable topological vector 
space E, can be defined by an invariant distance d(x, y) = Ix - yl, where x f---> Ixl 
is a continuous mapping of E in R+ which satisfies the conditions: 1) 1- xl = Ixl; 
2) Ix + yl ~ Ixl + Iyl; 3) the relation Ixl = 0 is equivalent to x = 0 (GT, IX, 
§ 3.1, prop. 3). 

We saw (GT, IX,§ 3 . 1, prop. 2) how such a distance d could be defined using a decreas­
ing sequence (W /I) of neighbourhoods of 0 in E, forming a fundamental system of neigh­
bourhoods and such that W n + 1 + W n + 1 + W n + 1 C W n' When E is a metrisable 
vector space over a non-discrete valued division ring K, we can also suppose that the Wn 
are balanced (I, p. 7, prop. 4); if we revert to the process of definition of d (lac. cit.) we can 
see that the relation IAI ~ I implies that Ihl ~ Ixi. Further the conditions (EVTi) and 
(EVTi[) of I, p. 2 imply both that IAxol tends to 0 as A tends to 0 in K for every Xo E E, 
and that IAoxl tends to 0 as Ixl tends to 0 for every Ao E K. Conversely, if the function Ixl 
possesses all the preceding properties and if WII is the set of x E E such that Ixl ~ 2- n, 

then the Wn form a fundamental system of balanced neighbourhoods of 0 for a metrisable 
topology on E that is compatible with the vector space structure ofE. 

Remark. - One of the most important classes of metrisable vector spaces are the 
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normed spaces (1, p. 3). But it must be noted that there exist metrisable vector spaces 
whose topology cannot be defined by a norm (I, § 3, exerc. 1); we shall study important 
examples later. 

2. Properties of metrisable vector spaces 

Every vector subspace of a metrisable topological vector space E is metrisable; 
the same is true of every quotient space ElM of E by a closed vector subspace M 
(GT, IX, § 3.1, prop. 4). Every product of an enumerable family of metrisable topo­
logical vector spaces is metrisable (GT, IX, § 2.4, cor. 2). If K o is a complete valued 
division ring, and K is a subdivision ring everywhere dense in Ko, the completion E of 
a metrisable vector space E over K is a metrisable vector space over K o (1, p. 6 and 
GT, IX, § 2, No.1, prop. 1). Finally, if E is a metrisable vector space that is complete, 
then for every closed vector subspace M of E, the quotient space ElM is complete (GT, 
IX, § 3. 1, prop. 4). 

3. Continuous linear functions in a metrisable vector space 

THEOREM 1 (Banach). - Let E and F be two metrisable vector spaces over a non­
discrete valued division ring K, and let u be a continuous linear mapping of E in F. 
Suppose that E is complete. Then the following conditions are equivalent: 

(i) u is a strict surjective morphism. 
(ii) F is complete and u is surjective. 
(iii) The image of u is not meagre in F (GT, IX, § 5.2). 
(iv) For every neighbourhood V of 0 in E, the set u(V) is a neighbourhood of 0 in F. 
Firstly (i) implies (ii), for let u be a strict surjective morphism and N be the kernel 

of u. Then u induces an isomorphism of E/N on F. But E is metrisable and complete, 
hence E/N is complete (GT, IX, § 3.1, prop. 4), therefore F is complete. 

Next (ii) implies (iii). Let F be complete and u be surjective. The image of u is 
precisely F and therefore not meagre in F from Baire's theorem (GT, IX, § 5.3). 

The following lemma shows that (iii) implies (iv). 

Lemma 1. - Let E and F be two topological vector spaces over a non-discrete valued 
division ring K, and let u be a continuous linear mapping of E in F such that the image 
of E is not meagre. Then, for every neighbourhood V of 0 in E, the set u(V) is a neigh­
bourhood of 0 in F. 

Let W be a balanced neighbourhood of 0 in E such that W + W c V (I, § 1.5, 
prop. 4). Let r:J. be an element of K such that 1r:J.1 > l; then E is the union of the sets 
r:J.nw where n varies in N; in fact, for all x E E, there exists f3 E K such that x E f3W 
(I, p. 7, prop. 4) and there exists an integer n ~ 0 such that 1131 < 1r:J.ln, then x E r:J.nW 
since W is balanced. Hence, u(E) is the union ofthe sequence of sets u( r:J.nw) = r:J.nu(W), 
and as u(E) is not meagre in F, one at least of the sets r:J.nu(W) possesses an interior 
point (GT, IX, § 5 .3, def. 2) and therefore u(W) has an interior point. 
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Let Yo be an interior point of u(W); since - u(W) = u(W), and therefore 
- u(W) = u(W) itfollows that 0 = Yo + (- Yo) is an interior point of u(W) + u(W). 
As vector addition is a continuous mapping of F x F in F, the set u(W) + u(W) 
is contained in the closure of the set 

u(W) + u(W) = u(W + W) c u(V); 

hence u(V) is a neighbourhood of 0 in F. 

Before proving that (iv) implies (i) we prove the following lemma, where we make 
the convention that, in all metric spaces, Br(x) denotes the closed ball of centre x 
and radius r. 

Lemma 2. - Let E and F be two metric spaces, and suppose that E is also complete. 
Let u be a linear mapping ofE in F having the following property: whatever the number 
r > 0, there exists a number per) > 0 such that, for all x E E, we have 

Bp(r)(u(X)) c u(B.(x)). 

In these conditions, for all a > r, the image u(Ba(x)) contains the ball Bp(riu(x)). 

00 

Let (rn) be an infinite sequence of numbers > 0 such that r1 = r and a = I rn' 
n= 1 

For each index n there exists a number Pn > 0 (with P1 = per)) such that 

for all x E E; we can, and will, suppose that lim Pn = O. 
n-HD 

Let Xo be a point ofE, and y be a point of Bp(r)(u(xO))' We shall show that y belongs 
to u(Ba(xo)). 

For this, a sequence (Xn)n> 0 of points of E is defined inductively such that, for 
all n ~ 1, we have xnEBrn(xn-1) and u(xn)EBpn + 1(y). If the Xi have been defined 
for 0 ~ i ~ n - 1 satisfying these relations, then we have YEB pju(xn_1)); since 

there exists a point xn E Brn(xn- 1) whose image u(xn) belongs to the neighbourhood 
BPn+ 1 (y) of y, which establishes the existence of the sequence (xn)' 

Since the distance of xn from xn+ p is less than rn+ 1 + rn+ 2 + ... + rn+ p ' which 
is arbitrarily small when n is large, the sequence (xn) is a Cauchy sequence in E. 
As E is complete, the sequence (xn) converges to a point x of E. The distance of 

00 

Xo from x is less than I rn = a, thus x E Ba(xO)' But u is continuous, thus the 
n= 1 

sequence u(Xn) converges to u(x); also u(xn) E Bpn + 1(y), hence y = u(X) , and the 
lemma is proved. 
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We return to the theorem and show that (iv) implies (i). Suppose that u satisfies 
condition (iv). For each of the spaces E and F, consider a distance that is invarient 
under translation and defines its topology (I, p. 16). By hypothesis, the set u(Br(O)) 
is a neighbourhood of 0 in F for every r > 0, and thus there exists a number per) > 0 
such that Bp(r)(O) c u(Br(O)). By translation we conclude that Bp(r)(u(x)) c u(B/x)) 
for all r > 0 and all x E E. From lemma 2, for every pair of real positive numbers 
(a, r), a > r > 0, we have Bp(r)(O) c u(Ba(O)); thus u is a strict morphism of E on F. 
We have shown that (iv) implies (i) and the proof of the theorem is completed. 

COROLLARY 1. - If E and F are two complete metrisable vector spaces over a non­
discrete valued division ring, then every bijective continuous linear mapping of E on F 
is an isomorphism. 

In particular, if E and F are two complete normed spaces, there exists a number 
a > 0 such that II u(x) II ~ a.llxll for all x E E . 

. ' 
COROLLARY 2. - Let E be a vector space over a non-discrete valued division ring, 
let ~1 and ~2 be two topologies on E compatible with its vector space structure and for 
each of which E is metrisable and complete. Then, if ~1 and ~2 are comparable, they 
are identical. 

COROLLARY 3. - Let E and F be two complete metrisable vector spaces over a non­
discrete valued division ring. In order that a continuous linear mapping u of E in F 
should be a strict morphism, it is necessary and sufficient that u(E) be closed in F. 

The condition is necessary, because if u is a strict morphism, the image u(E), 
being isomorphic to the quotient Eju- 1(0), is complete (I, p. 17) and therefore 
closed in F. The condition is sufficient, since, if u(E) is closed in F, then u(E) must 
be a complete metrisable vector space and thus by theorem I u is a strict morphism 
of E on u(E). 

COROLLARY 4. - Let E be a complete metrisable vector space over a non-discrete 
valued division ring. If M and N are two closed vector subspaces, that are (algebraic) 
complements in E, then E is the direct topological sum of M and N. 

For M x N is a complete metrisable vector space and the mapping (y, z) 1-+ Y +z 
of M x N on E is continuous and bijective, therefore an isomorphism (cor. 1). 

COROLLARY 5 (The closed graph theorem). - Let E andF be two complete metrisable 
vector spaces over a non-discrete valued division ring. In order that a linear mapping 
u of E in F be continuous, it is necessary and sufficient that its graph, in the product space 
E x F, be closed. 

The condition is necessary since the graph of a continuous mapping into a Haus­
dorff space is closed (GT, I, § 8.1, cor. 2). To see that it is sufficient, note that it 
implies that the graph G of u, which is a closed vector subspace of the complete 
metrisable space E x F, is itself metrisable and complete. The projection z 1-+ pr 1 (z) 

of G on E is a bijective, continuous linear mapping, therefore an isomorphism 
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(cor. 1); since its inverse mapping is x ~ (x, u(x)), it follows that u is continuous 
in E. 

We can express this corollary in the following form: u is continuous if the following 
situation holds: if the sequence (xn) of points of E both converges to ° and is such that 
the sequence (u(xn)) converges to y, then it is necessarily the case that y = 0. 

Example. - Let E be a vector subspace of the space of real-valued functions defined 
on I = (0, I) ; let II I II be a norm on E, under which E is complete, and such that its 
topology is finer than the topology of simple convergence. Suppose further that E 
contains the set (fj 00 (I) of functions infinitely differentiable on I; we shall show that 
there exists an integer k ?o 0, such that E contains the set (fjk(I) of all functions with 
a continuous k-th derivative in I. 

For every pair of integers m > 0, n ?o 0, let V mn be the set of functions IE (fj"'(I) 
such that I f'hl(X) I ~ 11m for ° ~ h ~ n and for all x E I. The V m.n form a fundamental 
system of neighbourhoods of ° for a metrisable topology compatible with the vector 
space structure of (fj "'(I), further (fj "'(I) is complete in this topology (FVR, II, p. 2, 
tho I). Let u be the canonical mapping of (fj 00 (I) in E; we show that u is continuous. 
From cor. 5 above it is sufficient to prove that if a sequence (J,,) converges to ° in (fj "'(I) 
and to a limit I in E then necessarily I = 0. But this is immediate since, by hypothesis, 
I is the simple convergence limit of (D. Hence there exists an integer k ?o ° and a 
number a > ° such that the relation 

h(f) = sup Ir)(x)1 ~ a 
xcI 

O~h~k 

implies II I II ~ I for all IE (fj "'(I). 
But h is a norm on the space (fjk(I) and (fj "'(I) is a subspace that is everywhere dense 

in (fjk(l) for this norm (the set of polynomials being already everywhere dense in (fjk(I), 

an immediate consequence of the Weierstrass-Stone theorem). By what has gone before, 
the identity mapping of (fj 00(1) (carrying the norm Pk) in E, is continuous, and so it 
can be extended continuously to the whole space (fjk(I) (since E is complete). This 
proves our assertion. 

PROPOSITION 1. - Let E, F be two topological vector spaces over a non-discrete valued 
division ring K. We suppose that: 

1) E is metrisable and complete. 
2) There exists a sequence (Fn) of complete metrisable vector spaces over K and, 

for each n, an injective continuous linear mapping vn ofFn in F such that F is the union 
of the subs paces vn(Fn)' 

Then let u be a linear mapping of E in F. If the graph of u is closed in E x F, then 
there exists an integer n and a continuous linear mapping un ofE in Fn such that U= vn 0 un 
(which implies that u is continuous and that u(E) C vn(Fn))' 

Let G be the graph of u in E x F. For all n, we consider the continuous linear 
mapping wn : (x, y) ~ (x, vn(y)) ofE x Fn in E x F; as G is closed, the set w; leG) = G n 

is a closed vector subspace of E x Fn ; if Pn is the restriction to Gn of the first projec­
tion prp we have Pn(Gn) = u-l(vn(Fn)). As Pn is continuous and Gn is complete 
(since G n is closed in the complete space E x FJ, Pn(Gn) is, by theorem 1, either 
meagre in E or it is the whole of E. But, by hypothesis, E is the union of the Pn(Gn), 
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and as E is complete, the Pn(Gn) cannot all be meagre in E by Baire's theorem (GT, 
IX, § 5.3, tho 1). Therefore there exists an integer n such that piGn ) = E, or in other 
words u(E) C vn(Fn)' Further, as vn is injective, Gn is the graph of a linear mapping 
un of E in Fn, and by the closed graph theorem (I, p. 19, cor. 5) un is continuous; it 
follows then from the definitions that u = Vn 0 un' 



Exercises 

§ 1 

1) Let Eo = Q~ be the vector space over the p-adic field Qp (GT, III, § 6, exerc. 23) which is 
the product of an enumerable infinity of factor each identical with Qp. Let P c Eo be the 
set Z~, and let E be the vector subspace of Eo generated by P. On the additive group P we 
consider the product compact topology of the topologies of the factors Zp, and we denote 
by 5!l the filter of neighbourhoods of 0 in P for this topology. Show that 5!l is a fundamental 
system of neighbourhoods of 0 in E for a topology ,0; compatible with the additive group 
structure of E, that satisfies (EVT;) and (EVT;n) but not (EVT;I) (prove that the homothety 
x ~ x/p is not continuous in E). 

2) Let K be a non-discrete topological division ring, Ko the division ring K with the discrete 
topology. The discrete topology on Ko is compatible with its additive group structure, and 
when we consider Ko as a vector space over K, it satisfies the axioms (EVT;I) and (EVT;n) 
but not (EVT;). 

3) For every real number a > 0, let G, be the topological group R/'1Z, and let G be the 
topological product group TI G, (a varying in the set of number> 0). For every x EO R, 

let t,(x) be the canonical image of x in Go; the mapping 4>: x ---> (t,(x)) is a continuous injective 
homomorphism of R in G. We consider on R the topology that is the inverse image by 4> 
of that of G, and denote by E the topological group formed by R with this topology. Show 
that when E is considered as a vector space over R its topology satisfies (EVT;) and (EVT;I) 
but not (EVT;n)' 

4) Let E be a vector space over a division ring K with a valuation; we suppose that E carries 
a metrisable topology compatible with its additive group structure. Suppose further that 
this topology satisfies axioms (EVT;) and (EVT;I); show that if one of the two metrisable 
groups K, E is complete then the topology also satisfies (EVT;n) and is, in consequence, compa­
tible with the vector space structure of E (cf. GT, IX, § 5, exerc. 23). 

5) Let K be a non-discrete valued field, and S be an arbitrary infinite set. 
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a) Let D = (an> be an enumerable infinity of elements of S. For every A E K such that IAI ~ 1, 
let U i. be the element of the normed space ~(S), (1, p. 4, Example) of bounded mappings of 
S in K, such that uiJan ) = An for all n E Nand uA(b) = 0 for bet D. Show that the family (ui) 

is algebraically independent. 
b) Deduce that every basis of the vector space !i6'K(S) has the same cardinality as K S (using a) 
show that the cardinal of every basis of !i6'K(S) is at least equal to Card (K); note on the other 
hand that Card(!i6'K(S») = Card(KS) and use A, II, § 2, exerc. 22). 
e) Show in the same way that every basis of the vector spacefi(S) has the cardinality of(K x S)N. 

6) Let K be a non-discrete valued division ring. Show that, for the space £L(N) of absolutely 
en 

summable sequences x = (~n) of elements of K, the norms Ilxll l = I I~nl and Ilxll = sup I~nl 
n= 0 n 

are not equivalent (ef GT, IX, § 3.3, prop. 7); show that eL(N) with the norm Ilxll is never com­
plete even if K is complete; what is its closure in ~(N) ? 

-r 7) * Let A be a ring with a discrete valuation, v the normed valuation of the division ring 
of fractions K of A; take the absolute value aVon K, where 0 < a < L Let E be a normed 
vector space over K, for which the norm satisfies the ultrametric inequality 

Ilx + yll ~ sup(llxll, Ilyll)· 

a) Denote by M the set of those x E E for which Ilxll ~ 1, and by n a uniformizer of A; M 
is an A-module, and M/nM a vector space on the residual division ring k = A/nA of A. 
Let (eJAEL be a family of elements of M such that the images of eA in M/nM form a basis of 
this vector k-space. Show that (eA) is an independent family in E and that the vector subspace F 
of E generated by (eA) is dense in E. 
b) If we put Ilxll! = sup I~AI, for every x = I ~AeA in F, show that on F the norms Ilxll and 

A A 

Ilxll! are equivalent. A 

c) Let K be complete. Deduce from a) and b) that, if L is finite, the completion E of E is iso­
morphic to KL; if L is infinite E is isomorphic to the subspace '6'~(L) of !i6'K(L) formed of the 
families (~A) such that lim ~A = 0 for the filter of complements of finite subsets of L. 
d) We suppose K and E complete; let G be a second normed complete space over K whose 
norm satisfies the ultrametric inequality. Show that on replacing (if necessary) the norm of 
.P(E; G) (GT, X, § 3.2) by an equivalent one, then .P(E; G) is isometric to the vector space 
of families (h)i.E~ of elements of G such that sup II YA II < + CfJ, carrying the norm sup II h II 

AEL AEL 

(which is also an ultrametric norm). 

8) Let E be a topological vector space over a non-discrete topological division ring K. In 
order that there should exist a neighbourhood of the point (0, 0) in K x E such that the 
mapping (A, x) f-+ AX should be uniformly continuous in this neighbourhood, it is necessary 
and sufficient that there exist a neighbourhood V 0 of 0 in E such that the sets A V 0 form a 
fundamental system of neighbourhoods of 0 in E, where A varies in the set of elements =1= 0 
of K. When K is a division ring with a non-discrete valuation and E is Hausdorff, show that 
the uniform structure of E is then metrisable. 

9) Generalize prop. 5 of I, p. 8, to the case where the spaces Ei ( ~ i ~ n) and F are topo­
logical vector spaces over an arbitrary non-discrete topological field. 

10) Let E be a complete Hausdorff topological vector space over a non-discrete valued divi­
sion ring K. Denote by F a vector subspace of E, and by 'Y the topology on F induced by the 
topology 'Y' of E; let m be a fundamental system of closed, balanced neighbourhoods of 0 
for the topology 'Y. Let F 0 be the vecto.!... subspace of E, generated by the closures V in E (rela­
tive to 'Y ') of the sets V E 'B; the sets V form a fundamental system of neighbourhoods of 0 
for a topology 'Yo on F 0' compatible with the vector space structure of F 0; for this topology, 
F 0 is complete, and the topology induced by 'Yo on'F is identical with 'Y. 
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11) In a topological vector space E over a non-discrete topological division ring K there 
exists a fundamental system 1.13 of closed neighbourhoods of 0, satisfying the conditions (EVIl) 
and (EVm) as well as the two following: 
(EVla) For each V E 1.13, there exists WE 1.13 and a neighbourhood U of 0 in K such that UW c V. 
(EVlb) For every x E E and every V E 1.13, there exists A =1= 0 in K such that AX E V. 
Conversely, let E be a vector space over K and let 1.13 be a filter base on E satisfying the condi­
tions (EVla), (EVlb), (EVIl) and (EVm ). Show that there is a topology on E (and one such only), 
that is compatible with the vector space structure of E, and for which 1.13 is a fundamental 
system of neighbourhoods of O. 

12) Let K be a discrete field, E the division ring of fractions of the ring of formal series 
A = K[[X, YlJ in two indeterminate variables on K(A, IV, p. 36). For every n ;;:: 0, let Vn c A 
be the set of formal series of total degree at least equal to n. Show that in E, the sets V n form 
a fundamental system of neighbourhoods of 0, for a topology compatible with the vector 
space structure of E (over K), for which E is metrisable and complete; if further K is a finite 
field, then E is locally compact. Show that the K-bilinear mapping (u, v) f-> uv of E x E in 
E is continuous at the point (0, 0) but that there exists Uo E E such that v f-> uov is not conti­
nuous in E (for example Uo = l/X). 

13) Let E be a vector space of infinite dimension over R, and let:! be the family of all absorbent 
and balanced sets of E. Show that:! does not satisfy axiom (EVm) (in other words is not a 
fundamental system of neighbourhoods of 0 for a topology compatible with the additive 
group structure of E). For this, consider an infinite independent family (en)n" 1 in E; for every 

n 

integer n ;;:: 1, let An be the set of points L tiei such that Itil :(; lin for 1 :(; i :(; n; let A 
i= 1 

be the union of the An' and V be a subspace complementary to the subspace of E generated 
by the en' and write C for the set A + V; show that there exists no set ME:! such that 
M + M c C . 

.,-r14) Let K be a Hausdorff topological division ring, (EJ'EI an infinite family of Hausdorff 
topological vector spaces on K, none of which is the single point O. We consider on F = TI E, 

'EI 
the topology :T, compatible with the additive group structure of F, for which a fundamental 
system of neighbourhoods of 0 is formed by the products TI V" where, for each tEl, the 

'EI 
set V, is a neighbourhood of 0 in E (this topology is strictly finer than the product topology; 
cf GT, III, § 2, exerc. 23). We denote by :To the topology induced by :T on the subspace 
E = EEl E, of F; E is closed in F for the topology :T, and if each of the E, is complete, then 

'EI 
F is complete for the topology :T, therefore E is complete for the topology :To (GT, III, § 3, 
exerc. 10). 
a) Show that if there exists in K a neighbourhood of 0 bounded on the right (GT, III, § 6, 
exerc. 12) (in particular if K is a division ring with a valuation), the topology :To is compatible 
with the vector space structure of E. If, further, K is not discrete, then E is not a Baire space 
for any topology that is finer than :To and compatible with the vector space structure of E. 
b) Moreover, if there does not exist in K any neighbourhood of 0 bounded on the right (see c)) 
give an example of a family (EJ such that the topology :To is not compatible with the vector 
space structure of E. 
c) Let A = R[X] be the ring of polynomials in one variable on R. For every sequence s = (Ent" 0 

of real numbers > 0, denote by Vs the set of polynomials L akXk E A such that lakl < Ek 
k 

for all k. Let:! be the set of the Vs where s varies in the set of sequences of numbers> O. 
Show that:! is a fundamental system of symmetric neighbourhoods of 0 for a topology compa­
tible with the ring structure of A. Let K = R(X) be the division ring offractions of A; denote 
by 6 the family of subsets of K of the form UO + U) ~ 1, where U varies in the set of the Vs 
not containing 1 ; show that 6 is a fundamental system of neighbourhoods of 0 for a topology 
compatible with the division ring structure of K, and that there does not exist in K any neigh­
bourhood of 0 that is bounded. 



§ 2 EXERCISES TVS 1.25 

d) For every Hausdorff topological division ring K, show that there exists a set I such that 
on F = KI, the topology :7, defined above, is not compatible with the vector space structure 
ofF. 

§ 2 

1) Let S be an arbitrary infinite set. 
a) Show that the smallest cardinal of any total set in the normed space ~(S) of bounded 
mappings of S in R (I, p. 4, Example) is equal to 2Ca,d(S) (consider the set of characteristic func­
tions of subsets of S and note that there exists an enumerable set everywhere dense in R). 
b) Show that the smallest cardinal of any total set in the normed space PI(S) (1, p. 4, Example) 
is equal to Card(S). 

2) In the product topological vector space E = RN over the field R, denote bye" (n E N) 
the elements of the canonical basis of the direct sum R(N). Write ao = eo, an = eo + (lln)e" 
for n ;, 1. Show that, for every integer n ;, 0, the ai such that 0 ,;; i ,;; n form a topologically 
independent family in E, but that the infinite family (an)n;,o is not topologically independent. 
If M is the closed vector subspace Rao, the classes an of the an in ElM form a topologically 
independent family (for n ;, 1), but the closed vector subspace N generated by the an' with 
index n ;, I, in E contains M. 

3) Let E be a topological vector space over R, and f a homomorphism of the additive group 
of E in R. Show that if there exists a neighbourhood of 0 in E in which f is bounded, then 
f is a continuous linear form in E. This is so in particular when f is semi-continuous (lower 
or upper). 

4) Denote by K the field R with the absolute value p(~) = 1~ll!2. Let E be the vector space 
over K of the real valued regulated functions defined over I = (0, I), continuous on the 

right everywhere and zero at the point I; show that onE the mapping x f-> IIxll = f Ix(t)ll/zdt 

is a norm. Show that for every function x ;, 0 in E, there exists in E two functions Xl ;, 0, 

xz ;' o such that x = ~(Xl + xz)and IIxIIi = IIxzlI = fi IIxli. Deduce that every continuous 

linear form on E is identically zero. 

5) Let K be a Hausdorff topological division ring of which the topology is locally retrobounded 
(GT, III, § 6, exerc. 22). Extend prop. 2 of I, p. 12 and tho I of I, p. 13 to topological vector 
spaces over K; similarly extend tho 2 of I, p. 13 and prop. 3 of I, p. 14 when K is also complete. 

6) Let K be the topological division ring obtained by transferring the usual topology of QZ 
to the field Q(fi) by the mapping (x, y) f-> X + y fi. 
a) Let E be the set Q(fi) with its vector space structure over K and with the topology induced 
by that of R. Show that E is a Hausdorff topological vector space, of dimension I on K, but 
that it is not isomorphic to Ks. 
b) Let F be the topological vector space E x E over K; in F, the hyperplane E x {O} is 
closed but there is no continuous linear form f on E x E such that this hyperplane is given 
by the equation f(x) = O. 

7) Let K be a valued division ring which is non-discrete and non-complete, let E be the 
topological vector subspace K + Ka of K where a rt K, and let F be the product space K x E. 
In F, the subspace M = K x {O} is closed and of codimension 2. Let N be the complementary 
subspace to M in F generated by the vectors (0, 1) and (I, a); show that F is not the direct 
topological sum of M and N. 
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~ 8) Let P be a prime number, Qp the field of p-adic numbers (GT, III, § 6, exerc. 23). Let 
Eo be the topological product space Qp x R; if K denotes the field Q with the discrete topo­
logy, then Eo is a topological vector space over K. Let M be the vector subspace formed by 
the elements (r, r) where r varies in Q; further let 8 be an irrational number and N the vector 
subspace formed by the elements (0, r8) where r varies in Q. Let E be the subspace M + N 
of Eo; show that N is a closed hyperplane in E, but that there does not exist a complementary 
topological subspace to N (note that M is everywhere dense in Eo). 

9) Let X be a Hausdorff topological space, and let V be a vector subspace of finite dimension 
n of the space 'e(X; R). 
a) Show that there exist n pair-wise disjoint, open sets Vi (1 ,s; i ,s; n) in X, such that any 
function f E V which is identically zero in each of the Vi' is identically zero in X (use A, II, 
§ 7.5, cor. 3). 
b) Let Xi E Vi for I ,s; i ,s; n. Deduce from a) that there exists a constant c > 0 such that, 
for every function fE V, we have 

II 

sup !f(x)! ,s; c I !f(x)!. 
XEX i= 1 

10) Let K be a locally compact non-discrete valued division ring, and E a left vector space of 
finite dimension over K. Denote by m(E) the set of norms on E, which is a subspace of the 
space (€(E; R) of mappings ofE, continuous (in the canonical topology), in R. 
a) When we give to 'e(E; R) the compact convergence topology * (for which it is a Frechet 
space) *' the set m(E) is closed in 'e(E; R), and locally compact. 
b) Let Po be an element of m(E); show that there exists a continuous mapping (A, p) I--> TC,(p) 
of (0, 1) x m(E) in m(E) such that TCo(P) = P and TC 1 (P) = Po for every p E m(E). 

11) With the hypotheses of!, p. 23, exerc. 7 show that if K and E are complete then every closed 
subspace of E has a topological complement (proceed as in a), lac. cit.). 

~ 12) Let K be a locally compact valued division ring whose absolute value is non-discrete 
and ultrametric. We call a norm on the left vector space E over K an ultranorm ifit satisfies the 
ultrametric inequality (II, p. 2). 
a) Let E be a finite dimensional left vector space over K, let a be an ultranorm on E and H 
a hyperplane in E given by the equation < x, a* > = O. Show that there exists a point Xo E E 
at which the function X I--> !< x, a* > !/a(x) attains its upper bound in E" {O} ; show that then 

( ( <x, a*> ) !<x, a*>! ) 
a(x) = sup a x- <xo,a*>xo '!<xo,a*>!a(xo) . 

Deduce that there exists a basis (a) of E and a family (r) of real numbers > 0 such that, for 
all x = I Siai we have a(x) = sup(riISil). We say that a is in the standard form relative to 

i , 

the basis (aJ 
b) Let a* be the norm on E* the dual of E canonically associated with a by 

a*(x*) = sup !< x, x* > !jCJ.(x) ; 
x*o 

it is an ultranorm. Show that for all Xo =I 0 in E, there exists xi; E E* such that 
a(xo) = ! < Xo, xi;) !/a*(xi;). 
c) Let a, ~ be any two ultranorms on E. Show that there exists a basis of E such that relative 
to this basis a and ~ are both of the standard form (consider a point Xo E E"" {O} at which 
a/~ attains its maximum; then use b) and proceed by induction on dim E). 
d) Let mo(E), the set of ultranorms on E, be considered as a subspace of m(E) (exerc. 10). 
Show that mo(E) is closed in m(E). Let a o be an element of mo(E); for each a E mo(E) and 
for 0 ,s; t ,s; 1, let p"(t) be the set of ~ E mo(E) such that ~(x) ,s; ao(x)I-'a(x)' for all x E E. 
Show that p"(t) is not empty and that TC~ = sup p"(t) is an ultranorm. Further, the mapping 
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(t, ex) ~ TI~ of (0, 1) x '!l1o(E) in '!l1o(E) is continuous and such that TI~ = exo and TI~ = ex 
(use c». 
* e) Let A be the ring of the absolute value of K, m its maximal ideal such that k = A/m 
is a finite field with q elements (CA, VI, § 5, No.1, prop. 2). For every ultranorm ex on E, the 
image Xo of the set of values of log ex(x) for x E E ,,{ o} under the canonical mapping in the 
quotient group R/(Z.log q) is a finite set having at most n = dim E elements (use a»; the 
number of these elements is denoted by r(ex) and called the rank of ex. Show that r is a lower 
semi-continuous mapping of '!l1o(E) in N and that the set '!l1~(E) of the ex for which r(ex) = n 
is open and everywhere dense in '!l1o(E) (use a) and c». 
f) Suppose that r(ex) = n; let (aJ be a basis of E relative to which ex is of the standard form; 
show that there exists a neighbourhood V of ex in '!l1~(E) such that every ~ E V has the standard 
form relative to (aJ (use b»; deduce that there is a neighbourhood W c V of ex homeomorphic 
to an open set in Rn. 
g) For every basis (a) ofE, show that the set of ultra norms ex that have a standard form relative 
to (a) is closed in '!l1o(E). Deduce that if ex E '!l1~(E) has a standard form relative to (a) the 
same is true of all elements of the connected component containing ex in '!l1~(E). * 

~ 13) * We keep the general hypotheses and the notations of exerc. 12. 
a) Let L be a free sub-A-module of E of dimension n = dim E. For all x E E ",",{O}, the set 
of the a E A such that ax E L is a fractional ideal of K of the form m h (h a positive or negative 
integer); putting ex(x) = qh and ex(O) = 0, show that ex is an ultranorm on E. It is said to be 
associated with the free A-module L. 
b) Conversely, if ex is an ultranorm on E, the set Lo of the x E E such that ex(x) « 1 is a free 
A-module of dimension n. If [ex] is the norm associated with Lo' we have ex « [ex] « qex, and 
[ex] is the lower bound of the norms associated with free A-modules and which are;;:, ex. We 
have [qex] = q.[exl, and ex(x) = inf(q-'[q'ex] (x») for all x E E, where t varies in the interval 
(0. 1). Further, the function t ~ [q'ex] (x) is left continuous in this interval. 
c) With the same notations, show that for ° « t « 1, there are at most n distinct ultranorms 
among the [q'ex]. Conversely, let L be the set of ultranorms associated with the free A-modules 
of dimension n, and let (ex,)o,,;, 0 be an increasing family of ultranorms of L such that ex l = qexo' 
Show that there exists a basis of E relative to which all the ex, have the standard form (if u E A 
is an element of valuation 1, and L, the free A-module of the x E E such that ex,(x) « 1, consider 
the vector spaces L,/uLo on k). Deduce further, that if, for all x E E, t ~ ex,(x) is left-continuous 
in (0, 1) then there exists a unique ultranorm ex such that ex, = [q'ex] for all t E (0, 1). 
d) The linear group GL(E) operates continuously in '!l1o(E); show that it operates properly. 
For all ex E '!l1o(E). the stabiliser So of ex in GL(E) is the intersection of the stabilisers of the 
[q'ex] for 0 « t « 1 ; deduce that So is an open compact subgroup of GL(E), and hence that 
the orbit of each ex E '!l1o(E) is a closed, discrete subspace of '!l1o(E). 
e) For every ultranorm ex E '!l1o(E) consider the decreasing sequence of the dimensions of the 
vector k-spaces L,/uLo, where L, is the A-module of the x E E such that [q'ex] (x) « 1, and 
t varies from ° to 1 ; we call this sequence, the sequence of invariants of ex. In order that ex and ~ 
belong to the same orbit in '!l1o(E), it is necessary and sufficient that Xo = X~ (exerc. 12, e» 
and that the sequence of the invariants of ex and of ~ should be the same (use exerc. 12, b». 
f) Deduce from e) that the space of the orbits '!l1o(E)/GL(E) is isomorphic with the space 
of the orbits T"/Gn , where the symmetric group operates on the right on T" by 
(ZI' ... , zn) ~ (za(ll' ... , za(n)' * 1 

14) Generalize the results of No.2 and No.3 to topological vector spaces E over a discrete 
division ring K, such that there exists a fundamental system of balanced neighbourhoods 
of ° in E (i.e. of neighbourhoods V such that K. V = V). 

15) Let E be a normed space of finite dimension n over R or C. Ascribe to the dual E*, the 
norm defined by Ilx* II = sup 1< x, x* > 1 (GT, X, § 3.2). Show that there exists a basis (eJ 

IIX II :s; 1 

I For the exercises 12 and 13, see O. GOLDMAN and N. IWAHORI, The space of p-adic 
norms, Acta math., 109 (1963), pp. 137-177. 
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of E such that, if (en is the dual basis, we have IleJ = II ei II = I for all i. (Let (aJ be a basis 
of E formed of vectors of norm 1; consider, the determinant det(~i) for each system of n 
vectors Xi = 2: ~iPj of norm I, and consider such a system for which the absolute value of 

J 
this determinant is maximal.) 

§ 3 

1) a) Show that, if a Hausdorff topological vector space E over a non-discrete valued division 
ring K is such that every neighbourhood of 0 contains a vector subspace that is not the single 
point 0, then the topology of E cannot be defined by a norm, In particular, a product of an 
infinite sequence (En> of Hausdorff topological vector spaces on K, none consisting of the 
single point 0, has a topology that cannot be defined by a norm. 
b) Consider the product vector space E = K~; for all X = (~,,) E E, put 

00 

Ixl = I 2-nl~nl/(1 + I~nl)· 
11=0 

Show that the topology of E is defined by the distance d(x, y) = Ix - yl, that IAxI ~ Ixl if 
II.,I ~ 1, IAxI ~ IA,I.lxl if II.,I ;;:, 1 and that, for all Xo E E, IA,xol tends to 0 with 11.,1. 

2) Let E and F be two complete, metrisable'Vector spaces over a non-discrete valued division 
ring, and let 50 be the topology of F. Let 5 be a Hausdorff topology on F, coarser than 50' 
Show that if the linear mapping u of E in F is continuous for the topology 5 on F, it is still 
continuous for the topology ·'To on F (use the cor. 5 of!, p. 19). 
Deduce that if 5\ and 5 z are two distinct topologies on a vector space E over a non-discrete 
valued division ring, compatible with the vector space structure of E, and for each of them 
E is metrisable and complete, then there does not exist a Hausdorff topology on E 
coarser than 5\ and 52' Give an example of two such topologies on an infinite dimensional 
vector space E (note that there exist bijections of E on itself such that both the bijection and 
its inverse are not continuous for a normed space topology on E). 

3) Let E and F be two Hausdorff topological vector spaces over a non-discrete valued division 
ring; and suppose that E is metrisable and complete. Let u be a continuous linear injection ofE 
in F, and let G be a vector subspace of u(E); suppose that there exists on G a topology 5 
which is finer than the topology induced by that of F, is compatible with the vector space 
structure ofG and for which Gis metrisable and complete. Show that the mapping inverse to u, 
restricted to G, is continuous for 5 (use I, p. 19, cor. 5). 

4) Let E, F be two complete metrisable vector spaces over a non-discrete valued division ring 
and let u be a continuous linear mapping ofE in F. Show that ifthere exists in F a closed com­
plementary subspace to u(E), then u(E) is closed in F (use I, p. 19, cor. 5). 

5) Let E and F be two complete metrisable vector spaces over a non-discrete valued division 
ring and let u be a linear mapping of E in F. Let N be the set of cluster points of u in F with 
respect to the filter of neighbourhoods of 0 in E; show that N is a closed vector subspace 
of F, and that, in order that u be continuous, it is necessary and sufficient that N be the single 
point 0 (use I, p. 19, cor. 5). Show that N is the smallest of the closed vector subspaces M of F 
such that, if <I> denotes the canonical homomorphism of F on F 1M, then <I> 0 u is a continuous 
mapping of E in F/M. 

6) Let E be a complete metrisable vector space over a non-discrete valued division ring K. 
a) Let p be a lower semi-continuous mapping of E in the interval (0, + CfJ) of R such that 
p(Ax) = IA,I.p(x) for A, i= 0 in K and x E E, such that p(O) = 0 and p(x + y) ~ p(x) + p(y) 
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for any x, y in E. Show that if p is finite in E, then p is continuous (consider the closed set 
B of x E E such that p(x) :( 1, and use Baire's theorem). 
b) Let (Pn) be a sequence of mappings of E in (0, + (0) satisfying the conditions of a). Show 
that if none of the Pn are finite in E then there exists a point x E E such that Pn(x) = + 00 

for all n (same method as above). 

7) Let E be a complete metrisable vector space over a non-discrete valued division ring K. 
We say that a vector subspace M of E is paracomplete if there exists on M a complete 
metrisable vector space structure for which the canonical injection of M in E is continuous. 
a) Let M, N be two paracomplete subspaces of E such that M + Nand M n N are closed 
in E. Show that M and N are closed in E. (Taking quotients by M n N reduces the question 
to the case where M n N = {O}, and we can consider then the mapping (x, y) f-+ X + Y of 
M x N in E). 
b) Show that ifE is the union of an increasing sequence of para complete subspaces, (M)po. 
then there exists an indexj such that M j = E. (Use Baire's theorem (GT, IX, & 5.3, tho 1) and I, 
p. 17, tho I). 

8) Let E be a Banach space over a non-discrete valued division ring K. We say that a vec­
tor subspace M of E is strongly paracomplete if there exists a norm Ilxll M on M for which 
M is a Banach space and the canonical injection of M in E is continuous. 
a) Show that if M and N are two strongly paracomplete subs paces of E, then M + Nand 
M n N are also strongly paracomplete subspaces. (On M + N, consider the norm 
IlxII M + N = inf(llull M + IlvIIN)' where the lower bound is taken over all pairs (u, v) such that 
x = u + v, U E M and v EN.) 
b) Let M, N be two strongly paracomplete subs paces ofE such that Nand M + N are closed. 
Show that M = M + (M n N) and M n N = M n N (use exerc. 7, a». 
9) a) Let a, b be two points of a normed space E on the field R. Denote by 8(A) the diameter 
of a bounded set A in E (using the norm metric on E) and define inductively the sequence 
(Bn)n;.t of bounded sets in E satisfying the following conditions: Bt is the set of those x E E 
such that Ilx - all = Ilx -:- bll = ilia - bll ; for n > 1, Bn is the set of those x E Bn - t such 
that Ilx - yll :( t8(Bn - t ) for all y E Bn - t . Show that the intersection of the Bn is just the 
single point tea + b) (note that 8(BJ :( t8(Bn - t »). 
b) Deduce from a) that if u is an isometry of the real Banach space E on the real Banach space 
F, then u is an affine linear mapping of E on F. 



CHAPTER II 

Convex sets and locally convex spaces 

In §§ 2 to 7 of this chapter, we shall be concerned only with vector spaces and affine 
spaces over the field of real numbers R, and when we speak of a vector space or an affine 
space without giving its division ring of scalars explicitly, then it is to be understood 
that this division ring is thefieldR. For vector spaces on C, see § 8. 

§ 1. SEMI-NORMS 

Throughout this paragraph, K denotes a non-discrete valued division ring. 

1. Definition of semi-norms 

DEFINITION 1. - Let E be a left vector space over K. A mapping p of E in 
R+ = (0, + w(, is called a semi-norm on E if it satisfies the following axioms: 

(SN1) If x E E and A E K then pCb) = IAI p(x). 
(SNn) If x E E and y E E then p(x + y) :( p(x) + p(y). 

Since p(x):(p(y) +p(x- y) and p(y):(p(x) +p(y-x), from p(y-x)=p(x- y), 
we deduce 

(1) w(x) - p(y) I :( p(x - y). 

Examples. - 1) A norm on E is a semi-norm p such that the relation p(x) = 0 
implies that x = 0 (I, p. 3). 

2) For every linear form f on E, the function x f--+ If(x)1 is a semi-norm on E. 
3) If Pi (1 :( i:( n) is a finite set of semi-norms on E, then clearly p'(x) = sup Pi(X) 

l~i~n 

II 

and pl/(x) = L \J.iP;(x) (where the \J.i are;;::: 0) are both semi-norms on E. 
i= 1 
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A mapping p of E in R+ is called an ultra-semi-norm if it satisfies (SN1) and the 
following axiom: 

(SN;I) If x E E and y E E, then p(x + y) ~ sup(p(x), p(y)). 
Clearly an ultra-semi-norm is a semi-norm. 
To say that the absolute value on K is ultrametric (CA, VI, § 6.2) means that it is 

an ultra-semi-norm on the left vector space Ks ' which is not identically zero. 

PROPOSITION l. - Let E be a left topological vector space over K and let p be a semi­
norm on E. The following conditions are equivalent: 

a) p is continuous in E. 
b) p is continuous at the point 0. 
c) p is uniformly continuous. 
d) For each real number rl > 0, the set W(p, rl), of those x E E for which p(x) < r:l, 

is open in E. 
e) There exists a real number rl > 0, such that W(p, rl) is a neighbourhood of ° in E. 
j) For every real number rl > 0, the Set Yep, rl), of those x E E for which p(x) ~ r:l, 

is a neighbourhood of ° in E. 
In fact, the implications c) => a) => b) => d) => e) => j) => c) follow immediately 

from (SN1) and inequality (1). 

COROLLARY. - If P is a continuous semi-norm on E and q is a semi-norm such that 
q ~ p, then q is continuous in E. 

When p is an ultra-semi-norm on E, then the sets W(p, (1) and Yep, (1) are both open 
and closed. For, we have seen that W(p, (1) is open; on the other hand if z is a cluster 
point of W(p, (1), then there exists Y E W(p, (1) such that p(y - z) < (1, and from (SN;I) 
we have p(z) < (1, thus W(p, (1) is closed. Also, yep, (1) is closed since p is continuous; 
further if p(x) ~ rx and p(y) ~ rx, then p(x + y) ~ rx by (SN;I)' and this shows that 
yep, rx) is open. 

2. Topologies defined by semi-norms 

Let p be a semi-norm on the vector space E over K; for every rl > ° let Yep, rl) 
be the sJ-Wset of those x of E for which p(x) ~ rl. Clearly, if x E Yep, rl) and A E K 
is such that IAI ~ 1, then AX E Yep, rl), in other words Yep, rl) is balanced. Further, 
for every- Xo E E, there exists a non-zero scalar 11 E K such that 1111 ;?: p(xo) rl- \ 
therefore 11- 1 Xo E Yep, rl) that is to say Yep, rl) is absorbent. Finally, from (SNn), 
we have Yep, rl/2) + Yep, rl/2) c Yep, rl), and from (SN1) that for every non-zero 
scalar A in K we have AV(p, rl) = Yep, IAI rl). We conclude from these remarks, by I, 
p. 7, prop. 4, that, when rl varies in the set of numbers> ° (or only in a sequence of 
strictly positive numbers tending to 0) then the sets Yep, rl) constitute a fundamental 
system of neighbourhoods of ° for a topology compatible with the vector space 
structure of E ; we say that this topology is defined by the semi-norm p. A vector space 
E with such a topology is called a semi-normed space. Note that if W(p, rl) is the 
subset of x of E such that p(x) < rl, then the W(p, rl) constitute (where rl > 0, or rl 
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varies in a strictly positive sequence of numbers tending to zero) a fundamental 
system of neighbourhoods of 0 for the topology defined by p. 

If r is a set of semi-norms on E, then the upper bound of the topologies defined by 
the semi-norms pEr is compatible with the vector space structure (I, p. 10, cor. 4). 
A fundamental system of neighbourhoods of 0, for this topology, is given by the finite 
intersections n yepi' el) where Pi E r and eli > O. This topology is said to be defined 

i 

by the set of semi-norms r. It is the coarsest topology on E amongst those that are 
invariant under all translations and for which the semi-norms pEr are continuous. 

Let E be a topological vector space over K : a system of semi-norms on E, say r, 
is called a fundamental system of semi-norms if the topology on E is the same as the 
topology defined by r. 

Let E be a vector space over K, with the topology defined by a set of semi-norms r. 
For every semi-norm p, we have p(x - z) :( p(x - y) + p(y - z), which shows that 
the function (x, y) ~ p(x - y) is a pseudometric on E (GT, IX, § 1 . 1) : it follows from 
the definitions that, when p varies in r, the set of these pseudometrics defines the 
uniform structure of the topological vector space E. 

Remarks. ~ 1) The topology defined by a finite set of semi-norms Pi (1 :( i :( n) 
on E, can be defined by the single semi-norm p = sup Pi' But a topology defined by 

1 ~i~n 

an infinite set of semi-norms cannot, in general, be defined by a single semi-norm (III, 
p. 37, exerc. 2). 

2) Let (~)<EI be a family of topologies on a vector space E over K, each of which 
is defined by a family of semi-norms 1,. Then the topology defined by the set of semi­
norms 1 = U 1, is the upper bound of the topologies ~. 

'EI 

3) If10 is a set of semi-norms directed by the increasing order relation defined between 
two semi-norms p, q on E by « there exists A > 0 such that p :( Aq », then a funda­
mental system of neighbourhoods of 0, for the topology defined by 1o, is obtained by 
taking the sets V(p, ex) where p E 10 and ex > O. If 1 is any set of semi-norms on E, then 
a filtered set of semi-norms, defining the same topology as 1, is the set 10 of upper 
envelopes of all finite families of semi-norms belonging to 1. 

4) Even if K = R, the topology of a topological vector space over K cannot always 
be defined by a set of semi-norms (cf II, p. 24, corollary). 

Example. ~ Let «j OO(R) be the vector space over R of real valued functions that are 
infinitely differentiable in R. For every function and every pair of integers n ~ 0, 
m ~ 1, put 

(2) Pn,mU) = sup If(n)(t)1 
-m:::;;t~m 

with flO) = f. Obviously the Pn m are semi-norms on «j "'(R). In order that the functions 
fa tend to 0 (following a filter 'ff on the set of indices) in «j "'(R) for the topology :Y 
defined by the semi-norms Pn,m' it is necessary and sufficient that for all integers n ~ 0, 
the functions fa(n) tend to 0 (following ff) uniformly on every compact subset of R. We 
say that :Y is the topology of compact convergence for the functions f E «j "'(R) and all 
their derivatives (cf III, p. 9). 

PROPOSITION 2. ~ On a vector space E, let!!T be the topology defined by a set of semi­
norms r. 
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(i) The closure of {O} in E, for :Y, is the subset of x E E for which p(x) = 0 for 
every semi-norm pEr. 

(ii) If:Y is Hausdorff and r is enumerable, then :Y is metrisable. 
The proposition follows immediately from the definitions and from GT, IX, ~ 2.4, 

cor. 1. 

Note that if :Y is metrisable, it may be that :Y cannot be defined by a single norm; 
this is the case in the example given above (ef IV, p. 18, Example 4). 

Let E be a vector space over K, with the topology defined by a set of semi-norms r. 
Let E be the Hausdorff completion of E (I, p. 6), and t be the set of mappings p of E 
in R+ where p varies in r (GT, II, § 3.7, prop. 15). By the principle of extending 
inequalities, the functions PEt are semi-norms on E, and the functions P(x - y) 

form a set of pseudometrics defining the uniform structure ofE (GT, IX, § I .3, prop. I). 
We see, therefore, that t is a fundamental set of semi-norms defining the topology 
ofE. 

3. Semi-norms in quotient spaces and in product spaces 

Let E be a topological vector space over K, whose topology is defined by r, a set 
of semi-norms. Clearly, the restrictions of the semi-norms of r to a vector sub-space 
M of E, define the topology induced on M by that of E. 

Let <p be the canonical mapping ofE on the vector quotient space ElM. We show 
that, for every semi-norm p on E, the function 

(3) p(z) = inf p(x) 
q,(x)=z 

is a semi-norm on ElM. In fact, it is clear that p satisfies the condition (SN,); on the 
other hand, if z', z" are two vectors of ElM, we have: 

inf p(x):( inf p(x' + x") 
q,(x)=z' +z" q,(x')=z',q,(x")=z" 

:( inf (p(x') + p(x")) 
q,(x') = z' ,q,(x") = z" 

inf p( x') + inf p( x") 
q,(x') = z' q,(x") = z" 

which shows that p verifies (SNn). We say that p is the quotient semi-norm of p by M. 

The same reasoning proves that, if p is an ultra-semi-norm, then so also is p. 

This being so, we have (in the notation of No.2) 

(4) <p(W(p, a)) = W(p, a) . 

for every a > O. In fact, to say that p(z) < a, means that there exists x E E such that 
<p(x) = z and p(x) < a, from which the relation (4) follows. 

We deduce from this, that, if the set of semi-norms r is directed (II, p. 3, Remark 3), 
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then the quotient topology on E/M is defined by the set of semi-norms p, when p 

varies in r. 
If N is the closure of {O} in E, the topology of E/N is defined by the quotient semi­

norms p, where p varies in r (even if r is not filtered) : here p(x) = p(x) for every x 
belonging to the class x mod N. Note that E/N is none other than the Hausdorff 
space associated with E (I, p. 4). 

Let E be a vector space over K and (E)tEI be a family of vector spaces over K, 
where Et has the topology :T, defined by a set of semi-norms r t. For each 1 E I, let 1, 
be a linear mapping of E in E,; clearly when p, varies in the set r t , then the p, 0 1, 
form a set r; of semi-norms on E. The topology :!I on E. defined as being the coarsest 
of all those which make all the mappings ./; continuous (I, p. 9) is then defined by 
the set of semi-norms r' = U r;, this follows from the definition of neighbourhoods 

tEl 
of 0 for :!I (GT, I, § 2.3, prop. 4). 

If the p, are ultra-semi-norms, then so are the Pt 0 .f,. 

Let E be a vector space over K, with the topology :!I defined by a family of semi­
norms (P),EI; for every 1 E I, let:!lt be the topology defined by the single semi-norm p" 
and denote by Et the space obtained from E using the topology :!It' Then the topology 
:!I is the inverse image by the diagonal mapping L1 : E ---> TI E, of the product topo-

'EI 
logy on TI E, (I, p. 9, prop. 7). For each 1 E I, write N, for the closure of {O} in Et, 

'EI 
and by F, = EjNt, the normed space defined by the norm p, corresponding to Pt 

(II, p. 4, formula (3)); if <Pt : E, ---> Ft is the canonical mapping and <P : (xJf---+(<PJxJ) 

the product mapping, we know that the product topology on TI Et is the inverse 
'EI 

image by <p of the product topology on TI Ft (GT, II, § 3.9, prop. 18). The topology :!I 
tEl 

is. therefore, the inverse image under the composite mapping <p 0 L1 of the product 
topology on TI F,. In particular, if :!I is Hausdorff then it follows from II, p. 3. prop. 2 

tEl 
that the mapping <p 0 L1 is injective, therefore: 

PROPOSITION 3. - Every Hausdorff topological vector space E over K, whose topology 
is defined by a set of semi-norms, is isomorphic to a sub-space of a product of Banach 
spaces. 

If, further, the topology of E is defined by an enumerable set of semi-norms, then E 
is metrisable (I, p. 16). 

4. Equicontinuity criteria of multilinear mappings for topologies defined by semi­
norms 

PROPOSITION 4. - Let E; (1 ~ i ~ n) and F be topological vector spaces over K; 
we suppose thatJor every i, the topology ofE; is defined by a directed set of semi~norms 
r;, and that the topology of F is defined by a set of semi-norms r. Then a set H, of 
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n 

multilinear mappings of TI Ei in F is equicontinuous if, and only if, for each semi-norm 
i= 1 

q E r, and each index i, there exists a semi-norm Pi E r i , and a number a > 0, such 
n 

that for each function u E H and point (x;) E TI Ei , 

i= 1 

(5) 

The condition is sufficient since it implies that H is equicontinuous at (0, 0, ... , 0) 
and therefore everywhere (I, p. 9, prop. 6). 

We show that the condition is necessary. By hypothesis, for every semi-norm q E r 
and every number p > 0, we have q(u(x l , XZ' ... , Xn)) ~ P for every function u E H 
provided that Pi(X;) ~ r:J.i are true for each index i, 1 ~ i ~ n, and certain appro­
priately chosen numbers r:J.i > ° and semi-norms Pi E rio As K is non-discrete, 
we can also suppose that, for every i, we have r:J.i = lAd < 1 where Ai E K. Then let 

n 

(Xl' XZ' ... , xn) be any point of TI E i , and for each index i, let mi E Z be an integer 
i= 1 

such that Pi(X) ~ IAilmi + l ; this can be written as p;(Ai-mix) ~ IAil (I ~ i ~ n), 
therefore, by hypothesis, we have 

(6) 

Suppose firstly that one of the p;(x) is zero, then we can take mi E N arbitrarily 
large, therefore q(u(x l , XZ' ... , Xn)) = 0. If, on the contrary, all the p;(x) are =1= 0, 
take the integer mi such that IAri + 2 < Pi (Xi) ~ IAilmi + 1 for each i; then we have 
IAri < IAr 2Pi(x), from which, by (6), the relation (5) follows with 

Q.E.D. 

COROLLARY. - The set H is equicontinuous if, and only if, for every semi-norm q E r, 
n 

there exists a neighbourhood of ° in TI Ei , in which the functions q 0 u, for u E H, 
. i= 1 

are uniformly bounded. 
The condition is evidently necessary, and the demonstration of prop. 4 shows 

that it implies an inequality of the form (5) for all u E H, and therefore the equicon­
tinuity of H. 

We state explicitly the particular case of prop. 4 for linear mappings. 

PROPOSITION 5. - Let E, F be two topological vector spaces over a non-discrete 
valued division ring K; suppose that the topology of E (resp. F) is defined by a set 
of semi-norms r (resp. r'). Let H be a set of linear mappings ofE in F. Thefollowing 
conditions are equivalent : 

a) H is equicontinuous. 
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b) For every semi-norm q E r', there exists a finite family (P)U"i~n of semi-norms 
belonging to r and a number a > Osuch thatJor all x E E and all u E H, 

(7) q(u(x)) ~ a. sup Pi(X). 
1 ~i~lI 

c) For every semi-norm q E r', the mapping sup (q 0 u) is a continuous semi-norm 
UEH 

on E. 

COROLLARY 1. - Suppose that :T, :T I are two topologies on a vector space E over K 
defined, respectively, by two sets of semi-norms rand r'. :T is finer than :T' if, and 
only if, for every semi-norm q E r ', there exists a finite family (Pi)1 ~i~n of semi-norms 
belonging to r and a number a > Osuch thatJor all x E E, we have q(x) ~ a. sup Pi(X). 

1 ~i:$;n 

In fact this shows that the identity mapping of E with topology :T, on E with 
topology :T I, is continuous. 

COROLLARY 2. - Suppose that the topology:T ofa topological vector space E over K is 

defined by a directed set of semi-norms r; for each semi-norm pEr, let Ep be the space 
obtained from E using the topology defined by p. The set E' of linear forms on E that 
are continuous for :T is the union of the sets E~, where E~ is the set of continuous linear 
forms in Ep (p E n. 

§ 2. CONVEX SETS 

1. Definition of a convex set 

For any two points x, y of an affine space E, the set of points AX + IlY where 
A ~ 0, 11 ~ 0, A + 11 = 1 is called the closed segment with end points x and y; it 
reduces to a point when x = y. The complement of x in this segment is called the 
segment with end points x, y which is open at x and closed at y; it is empty if x = y. 
Finally the complement of { x, y} in the closed segment with end points x, y is called 
the open segment with end points x, y; it is empty when x = y. 

DEFINITION 1. - A subset A of an affine space E is convex if, for every two points 
x, y of A, the closed segment with end points x, y is contained in A. 

As (1 - A) a + AX = a + A(X - a), this definition is equivalent to the following: 
the set A is convex if, for every point a E A, the transform of A by a homothety of 
centre a and ratio A where ° < A < 1, is contained in A (in other words, A is stable 
for these homotheties). 

Examples. - 1) Every linear affine variety of E (and in particular the empty set) is 
convex. 

2) The only non-empty convex sets in R are the intervals (OT, IV, § 2.4, prop. I). 
3) Let E be a vector space and Ilxll a norm on E; the unit ball B, formed by the points x 



TVS II.S CONVEX SETS AND LOCALLY CONVEX SPACES § 2 

such that Ilxll ~ 1, is convex since the relations Ilxll ~ 1, Ilyll ~ 1, imply for 0 ~ A ~ 1 
that 

IIAX + (1 - A) yll ~ A Ilxll + (1 - A) Ilyll ~ A + (1 - A) = 1 . 

Remark. - Let A be a convex subset of a vector space E; for any scalars a. > 0 and 
~ > 0 we have a.A + ~A = (a. + ~) A. In other words, for any x EO A, y EO A, there 
exists z EO A such that (a. + ~) z = a.x + ~y; in fact this relation can be written 

a. ~ a. ~ a. ~ 
Z = --A X + --A y and we have --A> 0, --A> 0 and --A + --A =1, 0;+1-' 0;+1-' a. +1-' a. +1-' a. +1-' 0;+1-' 
from which the assertion follows, on using def. 1. 

PROPOSITION 1. - Let (x,) be afamily of points of a convex subset A; every barycentre 
L A,xt of the xtformed using positive masses At (such that L At = 1 and At = ° except 

for finitely many of the indices, cf A, II, ~ 9.3) belongs to A. 
Clearly we need only consider the case when the indices are 1, 2, ... , p and At > ° 

for each i; the proposition is trivial if p = 1; we prove the result by induction on p. 
p-1 p-1 A. . 

Put J.! = L Ai> 0, and y = L --2 Xi; the induction hypothesis implies that YEA. 
i=l i=l J.! 

p 

Now as Ap = 1 - J.! and L Aixi = J.!y + (1 - J.!) x p ' its follows from def. 1 that 
i= 1 

p 

L Aixi belongs to A. 
i= 1 

PROPOSITION 2. - Let E and F be two affine spaces and f be an affine linear mapping 
of E in F; then the image of a convex subset of E under 1, and the inverse image of a 
convex subset of F under fare both convex. 

The image under f of the closed segment with end points x, y is the closed segment 
with end points f(x), fey), hence the first statement. We deduce that the inverse 
image of a closed segment of F under f contains each closed segment whose end 
points belong to it; the second statement of prop. 2 follows. 

In particular the image of a convex set under a homothety or a translation is a 
convex set. 

PROPOSITION 3. - In the affine space E, let H be a hyperplane defined by the relation 
g(x) = 0, where g is a non-constant affine function on E. Then the half-spaces defined 
by the relations g(x) ~ 0, g(x) ~ 0, g(x) > 0, g(x) < ° are convex. 

For these are the inverse images under g of intervals of R and thus are convex. 

With the notations of prop. 3 the points of a subset M of an affine space are on the 
same side (resp. strictly on the same side) of the hyperplane H ifM is contained in one 
of the half-spaces defined by g(x) ~ 0, g(x) ~ ° (resp. g(x) > ° or g(x) < m. 

PROPOSITION 4. - The points of A, a convex subset of an affine space E are strictly 
on the same side of a hyperplane H if; and only if, A does not meet H. 
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Clearly the condition is necessary. Conversely suppose that it is satisfied and let 
g(x) = 0, be an equation defining H (g is an affine linear mapping of E in R). The 
set g(A) is convex in R, therefore it is an interval, and 0 ¢ g(A). Hence g(x) is offixed 
sign for all x E A. 

2. Intersections of convex sets. Products of convex sets 

PROPOSITION 5. - The intersection of any family of convex subsets of an affine space E 

is convex. 
The proposition follows immediately from def. I of II, p. 7. 

PROPOSITION 6. - Let (E)'EI be a family of vector spaces, and for each t E I, let A. 
be a non-empty subset ofE,. Then the set A = n A. is convex in E = n E" if, and 

lEI lEI 

only if, for aliI E I, the set A. is convex in E,. 
In fact, each projection pr, is a linear mapping and we have A. 

-1 

A = n pr,(A.); the proposition follows from props. 2 and 5 above. 
'EI 

pr,A and 

COROLLARY. - In the space R" every parallelotope (GT, VI, ~ I .3) is a convex subset. 
For it is the image under an affine linear mapping of a rectangular parallelepiped, 

and this last is convex by prop. 6. 

PROPOSITION 7. - Let A and B be two convex subsets of the vector space E. For any 
real numbers rx, ~ the set rxA + ~B (set of points of the form rxx + ~y, where x varies 
in A, and y in B) is convex. 

For rxA + ~B is the image of the convex subset A x B of E x E under the linear 
mapping (x, y) H rxx + ~y of E x E in E. 

3. Convex envelope of a set 

DEFINITION 2. - Given a subset A of an affine space E, we call the intersection of all 
convex sets containing A, the convex envelope of A, that is to say (II, p. 9, prop. 5) 
it is the smallest convex set containing A. 

PROPOSITION 8. - For any family (A.)'EI of convex subsets of an affine space E, the 
convex envelope of U A. is precisely the set of linear combinations I A,x, , where 

lEI tEl 

x, E A., A. ~ 0 for alit E I (A, = 0 except for finitely many indices) and I A, = 1. 
'EI 

Denote the set of these linear combinations by C, clearly C is contained in every 
convex set which contains all the A, (II, p. 8, prop. I); on the other hand A, C C 
for every 1. All that remains to be proved is that C is convex. Let x = I A,X" , 
y = I Il,y, be two points of C and rx be a number such that 0 < rx < 1, write 



TVS 11.10 CONVEX SETS AND LOCALLY CONVEX SPACES §2 

y, = r:lA, + (1 - IX) J.!, for every I E I, and let J be the set (finite) of the indices 
of I for which y, -# O. We can write IXX + (l - IX) Y = I y,z" where 

'EJ 

belongs to A, for all I E J; but I y, = IX I A, + (l - IX) I J.!, = 1, and we see that 
tEl tEl tEl 

ax + (l - IX) Y E C. The proposition is proved. 

COROLLARY 1. - The convex envelope of a subset A ofE is identical with the set of 
linear combinations I AiXi , where (x) is any finite family of points of A, the numbers 

i 

Ai > 0, for all i and I Ai = 1. 
i 

The dimension of the affine linear variety (A, II, § 9.3) generated by the convex 
set A is called the dimension of A, 

Let E be a vector space. The convex envelor.~ C, of the balanced envelope of a set 
A in E is called the balanced convex envelope (or the symmetric convex envelope) 
of A; clearly it is the smallest symmetric convex set that contains A; it is also the 
convex envelope of A u (- A), since every point of the balanced envelope of A 
belongs to a segment with extremities a and - a where a E A. The set C coincides 
with the set of linear combinations I AiXi where Xi E A and I IA;! ~ 1; for it is clear 

i i 

that this set of points is convex and contains A and - A; it is sufficient to prove 
that it is contained in C, and for this we need consider only those linear combinations 
for which J.! = I 1\1 > 0; we can then write I \Xi = J.! • I IXiYi with IXi = AdJ.! 
iii 

and Yi = Xi' if Ai ~ 0; and IXi = - A;/J.!; Yi = - Xi if Ai < 0; clearly I IXi = 1, 
i 

and our assertion is proved. 

COROLLARY 2. - Let f be an affine linear mapping of the affine space E in the affine 
space F ; for each subset A ofE, the convex envelope of f(A) is the image under f of the 
convex envelope ofA. 

There is a similar statement for linear mappings and balanced convex envelopes. 

4. Convex cones 

DEFINITION 3. -A subset C of an affine space E is a cone with vertex Xo if C is invariant 
for all homotheties of centre Xo and ratio > o. 

We shall suppose in this No. and in the one following, that we have chosen the vertex 
of the cone being considered, as origin in E; i.e. we suppose that E is a vector space, 
and when we speak of a cone, it is to be understood that this cone has vertex O. The 
set of points of the form Aa for A > 0 (resp. A ~ 0), where a is a non-null vector, is 
called an open half line (resp. closed half-line) originating at O. 

A cone C of vertex 0 is said to be pointed if 0 E C, and non-pointed otherwise. A 
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pointed cone is either the single point {O} or is the union of a set of closed half-lines 
originating at O. A non-pointed cone is the union (possibly empty) of open half lines 
originating at O. If C is a non-pointed cone, then C u {O} is a pointed cone. If C is a 
pointed cone, then C - {O} is a non-pointed cone. 

If C is a non-pointed convex cone, then C u {O} is a pointed convex cone. However, 
if C is a pointed convex cone, C - {O} is not necessarily convex. We say that a pointed 
convex cone is proper if it does not contain any line passing through O. Then 

PROPOSITION 9. - A pOinted convex cone C is proper if and only if the non-pointed 
cone C, which is the complement of 0 in C, is convex. 

If C contains a line through 0 then clearly C is not convex. Suppose now that C 
is proper and let x, y be two points of C. The closed segment with end points x, y 
is contained in C; ifit contains 0 then AX + (1 - A) y = 0 for some A with 0 < A < 1, 
therefore x = IlY with 11 < O. Thus C contains the line through 0 and x, contrary 
to hypothesis. 

PROPOSITION 10. - A subset C of E is a convex cone if and only !f C + C c C and 
AC c C for all A > O. 

For the condition AC c C for all A > 0 characterises the cones. If C is convex 
we have C + C = tc + tc = C (II, p. 8, Remark). Conversely, if the cone C is 
such thatC + C c C, then for 0 < A < 1, wehaveAC + (1 - A) C = C + C c C, 
which shows that C is convex. 

COROLLARY 1. - If C is a non-empty convex cone, the vector space generated by C 
is the set C - C (the set of points x - y where x, y vary in C). 

For, if V = C - C, then V is non empty, we have AV = V for all A i= 0, and 
V + V = C + C - (C + C) c C - C = V, which shows that V is a vector sub­
space. Finally every vector subspace that contains C also contains V. 

COROLLARY 2. -lfC is a pointed convex cone, the largest vector subspace contained 
in C is the set C n (- C). 

For, if W = C n (- C), then W is non-empty and A W = W for all A i= 0, also 

W + W c (C + C) n (- (C + C)) c C n (- c) = W, 

which shows that W is a vector subspace. Clearly every vector subspace contained 
in C is also contained in W. 

Obviously, if f is a linear mapping of E in a vector space F, then fCC), the image 
of a convex cone C in E, is a convex cone in F. Every intersection of convex cones 
(with vertex 0) in E is a convex cone. For every subset A of E the intersection of 
convex cones containing A (these exist, E itself is one such cone) is the smallest 
convex cone that contains A; it is called the convex cone generated by A. 

PROPOSITION 11. - Let (C.)'EI be afamily of convex cones in E; the convex cone gene­
rated by the union of the C, is identical with the set of points L x,, where J is any finite 

'EJ 

subset of I and x, E C, for all t E J. 
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In fact, it is obvious that C, the set of such points, is a convex cone containing 
the union of the C" and that it is contained in any convex cone which contains 
this union. 

COROLLARY. - For any subset A of E, the convex cone generated by A, is identical 
with the set of linear combinations L AiXi , where (X)iEJ is any finite non-empty family 

lEJ 

of points of A, and where Ai > 0 for all i E J. 
It is sufficient to see that, if a convex cone contains a point x =1= 0 of A then it also 

contains the half-line Cx of the points AX where A varies in the set of positive numbers 
and that Cx is a convex cone. 

PROPOSITION 12. - If A is a convex set in E, then the convex cone generated by A 
is identical with C = U AA. 

1->0 

The set C is clearly a cone; it is sufficient to show that C is convex. Let AX, j.ly be 
two points of C (A > 0, j.l > 0, X E A, YEA). Let r:l, ~ be two numbers > 0 such that 
r:l + ~ = l. Then r:lAx + ~j.ly = (r:lA + ~j.l) z, with z E A, and r:lA + ~j.l > 0; 
hence r:lAx + ~j.ly E C. 

Remarks. -I) With the hypotheses of prop. 12, if 0 ~ A, then the cone C is non-pointed, 
thus C u {O} is proper. 

2) Let A be any convex set in E; consider the convex set Aj = A x {I} in the space 
F = E x R and the convex cone C with vertex 0 that is generated by A j . Prop. 12 
shows that Aj is the intersection of C and of the hyperplane E x {I} in F. Every 
convex set in E can, therefore, be considered as the projection on E of the intersection 
of a convex cone with vertex 0 in F and the hyperplane E x {I}. 

5. Ordered vector spaces 

A preorder structure, on a vector space E, denoted by X ~ Y or Y > x, is compatible 
with the vector space structure of E if it satisfies the following two axioms; 

(EO!) If X ~ Y then x + z ~ y + z for all z E E. 
(EOn) If x > 0 then Ax > 0 for every scalar A ): O. 
The vector space E, carrying these two structures, is called a preordered vector space 

(resp. an ordered vector space when the relation of preorder on E is an order). 
Note that axiom (EO!) means that the preorder structure and the additive group 

structure of E are compatible, that is to say, E carrying these two structures, is a 
preordered group (A, VI, p. 3). 

Example. - On the space E = RA of all finite real-valued functions defined over A, 
the relation of order given by «for all tEA, x(t) ,:;; yet) » is compatible with the vector 
space structure of E. 

PROPOSITION 13. - (i) The set P, of elements> 0, of a preordered vector space E, 
is a pointed convex cone. 

(ii) Conversely, ifP is a pointed convex cone in E, then the relation y - x E P is a 
preorder relation on E, and the preorder structure that it defines is the only one that is 
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compatible with the vector space structure of E andfor which P is the set ofelements ~ O. 
(iii) The relation y - x E P, }vith P a pointed convex cone, is an order relation on E 

ifand only if P is a proper cone. 
(i) Axioms (E01) and (EOn) imply P + PcP and AP c P for all A > O. As 

o E P, it follows that P is a pointed convex cone (II, p. II, prop. 10). 
(ii) Conversely, if P is a pointed convex cone, the relation P + PcP implies 

that the relation y - x E P is a preorder compatible with the additive group structure 
ofE (A, VI, p. 3, prop. 3); clearly writing it x < y, the set P is identical with the set of 
x ~ 0; further the relation AP c P for all A ? 0 shows that axiom (EOn) is satisfied. 

(iii) To say that P is proper means that P n (- P) = { 0 } (II, p. 11, cor. 2), hence 
that y - x E P is an order relation. 

Example. ~ * Let H be a real Hilbert space; in the vector space 2(H) of continuous 
endomorphisms of H. the positive hermitian endomorph isms form a proper pointed 
convex cone; this cone, therefore, defines an order structure compatible with the 
vector space structure of ~H) and for which the relation A ~ B means that B - A 
is a positive hermitian endomorphism. * 

For any pointed convex cone P in the vector space E, the set P n (- P) is a vector 
subspace, H, of E (II, p. 11, cor. 2). The canonical image P' of P in E/H is a convex 
cone and the inverse image of P' in E is P. Thus P' n (- P') = {O}, and P' defines 
an order structure on E/H that is compatible with its vector space structure. 

A linear form f on a preordered vector space E is said to be positive if x ~ 0 in E 
implies f(x) ? O. Or, alternatively, if the convex cone P of elements ~ 0 in E is 
contained in the half space of those x for which f(x) ? O. Clearly, in the dual E* to E, 
the set of positive linear forms is a pointed convex cone. 

6. Convex cones in topological vector spaces 

PROPOSITION 14. ~ In a topological vector space E, the closure ola convex set (resp. 
of a convex cone) is a convex set (resp. a convex cone with the same vertex). 

For,letAbeaconvexset;themapping(x,Y)f---+AX +(1- A)y,whereO < A < 1, 
iscontinuousinE x EandmapsA x AinA;thus(GT,I,~2.1,th.l)itmapsA x A 
in A, ~hic~ sho~s that ~ is c~nvex. Similarly, if C is a convex cone with vertex 0 
then C + C c C and AC c C for all A > O. 

DEFINITION 4. ~ For any set A of a topological vector space E, the intersection of 
all the closed convex sets containing A is called the convex closed envelope of A; it is 
the smallest convex closed set containing A. 

From prop. 14, the convex closed envelope of A is the closure 0'£ the convex enve­
lope of A; it is clearly the same as the convex closed envelope of A. 

Similarly we call the smallest symmetric, convex, closed set that contains A, the 
symmetric convex closed envelope (or the balanced convex closed envelope) of A; 
it is the closure of the symmetric c0E.vex envelope of A (II, p. 10); it is also the sym­
metric convex closed envelope of A. 
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PROPOSITION 15. - Let A; (1 ;:( i;:( n) be a finite number of compact convex sets in 
a Hausdorff topological vector space E. Then the convex envelope of the union of the 

A; is compact (and is, therefore, the same as the convex closed envelope of this union). 

Let B be the compact set in Rn defined by the points 0'1' A2 , ... , An) where 
11 n 

A;): 0 (1 ;:( i;:( n), and I )~i = 1. Define a continuous mapping of B x TI A; c Rn x En 
i= 1 i= 1 

/J 
in E by the formula (A1' A2 , ... , A/J' Xl' X 2 ' ... , X/J) H I A;xi • The convex envelope C 

;= 1 
n 1J n 

of U Ai is the image of B x TI Ai under this mapping; as B x TI A; is compact 
i=l ;=1 ;=1 

and E is Hausdorff, it follows that C is compact. 

COROLLARY 1. - In a Hausdorff topological vector space the convex envelope of a 
finite set is compact. 

COROLLAR y 2. -- In a topological vector space E, the convex envelope of a finite set 
is precompac t. 

In fact, let j be the canonical mapping of E in its Hausdorff completion E; if C 
is the convex envelope of A, then j(C) is the convex envelope of the finite set j(A) 
in E, hence j(C) is compact (cor. 1) and therefore C is precompact (GT, II, § 4.2). 

PROPOSITION 16. - Let A be a convex subset, w!!..h at least one interior point X O' 

of a topological vector space E. For any point x E A, every point of the open segment 

with end points x O' x lies in the interior of A. 
For any point y of this segment, let f be the homothety of centre y and ratio A < 0, 

which transforms Yo into x. If V is an open neighbourhood of Xo contained in A, 
then fey) is a neighbourhood of x and therefore contains a point fez) E A; now 

fez) - y = A(Z - y) = A(Z - fez)) + A(f(Z) - y) , 

hence y - fez) = A ~ 1 (z - fez)), so that y is transformed into z by the homo­

thety g, of centre fez) and ratio J.1 = A/(A - 1); since 0 < J.1 < 1, g transforms V 
into a neighbourhood of 0 contained in A. The proposition is proved. 

COROLLARY 1. - The interior A of a convex set A, is itself a convex set; if A is not 
empty, then it coincides with the interior o/"A, and A is a convex set that coincides with 

c 

the closure of A. 
It follows· from prop. 16, that if A is not empty, then it is a convex set and every 

point of A is a cluster point of A. Next we show that every interior point of A belongs 
to A. Let x be an interior point of A and suppose, for definiteness that x = O. Let V 

_ CJ 

be a symmetric neighbourhood of 0 that is contained in A and let YEA n V; now 
- YEA, and therefore, by prop. 16, we see that 0 E A, if y i= 0; this is obviously 
true if y = o. 



No.7 CONVEX SETS TVS IU5 

COROLLARY 2. - The interior C of a convex cone C, is itself a convex cone; if C 
is not empty then it coincides with (he interior of C, and C is a pointed convex cone 
that coincides with the closure of C . 
. Since homotheties of ratio> 0 and centre 0 transform C into itself, they do the 

same for C, thus C is a cone; the remainder of tE.e corollary follows from cor. 1 and 
the obvious remark that if C is not empty then C contains the vertex of C. 

Let H be a closed hyperplane in the topological vector space E over R; it has an 
equation of the form f(x) = Ct., where f is a continuous linear form that is not iden­
tically zero in E (I, p. 11 tho 1). The closed half spaces defined respectively by f(x) ,::;; CI. 

and f(x) ): CI. are therefore closed convex sets; their complements defined respec­
tively by f(x) > CI. and f(x) < CI., are open convex sets. We say that these half-spaces 
are the closed (resp. open) half spaces determined by H. 

PROPOSITION 17. - In a topological vector space E, let A be a set with at least one 
interior point, and such that all its points lie on the same side ()f an hyperplane H. 
Then H is closed, the interior points of A lie strictly on the same side of H, and the 
cluster points of A lie on the same side of H. In particular open (resp. closed) half spaces 
are determined by closed hyperplanes. 

In fact suppose that H contains the origin and that f(x) = 0 is an equation of 
H; suppose, for definiteness, that f(x) ): 0 for all x E A. The half space formed by 
the points y such that fey) > - 1 contains at least one interior point, and, by trans­
lation, the same is true of the half space of points y such that fey) > 0; this shows 
that H is closed (I, p. 11, corollary). Then we know that f is a strict morphism of E 
on R (I, p. 13. corollary), therefore f(A.) is an open set in R. This set cannot contain 0 
or it would contain numbers < 0 contrary to hypothesis; it is thus contained in the 
open interval) 0, + x{ On the other hand, the half space of those y for which 
fey) ): 0 is closed and contains A, therefore it contains A. 

COROLLARY. -- Let P be a pointed convex cone, with at least one interior point, of the 
topological vector space E. Then each linear form f that is not identically zero on E, 
and is positive for the pre order structure defined by P (II, p. 13), is necessarily continuous. 
Further, ifx is interior to P then f(x) > 0 and if x is a cluster point ofP then f(x) ): O. 

Apply prop. 17 to the case A = P where H is the hyperplane with the equation 
f(x) = O. 

Remark. - In a topological vector space E, every convex set C is connected. In 
fact, if a E C, then C is a union of segments with end point a and closed at a; these 
are connected and the result follows from GT, I, § 11.1, prop. 2. 

7. Topologies on ordered vector spaces 

Let E be an ordered vector space. A topology on E is compatible with the ordered 
vector space structure ofE ifit is both compatible with the vector space structure ofE 
and subject to the following axiom : 

(TO) The convex cone of the x with x ): 0, is closed in E. 
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An ordered vector space E with a compatible topology is called an ordered topolo­
gical vector space. 

Examples. - The space R" with its usual topology and the order structure that is the 
product of the order structure of its factors is an ordered topological vector space. On 
the other hand, for n :? 2, when R" carries the lexicographical order (S, Ill, ~ 2.6), the 
usual topology is not compatible with the ordered vector space structure of R". 

Let A be a set; the vector space ~(A; R) of real valued bounded functions defined 
on A. with the topology defined by the norm Ilxll = sup Ix(t) I and the order structure 

tEA 

induced by the product order structure of RA, is an ordered topological vector space. 

In an ordered topological vector space E, the set of elements x ~ 0 is closed; 
since translations are homeomorphisms, we deduce that. for all a E E, the set of 
elements x ): a (resp. x ~ a) is closed. Since {O} is the intersection of the sets x ): 0 
and x ~ 0, it follows that {O} is closed and that E is Hausdorff. 

PROPOSITION 18. - In an ordered topological vector space E, let H be a set directed by 
the relation ~. If the section filter ofH has a limit in E, then this limit is the upper bound 
ofH. 

For, let b = lim x; for every y E H, the set of x E H such that x ): y is a set of 

the section filter of H, therefore b is a cluster point of this set; but as the set x ): y 
is closed in E, we have b ): y, thus b is an upper bound of H. On the other hand, 
if a is an upper bound of H, then H is contained in the closed set x ~ a; as b is a 
cluster point of H, we have b ~ a, which completes the proof (II, p. 72, exerc. 42). 

8. Convex functions 

DEFINITION 5. - Let X be a convex subset of the affine space E. A real-valued finite 
function, defined over X is convex (resp. strictly convex) ifIor any two distinct points x, 
y of X and any real number A, 0 < A < 1, we have: 

(1) 

(resp. 

(2) 

f(h + (1 - A) y) ~ Vex) + (1 - A) fey) 

f(h + ('1 - A) y) < Vex) + (1 - A) fey)) . 

When E = R, this definition of convex function is the same as that in FVR, I, 
p. 32. Further, f is convex (resp. strictly convex) in X if, and only if, for every affine 
line DeE, the restriction of f to X Ii D is convex (resp. strictly convex) in X Ii D. 

Examples. - If f is an affine linear function on E, then f and f2 are convex functions 
on E; this is obvious for f since 

f(Ax + (1 - A) y) = Vex) + (I - A) f(y); 

on the other hand, if ex = f(x), ~ = fey), then; 

Aex2 + (I - A) ~2 - (b + (1 - A) ~)2 = A(i - A) (ex - W :? 0 
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for 0 < A < 1; further, the restriction of f 2 to an affine line DeE is strictly convex 
if flD is not a constant. 

A real-valued function f, defined over X, is concave (resp. strictly concave) if - f 
is convex (resp. strictly convex). That is to say, for every two distinct points x, y of X 
and every number A, such that 0 < A < 1, we have 

f(AX + (1 - A) y) ~ Af(x) + (1 - A) f(y) 

(resp. 

f(AX + (1 - A) y) > Af(x) + (1 - A) f(y») . 

A mapping of X in R is affine ifit is both convex and concave (cl II, p. 78, exerc. 11). 

PROPOSITION 19. - Let X be a convex set of the affine space E ; and let fbe a real-valued 

function defined over X. Denote the set of points (x, a) E E x R for which x E X and 
f(x) ~ a (resp. x E X and f(x) < a) by F (resp. F'). Then the folloWing conditions 
are equivalent : 

a) The function f is convex. 
b) The set F in the affine space E x R is convex. 
c) The set F' in the affine space E x R is convex. 
We show that a) = c). Let (x, a) and (y, b) be two points of F' and 0 < A < 1, 

then f(x) < a, f(y) < b and if f is convex 

f(AX + (1 - A) y) ~ Af(x) + (1 - A) f(y) < Aa + (1 - A) b 

which shows that the point A(X, a) + (1 - A) (y, b) of E x R belongs to F'. Thus 
F' is convex. 

Next we show that c) = b). If(x, a), (y, b) are two points ofF then for every E > 0, 
(x, a + E) and (y, b + E) belong to F' and, if 0 < A < 1, the same is true of 
(AX + (1 - A) y, Aa + (1 - A) b + E); by the definition of F this implies that 
(AX + (1 - A) y, Aa + (1 - A) b) belongs to F. 

Finally b) = a), for (with the above notation), if ('Ax + (1 - A) y, Aa + (1 - A) b) 
belongs to F then 

f(AX + (1 - A) y) ~ Aa + (1 - A) b 

provided a ~ f(x) and b ~ f(y); hence (1) follows and f is convex. 

CoROLLARY. - Iff is convex in X, then for allac E R, the set of x E X such that 
f(x) ~ ac (resp. f(x) < ac) is convex. 

In fact, it is the projection on E of the intersection of F (resp. F') and the hyper­
plane E x {ac} in E x R. 

PROPOSITION 20. - Let f be a convex function, defined over a convex set X of the affine 
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space E. Then for every family (X)hi~p ofp points of X and every family (A)l~i~P 
p 

of p real numbers, all ~ 0, such that I Ai = 1, we have: 
j= 1 

p p 

(3) f( I AiXj) ~ L AJeXj) . 
i= 1 i= 1 

Iff is strictly convex and if )'i > 0 for all i, then 

p p 

(4) f( L Ajx;) < L AJ(Xj), 
i= 1 i= 1 

unless all the Xj are equal. 
The inequality (3) follows from II. prop. 19 above and II, p. 8, prop. 1. Suppose 

that the Xi are not all equal (which implies p :::;, 2) and that the Aj are all > 0; then the 
p 

point z = L AjXj differs from at least one Xi. Suppose for definiteness that z #- Xl' 
j=1 

P A. 
write z = "'lX1 + (1 - AI»)'I where Yl = I I=T Xi· Then Yl #- Xl and, as 

j= 2 1 

o < Al < 1, we have, by hypothesis, 

P A. 
But by (3) f(YI) ~ J2 1 _' Al f(x), and the inequality (4) follows. 

9. Operations on convex functions 

Let X be a convex set of an affine space E. If J; (1 ,.,:; i ,.,:; p) are finitely many convex 
functions defined over X and cj (1 ~ i ~ p) are numbers :::;, 0 then the function 

P 

f = L ciJ; is convex over X. 
j= 1 

If(f;) is any family of convex functions defined over X and if g, the upper envelope 
of the family in X, is finite then g is convex. 

Finally if H is a set of convex functions defined over X, and ~ is a filter on H that 
converges simply in X to the finite real valued function fo, then fo is convex over X. 

10. Convex functions over an open convex set 

PROPOSITION 21. - Letfbe a con vex function, defined over the non-empty open convex 
set X in the topological vector space E. Then f is continuous if, and only if, it is bounded 
above when restricted to some non-empty open subset U of X. 

The condition is obviously necessary, we prove that it is sufficient. Let Xo EX 
be a point such that f is bounded above in a neighbourhood V of xo ; we show 
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firstly that f is continuous at xo' By translation, we can restrict ourselves to the case 
when Xo = 0 and f(xo) = 0; moreover we can suppose that the neighbourhood 
V is balanced (I, p. 7, prop. 4). Suppose that f(x) ~ a in V; for every E, 0 < E < 1, 
we observe that if x E EV, then xlE E V and - xlE E V. Applying inequality (1) of 
II, p. 16 to the points xlE and 0 and to the number A = E, we see that 
f(x) ~ Ef(xIE) ~ w; applying it to points x and - xlE and the number A = 11(1 + E), 
gives f(x) ~ - Ef( - xl E) ~ - w. Thus f(x) is arbitrarily small in EV, if E is 
sufficiently small, and f is continuous at x = O. 

Now let y be some point of X ; since X is open, there is a number p > 1 such that 
z = py belongs to X. Let g be the homothety x f-* AX + (1 - A) z of centre z and 

ratio A = - 1.., which transforms 0 into y; for every point g(x) E g(V), we have 
p 

from (1) 

f(g(x») ~ V(x) + (1 - A) fez) ~ Aa + (1 - A) fez) . 

Thus f is bounded above in a neighbourhood of y and hence, by the first part, is 
continuous at y. The proposition is proved. 

COROLLARY. - Every convex function f defined over an open convex set X in Rn is 

continuous in X. 
We can suppose that X is not empty. Then there exist, in X, n + 1 affinely inde­

pendent points ai (0 ~ i ~ n) and the convex envelope of these points, S, contains 
n 

the open non-empty set formed of the points I Aiai with 0 < Ai < 1 for all i and 
i=O 

n 

I Ai = 1. By II, p. 17, prop. 20, f is bounded above in S and therefore is continuous. 
i=O 

In a topological vector space of infinite dimensions there exist, in general, linear 
non-continuous forms (II, p. 80, exerc. 25) and thus convex functions that are not conti­
nuous at any point. 

11. Semi-norms and convex sets 

Let E be a vector space over R; a mapping p of E in R is positively homogeneous 

if, for every A ~ 0 and all x E E we have 

(5) p(AX) = Ap(X) . 

A positively homogeneous function p on E is convex if, and only if, it satisfies 
axiom (SNn) of II, p. 1 for all x, y ofE; 

(6) p(x + y) ~ p(x) + p(y) . 

In fact, if p is convex, then for x, y in E, 

p(t(x + y») ~ tp(x) + tp(y) 
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and, by (5), this relation is equivalent to (6). Conversely, if (6) holds, then we also 

have for all A such that ° < A < 1, 

p(AX + (1 - A) Y) :( p(AX) + p((l - A) y) = Ap(X) + (1 - A) p(y) 

using (5). 
A convex positively homogeneous function on E is called sub-linear. 

If p is a sub-linear function defined on E; then, by II, § 2.8, corollary, for all a > 0, 
the set V(p, a) (resp. W(p, a») of points x E E for which p(x) :( a (resp. p(x) < a) 

is convex; further this set is absorbent, since for all x E E, there exists A > ° such that 
pCb) = Ap(X) < a. 

There is a partial converse of this result: 

PROPOSITION 22. - Let A be a convex set, containing 0, in the vector space E. For 

all x E E, put 

(7) PA(X) = inf p 
p> O.xEpA 

(0 :( p A (x) :( x). The function p A satisfies 

(8) 

for all x, y in E and A > 0. If V(PA'::X) (resp. W(PA' et») denotes the set ofx E E for 
which p A (x) :( et (resp. P A (x) < et), then 

(9) 

If A is absorbent then PA is iinite (therefore sublinear). 

Since the relations x E pA and AX E ApA are equivalent when A > 0, we have 
PA(AX) = APA(X) for A > 0. Let x, y be two points of E. If x (resp. y) is not absorbed 
by A thenPA(x) = +x: (resp. PA(Y) = + 00) and the inequality PA(X + y) :(pA(x) +PA(Y) 
is obviously true. Suppose there exist et > 0, ~ > ° such that x E ::xA, and y E ~A; 

then X +y E etA +~A=(et +~) A (II, p. 8, Remark); and thusPA(x +Y):(PA(X) +PA(Y)' 
The inclusion A c V(p A' 1) is clearly true. The inclusion W(p A' 1) c A follows 
because A is convex and contains 0. Finally if A is absorbent then PA is obviously 
finite. 

The function P A defined by (7) is called the gauge of the convex set A. If A is absor­
bent and symmetric, then PA is a semi-norm. 

PROPOSITION 23. - Let E be a topological vector space. If A is an open convex set 

which contains 0, then PA isfillite and continuous, and A = W(PA, 1). If A is a closed 
convex set containing 0, then PA is lower semi-continuous and A = V(PA' 1). 

If A is open and contains 0, then it is absorbent. For x E A, there exists p < 1 
such that x/p E A, and thus PA(X) < 1; this, combined with (9) gives A = W(PA' 1). 
Since the convex function PA is bounded above in the open set A, it is continuous 
in E (II, p. 18, prop. 21). 
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Suppose A is closed and contains 0. For every x E E with PA(X) :::; 1, we have 
x E pA for all p > 1, therefore x E A since A is closed; remembering (9), this shows 
that A = V(PA' 1). For all Il > 0, IlA is therefore the set of x such that PA (x) :::; Il; 
as PA (x) ~ ° in E, this shows that PAis lower semi-continuous in E (GT, IV, § 6.2). 

A positive sublinear function p over E is the gauge of each convex set A where 
W(p, 1) cAe Yep, l). 

§ 3. THE HAHN-BANACH THEOREM (ANALYTIC FORM) 

1. Extension of positive linear forms 

PROPOSITION 1. - Let E be a pre ordered vector space and V be a vector subspace of E 
such that every element ofE is bounded above by an element ofY. Given a linear form f 
on V that is positive for the preordered vector space structure of V (induced by that olE) 
there exists a non-empty set Sf 01 positive linear forms on E, each heing an extension 

off. If hE Sf then the values h(a) for a E E lie in the interval (et'. ri"). where 

(1) \i' = sup f(z) , \i" = inf f(y). 
zeV,z:=:;a YEY,y~a 

1. Special case. 

Suppose firstly that E = V + Ra. Since the proposition is trivial if a E V. we 
confine ourselves to the case a ¢c V. The conditions on V imply that the set A" of 
.r E V such that a :::; y is not empty; similarly the set A' of z E V such that - z ~ - a 
(i.e. z :::; a) is not empty. For YEA" and z E A', we have z :::; a :::; y, and thus by 
hypothesis fez) :::; fey)· Thus 21', 21" are finite and \i' :::; 21". Any linear form fl on E 
that extends f is completely determined by fl (a) and for all t~ E R and all x E V, we 
have 

f 1(x + 'A.a) = f(x) + 'M1(a). 

Thus t; is positive if and only if the relations 

(2) X E V, 'A. E R, x + 'A.a ~ ° 
imply 

(3) f(x) + Af;(a) ~ 0. 

As f(IlX) = Ilf(x) and the relations x ~ ° and IlX ~ ° are equivalent for Il > 0, 
it is sufficient to show that (2) implies (3) in the particular cases 'A. = 0, 'A. = 1 and 
). = - 1. For Ie = 0, the fact that (2) implies (3) follows from the hypothesis that f 
is positive. For I. = 1, to say that (2) implies (3) means that for - x E A', we have 
il (a) ~ f( - x), i.e. fl (a) ~ \i': for 'A. = - 1, (2) implies (3), means that for x E A", 
we have I(x) ~ fl (a), i.e. fl (a) :::; \i". The proposition is therefore proved in this 
case. 
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n. General case. 

Let 3' be the set of pairs (W, g) where W is a vector subspace of E containing V 
and 9 is a positive linear form on W which is an extension of f. We order 3' putting 
(W, g) :( (W', g') ifW c W' and if g' is an extension of g. Clearly 3' is inductive and 
by tho 2 of S, Ill, § 2.4, there is a maximal element (W 0' go)· Suppose W 0 =1= E. Then 
there exists a vector b ¢: W 0' and, if WI = W 0 + Rb, the special case above shows 
that there exists a positive linear form on WI which is an extension of go; this con­
tradicts the hypothesis that (W 0' go) is maximal. Thus W 0 = E, and the first part 
of the proposition is proved. When a E V, the second assertion is obviously true 
with cr' = cr" = f(a); if, on the contrary, a ¢: V and one puts VI = V + Ra, the 
second assertion follows from the special case I of the proof 

COROLLARY. - In a topological vector space E with a compatible preorder structure, 
let P be the set of elements ;,: ° in E. Let V be a vector subspace of E containing at least 
one interior point Xo of P. Then every positive linear form on V can be extended to a 
positive linear form on E. 

By prop. 1 it is sufficient to show that for every x E E, there exists x' E V such that 
x' - x E P. Now let U be a neighbourhood of ° in E such that Xo + U c P. Then 
x + Xo + U c X + P, and, hence there exists £ such that ° < £ < 1 and the point 
y = Xo + (1 - £) x belongs to x + P; then every point of the form x + :A(y - x) 
belongs to x + P for :A > 0. If we take A = 1/£, then x + :A(y - x) = AXo E V, 
from which the conclusion follows. 

The conclusion of the corollary is not necessarily valid if one does not assume that V 
contains an interior point of P, even if E is of finite dimension and if P n V contains 
points interior in V (II, p. 91. exerc. 25, b)). 

2. The Hahn-Banach theorem (analytic form) 

THEOREM 1 (Hahn-Banach). - Let p be a sub-linear function on a vector space E. 
Let V be a vector subspace ofE and f a linear form on V such that, for all y E V, we 
have fey) :( p(y). Then there exists a linear form han E that is an extension off and 
such that hex) :( p(x) for x E E. 

The set of pairs (x, a) such that p(x) :( a is a convex subset P of the vector space 
El = E x R (II, p. 17, prop. 19), and it is clearly a pointed cone. Let VI be the sub­
space V x R of El and g(y, a) = - f(y) + a for each point (y, a) E V l' Then 9 
is a positive linear form for the preorder structure on V 1 defined by P n VI; for if 
(y, a) E P n VI' then a ;,: p(y) ;,: fey), therefore 9(y, a) ;,: 0. Next let (x, a) EEl ; 

we show that (x, a) is less than a point of V 1 for the preorder defined by P. H(x', a') E VI 
then (x, a) :( (x', a') if, and only if, p(x' - x) :( a' - a, taking a' ;,: p( - x) + a, 

we see that (0, a') of VI satisfies the requirements. Thus we can apply prop. I of II, 
p. 21 ; there is a linear form u on El extending 9 and positive for the preorder defined 
by P. Therefore u(O, 1) = 9(0, 1) = 1 and u is of the form u(x, a) = - hex) + a, 
where h is a linear form on E that extends f; further, for all x E E and all a ;,: p(x), 
we have hex) :( a, therefore hex) :( p(x). Q.E.D. 
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COROLLARY 1. - Let p be a semi-norm on the vector space E. Let V be a vector sub­
space of E and fa linear form on V such that If(y)1 :(: p(y) for all y E V. Then there 
exists a linear form h defined on E which is an extension off and is such that Ih(x)1 :(: p(x) 
for x E E. 

For a semi-norm q and a linear form g on E, the relation g :(: q is the same as 
[g[ :(: q. The corollary follows from tho 1. 

COROLLARY 2. - Let p be a semi-norm on the vector space E. Given a point Xo E E, 
there exists a linear formfdefined over E, such that f(xo) = p(xo) and that I f(x)1 :(: p(x) 
for all x E E. 

Apply cor. 1 to the vector subspace, V, generated by Xo and to the linear form 
SXo f---+ sp(xo) defined over V. 

COROLLARY 3. - Let V be a vector subspace of the normed space E and let f be a conti­
nuous linear form over V; then there exists a continuous linear form h defined over E 
which extends f and is of the same norm (GT. X, ~ 3.2). 

Apply cor. 1, taking p(x) = [[f[[.llxll, which gives [Ihll:(: Ilfll; but clearly 
I[h II ~ II f II, and the corollary follows. 

The conclusion of cor. 3 is not necessarily valid for continuous linear mappings 
of a normed space into an arbitrary normed space (IV, p. 55, exerc. 16, c) and V, p. 65, 
exerc. 22). 

§ 4. LOCALLY CONVEX SPACES 

1. Definition of a locally convex space 

DEFINITION 1. - A topological vector space is locally convex (real) if there exists a 
fundamental system of neighbourhoods of 0 that are convex sets. 

Such a space is called a locally convex space. Its topology is called a locally convex 
topology. 

The topological vector spaces over R which we study in the rest of this book are 
nearly all locally convex. 

If V is a convex neighbourhood of 0 in the locally convex space E, then V n (- V) 
is a symmetric convex neighbourhood of O. As the closure of a convex set is convex 
(II, p. 13, prop. 14) it follows from I, p. 7, prop. 4 that the neighbourhoods of 0 in 
E which are closed, symmetric and convex, form a fundamental system of neigh­
bourhoods invariant under homotheties of centre 0 and ratio =1= O. 

PROPOSITION 1. - Let IS be a filter base on a vector space E formed from sets that 
are absorbent, symmetric and convex. Then the set IB of transforms of the sets of IS 
by homotheties of ratio> 0 is afundamental system of neighbourhoods of 0 for a locally 
convex topology on E. 

Clearly IB is a filter base satisfying (EV1) and (EVIl) of I, p. 7, prop. 4; it also satis­
fies (EVm) since if V E IS then tv + tv = v. 
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Note that if :Y is the locally convex topology on E having IE for a fundamental 
system of neighbourhoods of 0, then the sets (lIn) V, where n varies in the integers> 0 
and V varies in 6, form a fundamental system of neighbourhoods of 0 for the topo­
logy :Y. Then :Y is Hausdorif, if and only if, for every x # 0 in E there exists an 
integer n and a set V E 6, such that nx ¢: V; if, further, 6 is enumerable, then the 
topology :Y is a metrisable locally convex topology. Conversely, it is clear that if 
:Y is a metrisable locally convex topology, then there exists an enumerable funda­
mental system of closed symmetric convex neighbourhoods of 0 for :Y. 

COROLLARY. - The topology :Y of a topological vector space E, is defined by a set 
of semi-norms (II, p. 3) if, and only if; :Y is locally convex. 

The condition is necessary since every semi-norm on E is a convex function, and 
so, for Ci > 0, the set of x E E for which p(x) ~ Ci, is convex (II, p. 17, corollary). 
Conversely if V is a symmetric, closed, convex neighbourhood of 0 in E, the gauge 

p of V is a semi-norm on E such that V is the set of points x of E satisfying p(x) ~ 1 
(II, p. 20. prop. 23). 

This shows further that a locally convex topology :Y is defined by the set of all 
semi-norms that are continuous for :Y. Further, if :Y is metrisable, then it is defined 
by an enumerable set of semi-norms. 

From the corollary to prop. 1, all the results of § 1 on topologies defined by sets 
of semi-norms apply in particular to locally convex topologies over real vector spaces. 
A locally convex Hausdorif space E has a completion E that is locally convex. A 
complete, metrisable locally convex space is called a Frechet space; every Banach 
space is a Frechet space. 

PROPOSITION 2. - Let f be a continuous linear form defined over a vector subspace M, 
of a locally convex space E; then there exists a continuous linear form h that is defined 
over E and is an extension off 

From the corollary above and II, p. 7, cor. 2, there exists a continuous semi-norm 
p on E, such that if(y)i ~ p(y) for all y E M. By the Hahn-Banach tho (II, p.23, 
cor. 1) there exists a linear form h on E that extends f and is such that ih(x)i ~ p(x) 
for all x E E, and this implies that h is continuous (II, p. 6. prop. 5). 

Remark. - If 9 is a continuous linear mapping of M in the product space R\ then there 
exists a continuous linear mapping h of E in RI that is an extension of 9 ; for writing 
9 = (g), where the gl are continuous linear forms defined over M, there is an extension 
h, of gl for each 1 E I, such that h, is a continuous linear form over E. The continuous 
linear mapping h = (h) has the required properties. 

Note that if F is a locally convex Hausdorff space and 9 a continuous linear mapping 
of M in F. then there does not necessarily exist a continuous linear mapping of E in F 
which is an extension of 9 (IV, p. 55, exerc. 16. c». However there does exist such an exten­
sion when M is finite dimensional (cf cor. 2, below). 

COROLLARY 1. - Let E be a locally convex space. If Xo E E is not in the closure of 
{O}, then there exists a continuous linear form f defined over E with f(xo) # O. 

Apply prop. 2 to the one dimensional vector space M generated by Xo and to the 
linear form ~xo f---+ ~ defined over M, which, by I, p. 12, prop. 2, is continuous. 
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COROLLARY 2. - Let M be a finite dimensional vector subspace of E, a locally convex 
Hausdorff space. Then there exists a closed vector subspace N of E, which is the topo­

logical complement of M in E. 
There exists a topological complement to M in E if, and only if, the identity mapping 

of M on itself can be extended to a continuous linear mapping of E on M, which 
mapping is then necessarily a continuous projector (GT, III, § 6.2, corollary). Now, 
this follows from the remark above since M is isomorphic to a space R" (I, p. 13, 
th.2). 

PROPOSITION 3. - In a locally convex space E, the balanced convex envelope of a 
precompact set is itself a precompact set. 

Let A be a precompact set in E. Given Y, a balanced convex neighbourhood of 
o in E, there exist finitely many points ai E A (1 :::; i :::; n) such that A is contained 
in S, the union of the neighbourhoods ai + Y (1 :::; i:::; n). Thus C, the balanced 
convex envelope of A, is contained in T the balanced convex envelope of S; but T 
is contained in B + V, where B denotes the convex envelope of the finite set of points 
ai' - ai (1 :::; i :::; n). Now B is precompact (II, p. 14, cor. 2); hence there exist 
finitely many points bk E B (1 :::; k :::; m) such that Bk is contained in the union of 
the neighbourhoods bk + V. Then C is contained in the union of the neighbourhoods 
bk + 2V, and the proposition is proved. 

Note that, in an infinite dimensional locally convex Hausdorff space, the convex 
envelope of a compact set is not necessarily closed (II, p. 74, exerc. 3). 

COROLLARY. - If; in a locally convex Hausdorff space E, a compact set X is contained 
in a complete convex set (complete in the uniform structure induced by that of E) then 
the convex closed envelope of X is compact. 

For this envelope is a closed subset of a complete space, therefore it is complete, 
but it is also precompact and Hausdorff. 

However in a non complete locally convex Hausdorff space, the convex closed 
envelope of a compact set need not be compact (II, p. 87, exerc. 2). 

2. Examples of locally convex spaces 

1) The space R" is locally convex since the open cubes with centre 0 are convex 
(II, p. 9, prop. 6). This is, therefore, also true for all real topological vector spaces 
of finite dimension; in fact it follows from the above and I, § 2.3, tho 2 provided that E 
is Hausdorff; if not. the Hausdorff space F associated with E is of finite dimension, 
therefore locally convex, and the inverse images of convex neighbourhoods of 0 in F 
under the canonical mapping E ~ F are convex and form a fundamental system of 
neighbourhoods of 0 in E. 

2) Let E be a vector space in R, and 1.!3 be the family of all subsets of E that are 
absorbent. symmetric and convex. By prop. 1 of II, p. 23 we see that 1.!3 is a funda­
mental system of neighbourhoods of 0 for a locally convex topology :!TO) on E that 
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is the finest of all locally convex topologies on E. This topology is Hausdorff; for 
let x i= 0 be any point of E; there exists a basis (i,),EI of E with an cr E I such that 
e~ = x; the set of points y = I y,e, such that ly~1 < 1 is absorbent, symmetric and 

convex. It does not contain x. From II, p. 24, corollary, it follows that !Yro is also 
the topology defined by the set of all semi-norms on E, thus every semi-norm is 
continuous in !Yro. 

In particular, if u is a linear mapping of E in any locally convex space F, the inverse 
image, under u, of every convex neighbourhood of ° in F is an absorbent convex 
set in E; therefore it is a neighbourhood ofO for!Yro and thus u is continuous for !Yro. 

Given a convex set C in E, we say that a point a E C is an internal point of C if, 
for every line D containing a, the intersection D n C contains an open segment 
which contains a; in other words - a + C is absorbent. The point a of the set A 
in E is interior to A for !Yro if, and only if, there exists a convex set C with a E C c A, 
and such that a is an internal point of C. 

More generally, let V be an affine linear variety in E, and C be a convex set contained 
in V; a point a E C is an internal point of C relative to V if, in the vector subspace 
Vo = - a + V, the point 0 is an internal point of the set Co = - a + c. 

When E is of finite dimension, the topology !Yro is just the canonical topology on E 
(I, p. 13, tho 2) ; which shows that every internal point of a convex set C in E, is interior 
to C for the canonical topology (cf II, p. 74, exerc. 5). 

3) Let A be a symmetric convex set in the vector space E over R. The vector 
subspace F generated by A is also the convex cone generated by A, since - A = A; 
this set is the set of AX where x E A and A E R; the set A is absorbent in F and the 
sets AA where A > 0, form a fundamental system of neighbourhoods of ° for a 
locally convex topology on F (said to be defined by A), which is defined by the semi­
norm PA' the gauge of A (II, p. 20, prop. 22); we write EA for the locally convex 
space obtained by giving F this semi-norm. The space EA is Hausdorff if, and only 
if, PA is a norm or alternatively A does not contain any line. If B is a second symmetric 
convex set in E and if A c B, then clearly EA c EB , and the canonical injection of 
E A in EB is continuous for the topologies defined respectively by A and by B. Further, 
if f is a linear mapping of E in a real vector space E', then f(A) is convex and sym­
metric in E' and f is a continuous linear mapping of EA on Ef(A). 

Finally, note that if E carries a topology !Y compatible with its vector space struc­
ture, and if V is a symmetric convex neighbourhood ofO for!Y, then the vector space 
generated by V is identical with E, since V is absorbent, and the identity mapping 
of E in Ev is continuous. 

3. Locally convex initial topologies 

PROPOSITION 4. -- Let E be a vector space and let (EJ'EI be a family of locally convex 
spaces. For each lEI, let f.. be a linear mapping of E in E, ; then the topology .'?I 
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on E, which is the coarsest making each mapping J; continuous, is a locally convex 

topology. 
Using II, p. 24, corollary, this is a particular case of the corresponding property 

for topologies defined by semi-norms (II, p. 5). 
In particular, every vector subspace of a locally convex space, and every product 

space of locally convex spaces, is locally convex. Every projective limit of locally 
convex spaces is locally convex. 

Every enumerable product of Frechet spaces (and in particular every enumerable 
product of Banach spaces) is a Frechet space. 

Every locally convex Hausdorff space E is isomorphic to a subspace of a product 
of Banach spaces and this subspace is closed if E is complete (II, p. 5, prop. 3). Every 
Frechet space is isomorphic to a closed subspace of an enumerable product of Banach 
spaces (loc. cit.). 

4. Locally convex final topologies 

PROPOSITION 5. - Let E be a vector space, and (Fa)aEA be a family of topological 
vector spaces andfor each rx E A, let ga be a linear mapping ofF a in E. 

(i) Denote by m the family of absorbent, symmetric convex subsets V of E such that 
g;; l(V) is a neighbourhood of 0 in Fa for every rx; the family m is a fundamental system 
of neighbourhoods of 0 in E for a topology :y that is compatible with the vector space 

structure. 
(ii) A linear mapping f of E in a locally convex space G (resp. a semi-norm p on E) 

is continuous for :Y if and only if, for every index rx, f 0 ga (resp. p 0 gJ is continuous 

in Fa' 
(iii) The topology :Y is the finest of the locally convex topologies on E for which 

the ga are continuous. 
Further, the topology :Y is the only locally convex topology on E that satisfies 

condition (ii) for linear mappings (resp. for the semi-norms). 

As m is a filter base invariant under homotheties of ratio > 0, the assertion (i) 
follows immediately from II, p. 23, prop. 1. By the definition of m, the topology :Y 
is the finest of locally convex topologies on E making the ga continuous; whence (iii). 
Finally, it is clear that iff is continuous, so is f 0 ga; conversely if the f 0 ga are conti­
nuous for every rx, then for each symmetric convex neighbourhood W of 0 in G, 
the set g;; 1(1 -l(W)) is a neighbourhood of 0 in Fa for each rx. Now f -l(W) is 
absorbent, symmetric and convex thus f - l(W) is a neighbourhood of 0 in :Y, and 
f is continuous. Similarly if p is a semi-norm on E such that p 0 ga is continuous 
for every rx, and if U is the set of points x E E such that p(x) < 1, then, for every rx, 
the set g;; l(U) is a convex neighbourhood of 0 in Ea that is symmetric and absorbent; 
thus U is a neighbourhood of 0 in E and p is continuous (II, p. 2, prop. I). 

The last statement follows from S, IV, ~ 2.5, criterion CST 18. 
We say that :Y is the locally convex final topology of the family of topologies :Ya 

of the Fa' for the family of linear mappings gao 
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It may happen that .oJ is not the finest of the topologies on E compatible with its 
vector space structure and making the f" continuous (II, p. 75, exerc. 15; see also II, p. 75, 
exerc. 14). 

In the most important case E = L g~(F ~), we get a fundamental system of neigh-

bourhoods of 0 for:T as follows; for each a E A, let V ~ be a symmetric neighbourhood 
of 0 for :T~, form the union of the g~(V~) for a E A and denote the convex envelope 
in E of this union by q(giV~))); since every element ofE is of the form L x~, where J 

~E J 

is a finite subset of I and x~ E g~(F~), it is immediate that q(g~(V~))) is an absorbent 
symmetric convex set in E (each of the V ~ is absorbent in F J; as q (g~(V~))) contains 
all the g~(V ~), it is a neighbourhood of 0 for :T. On the other hand, it is clear that for 
every symmetric convex neighbourhood V of 0 for:T, we have V ::::J q(V n giF~))), 
from which our assertion follows. 

COROLLARY 1. - With the notations of prop. 5, let H be a set of linear mappings of E 
in the locally convex space G. Suppose that E is the sum of its subs paces g~(F J; then 
H is equicontinuous for .:T, if, and only if, for every r:x, the set f 0 g~ where f varies in H, 
is equicontinuous in F ~. 

Remembering I, p. 9, prop. 6 the argument is similar to that of (ii) prop. 5. Let 
W be a symmetric convex neighbourhood of 0 in G and note that if the set f 0 g~, 

where f E H is equicontinuous, then the intersection n g;; l( f - l(W)) is a symmetric 
fEH 

convex neighbourhood of 0 in F~. As this intersection is the same as g;; l( n f -leW)) 
fEH 

and the set n f - leW) is symmetric and convex, everything depends on showing 
fEH 

n 

that it is also absorbent. Now, by hypothesis, every x E E can be written as L g~;(z~), 
;= 1 

where z~; E F~;. To show that there exists A > 0 such that f(Ax) E W for all f E H, 
it is sufficient to consider the case x = g~(z~) with z~ E F~ (since we can pass to the 
general case by replacing W by Win). But this case follows from the fact that 
g;; l( n f -leW)) is a neighbourhood of 0 in F~. 

fEH 

COROLLARY 2. - Let (JJAEL be a partition of the index set A. Let (G~)~EA be a family 
of locally convex spaces and (FA)AEL be a family of vector spaces. For each A E L, let 
h'). be a linear mapping ofF'). in a vector space E; for each A ELand a E JA, let g)..~ be 
a linear mapping of G~ in F').. Write J;, = h).. 0 g)..~. Suppose that each F).. carries the 
finest locally convex topology that makes the g)..~ (a E J,.) continuous. Then, the finest 
locally convex topology on E that makes the J;, continuous, is identical with the finest 
locally convex topology making the h).. continuous. 

This is a particular case of S, IV, R 2.5 criterion CST 19, and can also be proved 
directly using prop. 5. 
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Examples of locally convex final topologies. 

I. Quotient space. 

Let M be a subspace of the locally convex space F, and <I> be the canonical mapping 
of F on F 1M. As the quotient topology on F 1M is locally convex and is the finest 
of all the topologies (locally convex or not) which make <I> continuous, it is also the 
locally convex final topology for the family consisting of the single mapping <1>. 

II. Inductive limits of locally convex spaces. 

Let A be an ordered set directed to the right and let (Ea, fpa) be an inductive system 
of vector spaces relative to the set A (A, II, § 6.2) ; let E = lim K and let J:, : E -> E ----+ v. ct. Cl 

be the canonical linear mapping for each rt. E A. Suppose that each Ea carries a locally 
convex topology 5 a, and further suppose that for rt. ~ ~, the mapping fpa: Ea -> Ep 
is continuous. Then we say that the locally convex final topology 5 of the family (5a) 

relative to the linear mappings fa (resp. the space E carrying the topology 5) is the 
inductive limit of the family (5a) (resp. the inductive limit space of the system (Ea, f pa), 
or simply of the locally convex spaces EJ Recall that E is the union of the vector 
subspaces fa(Ea) and that when rt. ~ ~, we have fa(EJ c fp(Ep); if we endow fa(Ea) 
with the final topology for the mapping fa (which is the same as identifying fiEa) 
with the quotient space Eal fa-leO)), the topology 5 is also the final topology of the 
family of the topologies of the fiEa)' relative to the canonical injections (II, cor. 2 
above). Further, the continuity of fpa for rt. ~ ~ implies that the canonical injection 
jPa: fa(Ea) -> fp(Ep) is continuous, so that E is also the inductive limit of fa(Ea) 
carrying the preceding topologies relative to the injection jpa. 

Example. ~ Let X be a locally compact space and E = ff(X; R) the vector space of 
finite continuous real valued functions defined over X with compact support. For 
every compact subset K of X, let EK be the vector subspace of E formed by those func­
tions fEE which are such that x rt K => f(x) = O. Denote by YK the topology induced 
on EK and by Y u the topology of uniform convergence on X. The inductive limit Y of 
the topologies YK is finer than Y u ; we can show that if X is paracompact and not 
compact, then Y is strictly finer than Y u (cf INT, III, 2nd ed., § 1.8). The importance 
of Y lies in the fact that the linear forms on E that are continuous in Yare precisely 
the real measures on X (INT, III, 2nd., § 1.3). 

Remark. ~ In the last example, the topology induced by Yon EK is identical with YK, 
since by definition it is coarser than YK and, since Y is finer than Y u ' the topology 
induced by Y on EK is finer than that induced by Y u ' that is to say YK. 

This reasoning generalises immediately to an inductive limit of locally convex topo­
logies (Yo) when there is a locally convex topology Y' on E such that Yo is the topology 
induced on Eo by Y'. 

More generally one can ask, when we suppose that Ep c Eo and Yp is the topology 
induced by Yo, under what circumstances Y induces Yo on each of the Eo. In general 
this is not so (II, p. 80, exerc. 26); but we shall see in the Nos following two important 
situations where this does occur. 

5. The direct topological sum of a family of locally convex spaces 

DEFINITION 2. - Let E be the vector space which is the direct sum (A, II, § 1 .6) of 
the family of locally convex spaces (EJ'Ei. For each tEl, let 1. be the canonical injection 
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of E, in E. By the topological direct sum of the family (EJ we mean the space E with 
the finest locally convex topology which makes each 1. continuous (this topology is 
called the direct sum of the topologies of the EJ 

In the remainder of this No. we keep the same notations as in def 2 (unless the 
contrary is expressly stated) and we identify, canonically, each E, with a subspace 
of E, by means of f.. 

By the general description of neighbourhoods of a locally convex final topology 
given in II, p. 28, we can here obtain a fundamental system of neighbourhoods of 
o in E for the direct sum topology, in the following manner; for every family (V.)'EI 
where V, is a symmetric convex neighbourhood of 0 in E" consider the convex enve­
lope r((V)), of the union of the V,; the r((V)) for all the families (V) (or only taking 
V, for each 1 to be in a fundamental system of neighbourhoods of 0 in E) form afunda­
mental system of neighbourhoods of 0 in E. 

Example. - Let (a)'EI be a basis of the vector space E and consider the canonical 
topology (I. p. 2, Example 5) on each line Ra,; the direct sum of these topologies 
is the finest locally convex topology on E (II, p. 26) ; in fact, if V is an absorbent, 
symmetric, convex set in E, then V, = V n Ra, is a neighbourhood of 0 in Ra, and 
V clearly contains the convex envelope r((V)). 

PROPOSITION 6. - A locally convex topology :Y on E is the direct sum of the topolo­
gies of the E" if and only if, the following property holds: a linear mapping of E in a 
locally convex space G (resp. a semi-norm p on E) is continuous, if and only if, for 
every 1 E I, the mapping g 0 f.. (resp. p 0 f.) is continuous in E,. 

This is a particular case of prop. 5, II, p. 27. 

Recalling the definition of the direct sum of a family of vector spaces (A, II, p. 12, 
prop. 6), we can say that the topology :Y is the only one for which the canonical 
mapping g f---+ (g 0 f..) is a bijection 

(1) 2(E; G) ----> n 2(E,; G) 
'EI 

for every locally convex space G. 

COROLLARY. - With the notation of prop. 5, II, p. 27, suppose that E is the sum of the 
gaCFa)· Let F be the topological direct sum of the family (Fa)aEA' and let ja: Fa ----> F 
be the canonical injection; suppose that g: F ----> E is the linear mapping such that 
go ja = ga for all a. E A. IfN is the kernel of g, then the canonical bijection FIN ----> E 
associated with g is a topological isomorphism of FIN on E with the topology :Y. 

This is a particular case of II, p. 28, cor. 2 remembering II, p. 29, Example I. 

PROPOSITION 7. - The canonical injection j: E ----> n E, is continuous when E carries 
'EI 

the direct sum topology of the E, and n E, carries the product topology. When I is 
'EI 

finite, this mapping is an isomorphism of topological vector spaces. 
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The first assertion follows from the fact that the canonical injections El( -+ TI E, 
'EI 

are continuous for each K E L If I is finite then} is the identity mapping, and it is suffi-
cient to show that the product topology :T' is finer than the direct sum topology :T. 
Now, let V be a convex neighbourhood of 0 for ,r; each set V n E, is a convex neigh­
bourhood of 0 in E, ; if n is the number of elements of I, then the set V contains the 

set .!. L (V n EJ, which is a neighbourhood of 0 for :T', and the proposition is 
n n 

proved. 
When I is infinite, if, for each finite subset J of!, we write E J for the space IT E1 , with 

'EJ 

the product topology, then E is the inductive limit of the EJ (identified as subspaces of E). 

PROPOSITION 8. - Let N, be a subspace of E" for every tEl, 

(i) The topology induced on N = L N, by the direct sum topology :T on E is identical 
, 

with the direct sum of the topologies of the N,. 
(ii) The canonical mapping h of the topological direct sum space of the EJN, on 

E/N (A, II, § 1 .6, formula (26)) is an isomorphism between topological vector spaces. 
(i) With the notations introduced above, we consider x = I A,X, belonging to 

, 
N n r((V.)) ((A.) is a family of numbers ;:;, 0 of which at most finitely many are 
non-zero, such that I A, = 1, and x, E V" for alIt E I). Since the sum ofthe N, is direct, , 
we have A,X, E N, for all 1 E I; therefore, for all 1 such that A, > 0 we also have 
x, EN, n V" and x belongs to the convex envelope r((N, n VJ), thus (i) is proved. 

(ii) Denote canonical mappings as follows: 1. : E, -+ E, h, : EJN, -+ E/N, p, : E, -+ EJN, 
and p: E -+ E/N. For every 1 E I, h, 0 p, = p of. and the proposition follows from 
II, p. 28, cor. 2 and p. 29 Example L 

COROLLARY 1. - IfN, is closed in E, for every 1 E I, then N = I N, in closed in E. 

For, the canonical mapping p, : E -+ E, is continuous (II, § 4.5, prop. 6) for every 
1 E I, hence p,-l(NJ is closed in E, and thus the same is true of the intersection 
N = np,-l(NJ 

'EI 

COROLLARY 2. - If each E, is Hausdorff, so also is E and each E, is closed in E. 
To prove the first statement apply cor. I taking N, = {O} for alIt E I; for the second 

apply cor. I with N, = E, and Nl( = {O} for every K i= l. 

We shall show in III, p. 21, cor. 2 that if the E, are Hausdorff and complete then 
so is their topological direct sum E. 

6. Inductive limits of sequences of locally convex spaces 

In this No. we shall consider an increasing sequence (En) of vector subspaces of a 
vector space E, such that E is the union of the En; we suppose that each En carries a 
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locally convex topology fin' such that, for every n, the topology induced on En by 
fin + 1 is coarser than fin' and we give to E the locally convex topology.9"' that is the 
inductive limit of the sequence C:1,;) (II, p. 29, Example II); these hypotheses and nota­
tions will be used throughout the rest of this No. without restatement. 

It may happen that each .'Tn is Hausdorff but that fI is not; it may also happen that 
for each pair of integers n, m such that n :s:; m, the subspace En is closed in Em (using 
topology flm) but that En is not closed in E using fI (II, p. 80, exerc. 26). 

Lemma 1. - Let ~ be a Cauchy filter on E (for fI); then there exists an integer k, 
such that for all N E ~ and every neighbourhood V of 0 in E, the subspace Ek meets 

N +V. 
We assume the ~ontrary and obtain a contradiction. Suppose that for every k there 

exists a convex neighbourhood Vk of 0 and a set Mk E ~ such that 

(Ek + V k) n Mk = 0 . 

Clearly we can suppose that V k + 1 C V k for all k. Let V be the convex envelope of 
U (Ek n V k ), this is clearly a neighbourhood of 0 for fl. For all n we have V c Vn + En; 
k 

in fact, every x E V can be written L Aixi where Ai ~ 0, L Ai = 1 and Xi E Vi n Ei 
i i 

for all i; now for i < n we have Xi E En' therefore L Aixi E En; and for i ~ n we have 
i<n 

Xi E Vn, therefore L Aixi E Vn since Vn is convex, contains 0 and L Ai :s:; 1. Hence 
i~n i~n 

V + En C Vn + En for all n. This being so, let M E ~ be a set that is V-small. For 
some integer m, Em n M is not empty; and we conclude that 

M c Em + V c Em + VIn ; 

as ~ is a filter, the set Min meets M and therefore Em + VIn ; we have a contradiction 
which establishes the lemma. 

PROPOSITION 9. - Suppose that the topology induced on En by .9"'n + 1 is identical with 
fin for every integer n. Then 

(i) The topology induced by fI on En is identical with fin for each n; if the fin are 
Hausdorff then fI is Hausdorff 

(ii) If, for every n, En is closed in En + 1 (for fin + 1)' then En is closed in E (using fI) 
for every n. 

(iii) If each En is complete (using .9";J then E is complete using fl. 
(i) To prove the first assertion, it is sufficient to prove that the topology fI~ 

induced by:!T on En is finer than fin' For this, let Vn be a convex neighbourhood of 0 
in En for the topology .9"'n ; we are going to construct an increasing seq uence of convex 
neighbourhoods of 0 in En+p for fln+p,say(Vn+p)P;'I' such that V n+p n En = Vn 
for every index p ~ 1. Then the union V of the increasing seq uence (V n + p) will be a 
convex set such that V n Ek is a neighbourhood of 0 in Ek (using .'Tk ), for every 
index k; therefore V will be a neighbourhood of 0 in E for fI and as V n En = V n' 

we have proved that fin' is finer than fin' 
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To define the V n +p we proceed by induction onp using the following lemma: 

Lemma 2. - Let V be a convex neighbourhood of 0 in M. a vector subspace of a 
locally convex space F. Then there exists a convex neighbourhood W of 0 in F such 
that W n M = V. Further, if M is closed in F, then,for every point Xo E C M, there 
exists a convex neighbourhood W 0 of 0 in F such that Won M = V and Xo ¢ Wo' 

In fact, by hypothesis there exists a convex neighbourhood U of 0 in F such that 
U n MeV. Clearly, the convex envelope W of U u V in F is a neighbourhood of 0 
in F; we show that W n M = V. For, every point Z E W is of the form A.X +(1- A.) Y 
with x E V, Y E U, and 0 :::; A. :::; 1 (II, p. 9, prop. 8); if Z E M, and A. "# I then neces­
sarily y E M, therefore y E U n MeV and hence Z E V; the result is obviously 
true if A. = 1. If M is closed in F, the space F 1M is Hausdorff, thus there exists a 
convex neighbourhood U o c U of 0 in F such that U o does not meet Xo -+ M; 
then the convex envelope Wo of Uo u V fulfils the required conditions. 

Returning to the theorem, to prove the second part of (i) note that if x E E then 
x E En for some n; if x "# 0 and :Yn is Hausdorff then there is a neighbourhood Vn 
of 0 for :Yn , which does not contain x. We see that there is a neighbourhood V of 0 
for ,Of such that V n En = Vn, hence x ¢ V, and it follows that:Y is Hausdorff. 

(ii) Let x E E - En; there exists m > n such that x E Em' thus, as En is closed in 
Em for :Ym (because of the hypothesis that g;, + 1 induces :Yn on En for every n) there 
exists in the topology :Ym a convex neighbourhood V m of 0 in Em such that 
(x + V m) n En is empty. Now we saw in (i) that there exists a convex neighbourhood 
V of 0 for :Y such that V n Em = V m; and thus (x + V) n Em = X + V m' therefore 
(x + V) n Ell = 0, which proves (ii). 

(iii) From lemma L if (j is a minimal Cauchy filter for ,(OJ (GT, II, § 3.2) then there 
exists a k such that the trace of ~ on Ek is a filter ~k ; from (i) this last is a Cauchy 
filter for:Yk and thus (jk converges in Ek by hypothesis; but as the filter on E generated 
by ~k is finer than ~, we see that ~ has a cluster point for :Y and thus converges for 
:Y. 

When for all n the topology induced on Ell by ,Of" + 1 is just :Yn we say that :Y is the 
strict inductive limit of the sequence (:Yn ) and that the space E with the topology:Y 
is the strict inductive limit of the sequence of locally convex spaces En' 

z 

Remarks. - 1) Suppose that E is the union of an increasing directed, non-enumerable 
family of subspaces (Ea)aeI' each E. having a locally convex topology :T., such that, 
for E. c E~, the topology induced on E. by :T~ is identical with ,Y,. It may be the case 
that the topology mduced on each E. by the topology :T is equal to ,Y. and that the 
E. are Hausdorfl" and complete, but that E is not complete for :T (INT, III, 2nd ed., § 1, 
exerc. 2), 

2) Let F be a locally convex space, which is the union of an increasing sequence of 
vector subspaces (F,,), and for each index n, let:Tn be the topology induced on Fn by the 
topology .7 of F. One should beware that in general ,Y is not the inductive limit of 
the :Y". 

3) Suppose that E is the strict inductive limit of the sequence (En); if F is a closed 
(in:T) vector subspace ofE, it may be the case that the strict inductive limit of the topo-
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logies induced by the :Yn on F n En is strictly finer than the topology induced by :Y (IV, 
p. 63, exerc. 10). 

PROPOSITION 10. - Let E, F be two locally convex spaces. Suppose that: 
1) There exists a family of FN!chet spaces (E,.), and for each a. a linear mapping 

g~ : E~ -> E, such that the topology of E is the final locally convex topology for the 

family (g~). 
2) There exists a sequence of FN!chet spaces (F n) and for each n a continuous linear 

injection jn: Fn -> F such that F = U1n(Fn)' 

Then every linear mapping u of E in F, whose graph is closed in E x F, is necessarily 
continuous. 

To prove that u is continuous, it is sufficient to show that for every CI., the mapping 
u 0 g~ : Ea -> F is continuous (II, p. 27, prop. 5). Now the graph of u 0 ga is the inverse 
image of the graph of u under the continuous mapping g~ x IF: E~ x F -> E x F, 
and therefore is, by hypothesis, closed in E~ x F. We can, therefore, restrict ourselves 
to the case when E itself is a Frechet space. But then the proposition is a particular 
case of I, p. 20, prop. 1. 

COROLLARY. - With the same hypotheses on E and F as in prop. 10 and assuming 
that E is Hausdorff, then every continuous surjective mapping v of F in E is a strict 

morphism. 
LetNbe the kernel ofv and write N n = jn~ l(N); then themappingj~: FnlNn -> FIN, 

deduced from jn by taking quotients, is injective and continuous, also FnlNn is a 
Frechet space (since N n is closed) and FIN is the union of the images under K By 
hypothesis, in the canonical factorisation v: F -> F IN ~ E, the linear mapping 
w is bijective and continuous and its graph in (FIN) x E is therefore closed (GT, I, 
§ 8.1, cor. 2 of prop. 2). By the remarks at the beginning and by prop. 10, the inverse 
mapping u of w is therefore continuous and the corollary is proved. 

* Prop. 10 and its corollary apply in particular when E is a complete bornological 
space (III, p. 12) and F is the inductive limit of a sequence of Frechet spaces. * 

7. Remarks on Frechet spaces 

Weare going to consider prop. 2 of GT, IX, § 3. 1 in the case of locally convex 
spaces. 

PROPOSITION 11. - Let E be a metrisable locally convex space. The topology of E 
can be defined by a distance that is invariant under translations, and for which the 
open balls are convex. 

Let (Pn)nEN be a sequence of semi-norms that define the topology of E. Let dn 
be the pseudometric defined by dn(x, y) =inQpn(x- y), lin) for x, y in E; it is invariant 
under translations. For every n ~ 0, and every real number R ~ 0, let Bn,R be 
the set of x E E for which dn(x, 0) < R. If R ~ lin, then Bn,R = E, and in the other 
case Bn,R is formed from the x E E such that Pn(x) < R; in all cases Bn,R is convex. 
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For x, Y in E define d(x, y) = sup dn(x, y). We see immediately that d is a distance, 
nEN 

invariant under translations on E and defining the topology of E. For Xo E E and 
R ~ 0, the open ball with centre Xo and radius R (for the distance d) is equal to 
n (xo + Bn,R)' therefore it is convex. 
nEN 

PROPOSITION 12. ~ Let E and F be two Frechet spaces and u a continuous linear 
mapping ofE on F. Then there exists a section oju that is continuous though not neces­
sarily linear. 

By prop. 11 there exists a distance d in E, invariant under translations, defining 
the topology of E and for which open balls are convex. Given y and y' in F, let 8(y, y') 
be the distance apart of the closed sets u- l(y) and u- 1(y') in E. As u is a strict mor­
phism (I, p. 17, tho 1) the remark of GT, IX, § 3.1 shows that 8 is a distance on F defin­
ing the topology ofF. We shall construct, inductively, a sequence of continuous map­
pings (sn)nEN of F in E satisfying the following inequalities for all y E F 

(2) 

(3) 

8(y, u(sn(Y))) < 2 - n 

d(sn(y),sn-1(Y)) < 2- n+ 1 (onlyifn ~ 1). 

Suppose then that either n = 0, or n ~ 1 and that sn-1 has been constructed. 
Let Yo E F; as u is surjective, the set u- 1(yo) is non-empty, and for n ~ 1, we have 
d(u- 1(yo), sn-1(YO)) < r n+ 1 by the induction hypothesis. Therefore there exists 
a point Xo of E such that u(xo) = Yo and for n ~ 1, d(xo, sn-1(YO)) < 2- n + 1. As 
the mapping sn -1 is continuous, the set of points Y of F which satisfy the inequalities 
8(y, Yo) < rn and d(xo, sn-1(Y)) < 2- n+ 1 is an open neighbourhood of Yo' Hence 
there exist an open covering (VJiEI of F and constant mappings sn,i of F in E which 
satisfy the inequalities (2) and (3) in Vi where one replaces sn by sn,i' As the space F 
is metrisable, there exists a continuous partition of unity (f)iEI' that is locally finite 
and subordinate to the covering (V)iEI (GT, IX, § 4.5, tho 4 and § 4.4, cor. 1). 
For every y E F, put sn(Y) = L Ny). sn,i(Y)' The mapping sn of F in E is continuous; 

iEI 

as the open balls are convex in E and in F, the mapping sn satisfies the inequalities 
(2) and (3) for all Y E F. 

From inequality (3) the mappings sn : F -+ E form a Cauchy sequence, for uniform 
convergence. As E is complete, the sequence (sJnEN converges uniformly to a conti­
nuous mapping s : F -+ E (GT, X, § 1 .6); formula (2) shows that u 0 s is the identity 
mapping of F, thus s is a continuous section of u. 

COROLLARY. ~ If L is a compact set in F, then there exists a compact set K in E 
such that u(K) = L. 

It is sufficient to put K = s(L), where s is a continuous section of u. 

Remarks. ~ 1) The corollary to prop. 12 can also be deduced from tho 1 of I, p. 17 
and prop. 18 of GT, IX, § 2.lO. 

2) We keep the notations of prop. 12. Let p be a continuous semi-norm on E; 



TVS 11.36 CONVEX SETS AND LOCALLY CONVEX SPACES §5 

for all y E F, put q(y) = inf p(x), so that q is a continuous semi-norm on F (II, 
u(x)= y 

p. 4). Let <\l be a lower semi-continuous mapping of F in the interval )0. + w( 
of R. We show that there exists a continuous section s of u such that po s < q + <\l. 

Let So be a continuous section of u (prop. 12) and N the kernel of u. Let Yo E F, 
then there exists Zo EN such that p(so(Yo) + zo) < q(yo) + <\l(yo)' There exists an 
open neighbourhood W of Yo in F such that p(so(Y) + zo) < q(y) + <\ley) for all 
YEW. Hence there is an open covering (W);EI of F and constant mappings t; : F ---+ N 
such that p(so(Y) + ti(y») < q(y) + <\ley) for all y E Wi' As F is metrisable, there 
exists a locally finite continuous partition of unity subordinated to the covering 
(W)iEI' say (gJiEI (GT, IX, § 4.5, tho 4 and § 4.4, cor. 1). The mapping s of F in E 
defined by s(y) = so(Y) + I gi(y). tly) fulfils the stated conditions. 

iEI 

§ 5. SEPARATION OF CONVEX SETS 

1. The Hahn-Banach theorem (geometric form) 

THEOREM 1 (Hahn-Banach). - Let A be an open convex non empty set of the topo­

logical vector space E and let M be a non-empty linear variety which does not meet A. 
Then there exists a closed hyperplane H which contains M and does not meet A. 

By translation the problem can be reduced to the case 0 E A, so that A is absorbent. 
Let p be the gauge of A (II, p. 20) so that A is the set of points x E E such that 
p(x) < 1. On the other hand, let V be the vector subspace of E generated by M; 
thus M is a hyperplane in V that does not contain 0, and hence there is a unique 
linear form f on V such that M is the set of points y E V for which fey) = 1. The 
hypothesis M n A = 0 implies therefore that for all y E V for which fey) = 1, 
we have p(y) ~ 1; as f and p are positively homogeneous we have fey) ::s; p(y) 
for all y E V such that fey) > 0; finally as p(y) ~ 0 for all y E V, we see that fey) ::s; p(y) 

for all y E V. By the analytical form of the Hahn-Banach theorem (II, p. 22, tho 1) 
there exists a linear form h on E which extends f and is such that, for all x E E, 
hex) ::s; p(x). Let H be the hyperplane in E with the equation hex) = 1. Clearly 
H n V = M and H n A = 0. On the other hand the complement ofH in E contains 
the open non-empty set A, therefore H is closed in E (I, p. 11, corollary). 

Q.E.D. 

Remarks. - 1) When 0 E M, tho 1 can be stated as follows: there exists a continuous 

linear form in E, such that g(x) = 0 in M and g(x) > 0 in A (II, p. 8, prop. 4). 

2) Ifwe apply theorem 1 to the case where E carries the finest locally convex topology 
(II, p. 25, Example 2), and if, for the sake of simplicity, we suppose that 0 E A, then we 
get the following result (that superficially does not involve topology) : if A is an absor­
bent convex set in the real vector space E and if M is a non-empty linear variety that 
does not meet A, then there exists a hyperplane H containing M and such that A lies 
on one side ofH. This result is not valid for every convex set A (II, p. 65, exerc. 5). 
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2. Separation of convex sets in a topological vector space 

DEFINITION 1. - Two non-empty sets A, B of a real topological vector space E are said 
to be separated by a closed hyperplane H if A is contained in one of the closed half­
spaces determined by Hand B is contained in the other closed half-space. 

DEFINITION 2. - Two non-empty sets A, B of a real topological vector space are 
said to be strictly separated by the closed hyperplane H if A is contained in one of the 
open half-spaces determined by H, and B is contained in the other open half-space. 

PROPOSITION 1. - Let A be an open non-empty convex set and let B be a non-empty 
convex set in a real topological vector space E; if A does not meet B then there exists 
a closed hyperplane that separates A from B. 

For the set C = A - B is open, convex (II, p. 9, prop. 7) and non-empty, also 
o ¢ C. By theorem 1 of II, p. 36, there exists a continuous linear form f #- 0 on E 
such that fez) > 0 in C. Then, for all x E A, and y E B, we have f(x) > fey). Write 
r:J. = inf f(x); r:J. is finite and we have f(x) ? r:J. for all x E A and fey) :( r:J. for all 

XEA 

y E B; the closed hyperplane H with the equation fez) = r:J. separates A from B. 

Remarks. - 1) The hyperplane H does not meet A (II, p. 15, prop. 1 ; if A and Bare 
two convex non-empty open sets that do not meet then there exists a closed hyper­
plane that separates A strictly from B. 

2) However, when B is not open, it is not necessarily the case that there exists a 
closed hyperplane that separates A strictly from B, even if E is of finite dimension, 
and even if A does not meet B (II, p. 78, exerc. 12). 

DEFINITION 3. - For a subset A of a vector space E, a hyperplane H is called a support­
hyperplane of A, if H contains at least one point of A and all the points of A li~ on the 
same side of H. 

Let f be a linear form on E that is not identically zero; to say that the hyper­
plane of the equation f(x) = r:J. is a support hyperplane of A means that r:J. is either 
the smallest or the largest member of the set f(A) c R. In other words, there exists 
a support hyperplane of A parallel to the hyperplane of equation f(x) = 0, if, and 
only if, one of the bounds of the set f(A) is finite and belongs to f(A). 

PROPOSITION 2. - Let A be a non-empty compact subset of a topological vector space E. 
For every closed hyperplane H in E, there exists a support hyperplane of A parallel to H. 

For, if f(x) = y is an equation of H, where f is a continuous linear form in E, 
the restriction of f to A is continuous, therefore bounded and attains its bounds 
in A (GT, IV, § 6.1, tho 1). 

This demonstrates that there exist one or two support hyperplanes of A parallel 
to H; the first case can only arise when A is completely contained in a hyperplane 
parallel to H. 

PROPOSITION 3. - In a topological vector space E, let A be a closed convex set with 
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a non-empty interior. Then every support hyperplane of A is closed and every frontier 
point of A belongs to at least one support hyperplane of A. 

Every support hyperplane of A is closed, since all the points of A are on the same 
side of the hyperplane (II, p. 15, prop. 17). Also if Xo is a frontier point of A, then 

o 

Xo does not belong to the open non-empty convex set A; after tho 1 of II, p. 36 there 

exists a hyperplane H that contains Xo and does not meet A. As A is the closure 
of A (II, p. 14, cor. 1 to prop. 16), it follows from prop. 17 of II, p. 15 that H is a 
support hyperplane of A. 

3. Separation of convex sets in a locally convex space 

PROPOSITION 4. ~ Let A be a closed non-empty convex set in a locally convex space E 
and let K be a compact non-empty convex set in E, that does not meet A. Then there 
exisis a closed hyperplane H that strictly separates A from K. 

For there exists an open convex neighbourhood V of 0 in E such that A + V 
and K + V do not meet (GT, II, § 4.3, prop. 4). As A + V and K + V are convex 
and open in E, prop. 1 of II, p. 37 shows that there exists a closed hyperplane H 
that strictly separates A + V from K + V, and a jortiori A from K. 

Remark. - In a Hausdorff locally convex space E, let A and B be two closed non-empty 
convex sets that are disjoint, if E is finite dimensional then there exists a closed hyper­
plane that separates A from (II, p. 78, exerc. 13); but this conclusion is not necessarily 
true when E is of infinite dimension (II, p. 78, exerc. 10 and 11). 

COROLLARY 1. ~ In a locally convex space, every closed convex set A is the inter­
section oj the closed half-spaces which contain it. 

In fact, for every point x if A, there exists a closed hyperplane that separates x 
strictly from A (using prop. 4). 

COROLLARY 2. ~ In a Hausdorff locally convex space, every compact convex set A 
is the intersection of the closed half~spaces which contain it and which are determined 
by support hyperplanes of A. 

For, let Xo if A; {xo} is closed, therefore there exists a closed hyperplane H which 
separates Xo strictly from A (prop. 4); let f(x) = a be an equation of H (f a conti­
nuous linear form) and suppose that j(x) > a for all x EA. If we put y = inf f(x), 

XEA 

the half-space defined by f(x) ~ y contains A, is determined by the support hyper-
plane of equation f(x) = y, and does not contain xo; whence the corollary. 

It is possible that a closed convex set that is not compact and has no interior point, 
in a locally convex space, does not have any closed support hyperplane (II, p. 86, exerc. 
18: cf also V, p. 71, exerc. 11). 

COROLLARY 3. ~ In a locally convex space, the closure of each linear variety M is 
the intersection of the closed hyperplanes that contain M. 

For all x if M, let H be a closed hyperplane that separates x strictly from M; 
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thus M is parallel to H; the closed hyperplane H l , containing M and parallel to H 
does not contain x. The corollary follows. 

COROLLARY 4. ~ Let C be a closed convex set in a locally convex space E. A subset 

A of E is contained in C, if, and only if, for every real valued continuous affine function 
u in E such that u(x) ~ 0 for all x in C, we have u(y) ~ 0 for all y in A. 

The condition is obviously necessary. Conversely we show that it is sufficient; 
if a point x E A is not contained in C, there exists a closed hyperplane of equation 
fez) = Ci separating x strictly from C; if we suppose for example that f(x) < Ci, 

then the continuous affine function u = f - Ci contradicts the hypotheses. 

COROLLARY 5. ~ In a locally convex space E, the closure of each convex cone C of 
vertex 0 is the intersection of closed half-spaces containing C determined by closed 

hyperpl!!:!les that pass through O. 
For C is a convex cone of vertex 0 (II, p. 13, ~op. 14). For x r/: C, there exists 

a closed hyperplane H that separates x strictly from C (prop. 4). It is now just necessary 
to apply the following lemma : 

Lemma 1. ~ Ifa cone A, with vertex 0, is contained in an open half~space determined 
by a hyperplane H, then it is contained in a closed half-space determined by a hyper­
plane Ho, that is parallel to H and passes through O. 

Let fez) = Ci with Ci < 0 be an equation of H, so that fez) = 0 is the equation 
of Ho. If there exists z E A such that fez) < 0, then there would exist A > 0, such that 
j(AZ) = Ci, and as AZ E A, this would contradict the hypothesis. 

4. Approximation to convex functions 

PROPOSITION 5. ~ Let X be a closed convex set in a locally convex space E. Then 
every lower semi-continuous convex function f defined in X is the upper envelope of a 
family offunctions that are the restrictions to X of continuous affine linear functions 

in E. 
For, the set AcE x R of points (x, t) such that x E X and t ~ f(x) is convex 

(II, p. 17, prop. 19) and closed, since the function (x, t) 1---+ f(x) - t is lower semi­
continuous. Then let x be any point of X and let a E R be such that a < f(x). By 
cor. 1 of II, p. 38, there exists a closed hyperplane H in E x R, that contains (x, a) 
and does not meet A. Every linear continuous form on E x R being of the form 

(z, t) ---> u(z) + At, 

where A E Rand u is a continuous linear form on E, it follows that H has an equa­
tion of the form u(z) + At = Ci, and as H contains (x, a) we have Ci = u(x) + Aa. 
Now the point (x,.f(x)) E A does not belong to H and therefore A # O. Dividing 
by - A, if necessary, we can write the equation of H as t - a = u(z - x). As 
f(x) - a > 0, we have, therefore, fez) > u(z - x) + a for all z E X and this proves 
the proposition. 
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Remarks. -1) It follows from prop. 5 that j is the upper envelope of a directed increas­
ing family of functions that are the restrictions to X of functions which are continuous 
and convex in E. 

2) Suppose further that X is a closed convex cone with vertex 0 and that f is posi­
tively homogeneous. Then f is the upper envelope of a family of functions which are 
the restrictions to X of continuous linear jorms in E. For, let (uJ be a family of conti­
nuous affine linear functions in E of which the restrictions to X have j as their upper 
envelope. Put u" = L', + Aa, where Aa E R, and where va is a continuous linear form 
in E. We have lea = ll,(O) ,,:; j(O) = o. On the other hand, if x E X, we have for every 
Il > 0, 

1l-IAa + va(x) = 1l- 1()'a + V/IlX») = 1l-1ua(llx)":; 1l-1j(IlX) =j(x) 

therefore ua ~ va ~ j in X so that j is the upper envelope of the va' 
3) The restriction to X of a continuous affine fonction in E is a function that is 

affine in X (i.e. both concave and convex II, p. 17); but it may be the case that there 
exist continuous affine functions in a compact convex set X c E, that are not the res­
trictions to X of continuous affine functions in E (II, p. 78, exerc. II, c». However: 

PROPOSITION 6. - Let f be an upper semi-continuous afflne function in a compact 
convex set X, of the Hausdorff locally convex space E. Let L be the set of restrictions 
to X of continuous affine functions in E; the set L' of the h E L such that hex) > f(x) 
for all x E X, is then decreasing directed and its lower envelope is equal to f 

We may suppose that X is non-empty. Let u, v be two elements of L, such that 
u(x) > f(x) and v(x) > f(x) for all x E X, and let b be a constant that is an upper 
bound of u and v. Let U (resp. V) be the compact convex set of points (x, t) of X x R 
such that u(x) ,,:;; t ,,:;; b (resp. vex) ,,:;; t ,,:;; b), and let F be the set of (x, t) E X x R 
such that t ,,:;; f(x); F is convex and closed in X x R. The convex envelope K of 
U u V does not meet F, since U u V is contained in the set of (x, t) E X x R such 
that f(x) < t, a set which is convex and does not meet F. As K is compact (II, p. 14, 
prop. 15), we can separate F strictly from K by a closed hyperplane H in E x R. 
For every x E X, the hyperplane H separates (x, f(x») strictly from (x, b), and therefore 
meets the line {x} x R in a single point w(x); thus H is the graph of a continuous 
affine function whose restriction w to X is a member of L, that is a lower bound 
for u and v and that satisfies the inequality w(x) > f(x) for all x E X. This proves 
that the set L' is decreasing directed. Prop. 5 of II, p. 39, applied to - f shows that 
f is the lower envelope of L'. 

COROLLARY. - Let f be a continuous affine function in X; then there exists a sequence 
(hn) of elements of L which converges uniformly to f in X. 

For, prop. 6 and Dini's theorem (GT, X, § 4.1, tho 1) show that for all n there 
exists hn E L such that f,,:;; hn ,,:;; f + lin. 

§ 6. WEAK TOPOLOGIES 

1. Dual vector spaces 

Let F and G be two real vector spaces and let (x, y) ~ B(x, y) be a bilinear form 
on F x G. We say that the bilinear form B puts the vector spaces F and G in duality, 
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or that F and G are in duality (relative to B). Recall that we say that x E F and y E G 
are orthogonal (for the duality defined by B) if B(x, y) = 0; we say that a subset M 
of F and a subset N of G are orthogonal if every x E M is orthogonal to every YEN 
(A, IX, § 1.2). 

We say that the duality defined by B is separating in F (resp. in G) if it satisfies 
the following condition : 

(D() For every x#-O in F, there exists y E G such that B(x, y) #- O. 
(resp. 

(Du) For every y#-O in G, there exists x E F such that B(x, y) #- 0.) 
The duality defined by B is said to be separating if it is both separating in F and 

in G. For this to be so, it is necessary and sufficient that the bilinear form B should 
be separating in the sense of A, IX, § 1 . 1. More precisely we have the following result : 

PROPOSITION 1. - Let F, G be two real vector spaces and B a bilinear form on F x G. 
Let 

dB:y 1-+ B(., y), 

SB: x 1-+ B(x, .) 

be linear mappings ofG in the dual F* ofF and ofF in the dual G* ofG, associated 
respectively to the right and to the left of B (A, IX, § 1. 1). Then B puts F and G in 
a duality separating in G (resp. in F), if and only if dB (resp. SB) is injective. 

When F and G are put in separating duality by B, we often identify F (resp. G) 
with a subspace of G* (resp. F*) by means of SB (resp. dB)' When we consider F 
(resp. G) as a subspace of G* (resp. F*) without specifying how this identification 
is to be made, we are always using the preceding identifications; the bilinear forp1 
B is then identified with the restriction to F x G of the canonical bilinear form : 

(x*, x) 1-+ < x, x* > (resp. (x, x*) 1-+ <x, x* » . 
Examples. -1) Let E be a vector space and let E* be its dual. The canonical bilinear 
form (x, x*) 1-+ < x, x* > on E x E* (A, II, § 2.3) puts E and E* in separating duality: 
for (Du) is true because of the definition of the relation x* #- 0, and we know on 
the other hand, that for all x#-O in E, there exists a linear form x* E E* such that 
< x, x* > #- 0 (A, II, § 7.5, tho 6), which proves (D(); the identifications of E with 
a subspace ofE** is made here by the canonical mapping CE (loc. cit.). 

When E is of finite dimension, the only subspace G of E* that is in separating 
duality by the restriction to E x G of the canonical bilinear form, is the space E* 
itself; for, E being then canonically identified with E** (loc. cit.), if we had G #- E*, 
there would exist a#-O in E such that < a, x* > = 0 for all x* E G (A, II, § 7.5, tho 7), 
which contradicts the hypothesis. 

2) When E is an infinite dimensional vector space, and E' is a vector subspace 
ofE*, the duality between E and E' defined by the restriction to E x E' of the cano­
nical bilinear form is always separating in E' ; it can be separating in E even ifE' #- E*. 
The most important case occurs where E is a topological vector space. 
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DEFINITION 1. - By the dual of a topological vector space E, we mean the subspace 
E' of E*, the dual of the vector space E, formed by the continuous linear forms on E. 

When E is a Hausdorff locally convex space, the duality between E and its dual 
E' is separating: this follows from the Hahn-Banach theorem (II, p. 24, cor. 1) that 
for every x =1= 0 in E, there exists x' E E' such that < x, x') =1= O. 

Remarks. -- 1) Whcn E is a topological vector spacc, the dual E* of the I'ector space E 
will be called the algebraic dual of E to avoid confusion. We note also that E* is the 
dual of the topological vector space obtained by giving E the finest locally convex 
topology (II, p. 25, Example 2). 

2) The dual E' of a topological vector space does not itself carry a topology, unless 
this is expressly stated. 

3) If F and G c F* are in separating duality by the canonical bilinear form, then 
this is also true of F and G I' for every subspace G I of F* such that G c G 1 _ 

2. Weak topologies 

DEFINITION 2. - Let F and G be two vector spaces put in duality by the bilinear form B. 
The coarsest topolor;y on F that makes all the linearjorms B(., y): x f---+ B(x, y) conti­
nuous, where y varies in G, is called the weak topology on F defined by the duality 

between F and G, and we denote it by cr(F, G). 
Similarly we define the weak topology cr(G, F) on G, interchanging F and G in 

definition 1; this possibility of interchanging F and G applies to all the results and 
definitions that follow in this paragraph. 

We use the adjective« weak» and the adverb « weakly» to denote properties relative 
to a weak topology a(F, G) provided there is no possibility of confusion. We shall 
speak, for example. of «weak convergence» and « weakly continuous functions» etc. 

When G c F*, the notation cr(F, G) will always denote the weak topology defined 
by the duality corresponding to the restriction to F x G of the canonical bilinear 
form (x, x*) f---+ < x, x*). 

Without extra hypotheses on F and G, we often write < x, y> for the value B(x, y) 
of the bilinear form B at (x, y), provided there is no ambiguity; we shall adopt this 
convention in the rest of this paragraph, 

A vector space F carrying a weak topology of cr(F, G) will be called a weak space. 
A weak topology cr(F, G) is locally convex (II, p. 26, prop. 4); more precisely, 

it is the inverse image of the product topology of RG by the linear mapping 
cI> : x f---+ « x, y) )YEG of F in RG. It is defined by the set of semi-norms x f---+ 1< x, y)1 
when y varies in G (II, p. 5). For every rx > 0, and every finite family (Yi)h i<:;n of 
points of G, let W(YI' ... , Yn; rx) be the set of the x E F such that I<x, Yi) ~ rx 
for 1 ~ i ~ n; these sets (for rx, nand Yi arbitrary) form a fundamental system of 
neighbourhoods of 0 for cr(F, G). Note that W(Yl' ... , Yn; rx) contains that vector 
subspace of F, of jinite codimension, which is defined by the equations < x, Yi) = 0 
for 1 ~ i ~ n. 
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PROPOSITION 2. - The weak topology a(F, G) is Hausdorff if and only if the duality 
between F and G is separating in F. 

This is a particular case of II, p. 3, prop. 2. 

PROpOSITION 3. - Let F and G be two real vector spaces in duality. Every linear 
form on F, that is continuousfor a(F, G), can be written as x ~ < x, y) for some y E G. 
The element y EGis unique when the duality is separating in G. 

For, to say that the linear form f on F is continuous for a(F, G) means that 
there exists a finite set of points Yi E G (1 ~ i ~ n) such that, for all x in F, 

If(x) I ~ sup I<x, y) I (II, p. 6, prop. 5). The n relations <x, Yi) = 0 (1 ~ i ~ n) 
1 ~i~n 

imply therefore j (x) = 0, and hence (A, II, § 7.5, cor. 1), there exists a linear combi-
" 

nation y = l: AiYi such that f(x) = < x, y) for all x E F. The uniqueness follows 
i= 1 

from (Du). 

In other words, when the duality is separating in G, and F has the topology 
a(E G), then we can identify G canonically with the dual of F for this topology 
(II, p. 42, def. 1). 

COROLLARY 1. - A family (a) of points of F is total for the topology a(F, G) if, and 
only if, for every y i= 0 in G, there exists an index 1 such that < at' y) i= O. 

For using prop. 3 and I, p. 13, tho 1, the property expresses the fact that for a(F, G) 
no closed hyperplane contains all the at; the corollary follows therefore from cor. 3 
of II, p.38. 

COROLLARY 2. - A family (aJ of points of F is topologically independent for the 
topology a(F, G), if, and only if, for every index 1, there exists an element bt E G 

such that: < at' bt ) i= 0 and < aK , bt ) = 0 for all K i= 1. 

This means, that for all 1, there exists a closed hyperplane in a(F, G), which con­
tains all the aK with index K i= 1 but does not contain at' 

COROLLARY 3. - Let G 1 and G z be two vector subspaces of F*, in duality with F 
(for the restriction of the canonical bilinear form). Then a(F, G z) isjiner than a(F, G 1) 

if and only if G 1 C Gz· 
The condition is obviously sufficient; conversely, if a(F, G z) is finer than a(F, G 1)' 

then every linear form that is continuous for a(F, G 1) is also continuous for a(F, G z), 

hence G 1 C G z by prop. 3. 

COROLLARY 4. - Let G be a vector subspace of the dual F*, of the vector space F. 
Then F and G are in separating duality (for the canonical bilinear form) if, and only 
if; G is dense in F* in the topology a(F*, F). 

This follows from cor. 1. 
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3. Polar sets and orthogonal subspaces 

DEFINITION 2. - Let F andG be two (real) vector spaces in duality. For every set M ofF 
we call the polar of M, the set oj those y E G jor which < x, y) ?: - I jor all x E M. 
(For complex vector spaces, cf II, p. 64.) 

If G l' G 2 are two subspaces of F* such that G 1 C G 2' then the polar of M in G 1 

is the intersection of G 1 with the polar of M in G 2' 

When there is no danger of confusion we use MO to denote the polar, in G, of the 
subset M of F. Similarly we define the polar in F of a set in G. 

Obviously, for every scalar Ie =I- ° and all M c F, we have (leMt = Ie - 1 MO. The 
relation MeN c F implies N° c MO; if N absorbs M then MO absorbs N°; for 
every family (MJ of sets of F, the polar set of U Ma is the intersection of the polar 

a 

sets M~. Since, for y E MO, the closed half-spaces defined by the relations < x, y) ?: - 1 

contain ° and M, we see that if Ml is the convex envelope ofM u {o}, then M~ = MO. 
Clearly M c MOO. Hence 

(MOO)O c MO c (MO)OO = (MOO)O 

i.e. MO OO = MO (cf S, III, ~ 1.5, prop. 2). 
If M is a symmetric subset of F, MO is a symmetric subset of G; MO is also in this 

case the set of y E G such that I < x, y) I ::::; I for all x E M. 

PROPOSITION 4. - (i) For any set M of F, the polar set MO is a convex set that con­
tains ° and is closed in G jor the topology cr(G, F). 

(ii) If M is a cone of vertex 0, then MO is a cone of vertex ° and it is also the set 
of y E G such that < x, y) ?: ° jor all x E M. 

(iii) If M is a vector subspace of F, then MO is a vector subspace of G, and it is 
also the set of y E G such that < x, y) = ° for all x EM. 

(i) Since the linear forms y f---* < x, y) are continuous for cr( G, F) the statement 
follows immediately from the definitions and the fact that a half-space determined 
by a hyperplane is convex. 

(ii) If M is a cone with vertex ° and if x EM, Y E MO, then as Ax EM, for all Ie > 0, 
we have < Ax, y) ?: - 1, i.e. Ie< x, y) ?: - I. Since this holds for all Ie > 0, it follows 
that < x, y) ?: 0, and (ii) is proved. 

(iii) Similarly, if M is a vector subspace of F, the relations x E M, y E MO imply, 
this time, that Ie< x, y) ?: - I for all real Ie which is possible only if < x, y) = 0. 

IfM is a vector subspace ofF we say that MO is the orthogonal ofM in G; ifG c F*, 
then MO is the intersection ofG, and ofthe subspace orthogonal to M in the algebraic 
dual F* of F (A, II, ~ 2.4, def 4). 

F or a vector subspace M of F and a vector subspace N of G we say that M and N 
are orthogonal if M c N° (or, equivalently, if N c MO). 

THEOREM 1 (The bipolar theorem). - Let F, G be two real vector spaces in duality. 
For every subset M of F the polar set MOO in F of the polar set MO of M in G is the 
closed convex envelope (for cr(F, G)) of M u {O}. 
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We have seen that we need only consider the case where M is convex and ° E M. 
Denote the closure, in topology cr(F, G) of M by M, then M is a convex set in F; 
prop. 4ofII, p.44 shows that MOO ::J M. On the other hand if a E F does not belong 
to M then there exists a closed hyperplane H in F which separates a strictly from M 
(II, p. 38, prop. 4); since H does not contain 0, there exists y E G such that H has 
the equation < x, y) = - 1 (II, p. 43, prop. 3); thus < x, y) > - I for all x E M 
and < a, y) < - 1. This implies that y E MO and a ¢ MOO, and the relation MOO = M 
follows. 

COROLLARY 1. ~ For any family (MJ of closed convex sets of F (in the topology 
cr(F, G)), each containing 0, the polar set of the intersections M = n Ma is the c(mvex 
closed envelope (for cr(G, F)) of the union of the M~. a 

For, if N is this convex closed envelope, then 

N° = n M:o = n Ma = M 
a a 

whence N = N°~ = MO. 

The conclusion of cor. 1 does not necessarily hold if the M. are not convex. 

COROLLARY 2. ~ For every vector subspace M of F, the subspace MOO is the closure 

of M in the topology cr(F, G). 

Remark. ~ Every neighbourhood of ° in G in the topology cr(G, F) contains 
a neighbourhood V defined by a finite number of inequalities of the form 
I < Xi' y) I ~ 1 (1 ~ i ~ n), where the Xi are arbitrary points of F. If A is the sym­
metric convex envelope of the set of the Xi' then V is the polar set A ° of A in G. We 
can say that the polars in G offinite symmetric sets in F (or of their convex envelopes) 
form a fundamental system of neighbourhoods of ° in G for cr(G, F). If the duality 
is separating in F, these convex envelopes are compact for cr(F, G) (II, p. 14, cor. 1 
of prop. 15), and of finite dimensions. Conversely every compact, convex set offinite 
dimension C in F (with the cr(F, G) topology) is contained in the convex envelope 
of afinite subset ofF. For, let M be a vector subspace offinite dimension containing C. 
If (e)l "'i"'" is a basis ofM, we can suppose that C is contained in the closed paralle­
lotope centre ° and constructed on the vectors of the basis ei (GT, VI, § 1 .3); now 

" it is immediate that this parallelotope is the convex envelope of the points I Ciei 
i= 1 

with ci = ± 1. 
Thus we can say that (if cr(F, G) is Hausdorff) the polars offinite dimensional, 

convex, compact sets in F (for cr(F, G) or for any Hausdorff locally convex topology 
finer than cr(F, G) on F) form a fundamental system of neighbourhoods of ° for 
cr(G, F). 

COROLLARY 3. ~ Let !T be the topology of a locally convex space E and let E' be 
its dual (II, p. 42, def. 1). 
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(i) The closed convex sets in E are the same for the topology :Y and for the weak 

topology cr(E, E'). 
(ii) For every subset M of E, the polar set MOO in E of the polar set MO of M in 

E', is the convex closed envelope of M u {o} for the topology :Y. 
Clearly, (ii) follows from (i) and tho 1. From the definition of the dual E', it follows 

from II, p. 43, prop. 3 that the continuous linear forms on E for the topology :Y 
are the same as the continuous linear forms for cr(E, E'). The closed half-spaces in E 
are therefore the same for :Y and for cr(E, E') (II, p. 15, prop. 17) and the assertion 
(i) follows therefore from II, p. 38, cor. 1. 

4. Transposition of a continuous linear mapping 

In this No., we suppose that (F, G) and (F l' G 1) are two vector spaces in duality. 

PROPOSITION 5. - Let u be a linear mapping of F in Fl. The following properties 
are equivalent : 

a) u is continuous for the weak topologies cr(F, G) and cr(F l' G I); 

b) there exists a mapping v: G 1 ---+ G such that 

(1) 

for all YEF and zEG I . 

If these properties hold and !f the duality between F and G is separating in G, then 
the mapping v satisfying (1) is unique, and v is linear. 

If u is continuous for the weak topologies, then, for all Z 1 E G l' the linear form 
y f---* <u(y), ZI ) on F is continuous for cr(F, G), thus (II, p. 43, prop. 3) can be written 
as y f---* <y, V(ZI) with V(ZI) E G, which shows that a) implies b). Conversely, if b) 
is true, for all ZI E G 1 , the linear form 

is continuous for cr(F, G) : it follows from the definition of weak topologies that 
u is continuous for cr(F, G) and cr(Fl' G 1) (I, p. 10, cor. 1). The uniqueness of v 
follows from (Dn) and this uniqueness implies that v is linear. 

Remark. - Suppose that the duality between F and G is separating in G and that 
the duality between F 1 and G 1 is separating in G 1. If we identify G and G 1 with 
subspaces of F* and Fi respectively, the conditions a) and b) are equivalent to 
tu( G 1) C G; v is the restriction of the transpose tu of u (A, II, § 2.5) to G 1. 

We say, simply (when there is no chance of confusion) that v is the transpose 
of u (relative to the duality on the one hand between F and G and on the other hand 
between F 1 and G 1) and we again use tu to denote it. 

COROLLARY. - Suppose that the duality between F and G is separating in G. If u is 
a linear mapping of F in F l' that is continuous for cr(F, G) and cr(F l' G 1)' then its 
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transpose is a linear mapping of G 1 in G, that is continuous for a( G l' F 1) and a( G, F). 
Further if the duality between F 1 and G 1 is separating in F 1 then teu) = u. 

It is sufficient to exchange F and F 1 with G and G 1 in prop. 5. 

PROPOSITION 6. - Suppose that the duality between F and G (resp. F 1 and G 1) is 
separating in G (resp. F 1)' Let u be a linear mapping of F in F 1 that is continuous 
for a(F, G) and a(F I , G 1). Let A be a set in F and AI a set in Fl ; then: 

(i) We have (u(A))O = tu-I(AO). 

(ii) We have tu(A~) c (u- 1(A 1 ))O ; further, if A is closed, (Jor a(F l' G 1)) convex, 

and contains the origin, then we have tu(A~) = (u- 1(A 1 ))o. 

Let z 1 E G l' the relation z 1 E (u(AW is equivalent to < u(y), Z I) ~ - 1 for all 
YEA, and the relation tu(ZI) E N is equivalent to < y, tu(ZI) ~ -1 for all YEA 
and our assertion (i) follows using (1). Next interchanging u and tu and applying (i) 
to the set A~ of G 1 we get 

(2) 

from which, on taking polars 

We have ru(A~)) c ru(A~WO by the bipolar theorem (II, p.44, tho 1); the final 
statement follows from (2) and the bipolar theorem since then A~o = Al and tu(A~) 
is convex and contains the origin. 

COROLLARY 1. - With the notations of prop. 6, the relation u(A) c Al implies 
tu(A~) eN; iffurther Al is convex, closed (for a(Fl' G 1)) and contains the origin, 
then these two relations are equivalent. 

In fact, the relation u(A) c Al equivalent to A c u- I (A 1 ), therefore implies 

and conversely the relation tu(A~) c A 0 implies 

COROLLARY 2. - Let u be a linear mapping of F in F 1 that is continuous for a(F, G) 
and a(F l' G 1 ). We have then 

(3) 

(4) 

Ker(lu) = (Im(u))O , 

Imcru) = (Ker(uW . 

Suppose that the dualities between F and G and between F 1 and Glare separating; 
then u(F) is dense in F 1 (Jor a(F l' G 1))' if and only if tu is injective. 
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Apply prop. 6 with A = F and Al = {O}, using the fact that the weak topologies 
a(G, F) and a(Fl' G 1) are Hausdorff. The last assertion results from (4), inter­
changing u and tu. 

5. Quotient spaces and subspaces of a weak space 

Let F, G be two real vector spaces in duality. Let M be a vector subspace of F, 
and consider the subspace N of the orthogonal MO in G; if y I' Y2 are two points 
of G that are congruent mod. N then < x, YI) = < X, Y2) for all x E M. For each 
class y mod. N, denote the common value of < x, y) when y varies in y by < x, y) ; 
clearly (x, j) f---+ <x, j) is a bilinear form on M x (GjN). 

PROPOSITION 7. - Let M be a vector subspace of F and N a vector subspace of G 
where F and G are two vector spaces in duality. Suppose that M and N are orthogonal 
(which is equivalent to saying that N c MO, or M c N°). The vector spaces M and 

GjN are then in duality by the bilinear form (x,}) f---+ < x, }). 

(i) The topology a(M, GjN) for this duality is induced by a(F, G) (and in parti­

cular we have a(F, G) = a(F, GjP)). 
(ii) The topology CJ(GjN, M) for this duality is coarser than the quotient topology 

of a(G, F) hy N; these topologies are identical if and only if M + G' = N°. 
(i) Every element of GIN is a class mod. N of an element of G; if Zi (1 :( i :( n) 

are elements of G and Zi (1 :( i :( n) is the class of Zi in GjN then the set of Y E M 
such that 1< y, Zi) 1 :( li for 1 :( i :( n is the trace on M of the set of those x E F such 
that 1 < x, Zi) 1 :( li for 1 :( i :( n; the conclusion follows from the definition of 
neighbourhoods of 0 for the weak topology. 

(ii) Let p: G ~ GIN be the canonical surjection. We show that the quotient 

topology :T of a(G, F) by N is identical with a(GjN, W). As, for Z E G, y E N°, 
we have <y, p(z) = <y, z), it follows that every neighbourhood of 0 for a(GjN, N°) 
is of the form p(V), where V is a neighbourhood of 0 for a(G, F) saturated for the 
relation Z - Z' E N, therefore :T is finer than a(G/N, N°). Conversely let 
V = W(Yl' ... , Yn; li) be a neighbourhood of 0 in G for a(G, F), where Yi E F for 
1 :( i :( 11 and li > 0; we are going to see that for I :( i :( n, there exist elements 
ti E N' such that if one puts V' = W(t l , ... , tn ; li), then pCV') c p(V); this will 
show that a(GjN, N°) is finer than ,ry- and therefore is actually identical with :T. 
Now, let L be the vector subspace of F generated by N° and the Yi' and denote 
by P the complementary subspace of N° in L; it is of finite dimension, say m. Let 
(X.)l'" .'" be a basis of P; the restrictions to N of the linear forms x f---+ < xJ" z) 

} -...::.}---.m 

are linearly independent, since otherwise there exists x # 0 in P such that < x, z) = 0 
for all zEN, that is to say x E N°, which contradicts the definition of P. Thus we 
conclude that for all z' E G, there exists sEN such that < Xj' Zl) = < Xj' s> for 
allj; if z' = z + S, we have <x, z) = 0 for all x E P. This being so, putYi = ti + lVi' 
where tiEN' and WiEP; we have <Yi'Z) = <ti,z) = <t;.Z') for 1:( i:( 11; 
therefore, for all z' E V', there exists z E V such that z' - zEN, that is to say we 
have p(V') c p(V). 
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Returning to the case where M is any subspace of N°, note that evidently 
a(G/N, M) = a(G/N, M + GO); further, from prop. 3 of II, p.43, we see that, 
if y E N° is such that the linear form Z f---* <y, z) is continuous for a(G/N, M), 
then necessarily y EM + GO. We conclude that the condition M + GO = N° is 
necessary and sufficient for the quotient topology .'Y to be equal to a(G/N, M). 

Remark. - The duality between M and GIN (where M and N are two orthogonal 
subspaces) is separating in M, if and only if M n GO = {O}; it is separating in 
GIN, if and only if N = MO. 

COROLLARY 1. - Suppose that the duality between F and G is separating in F. For 
a vector subspace M oj F the topology a(G/Mo, M) is identical with quotient topology 
of a(G, F) by M O , if and only if M is closed for the topology a(F, G). 

This follows from prop. 7 putting N = MO, and recalling that MOO is the closure 
of M for a(F, G) (II, p. 45, cor. 2). 

COROLLARY 2. - Ij M is oj jinite dimension n and the duality is separating in F, 
then MO is oj codimension n in G. Ij M is closed jor a(F, G) and oj jinite codimension n 
and if the duality is separating in G, then MD is oj dimension n. 

For, G/Mo is in separating duality with M; if M is of dimension n, the same is 
therefore true of G/Mo (II, p.4l, example 1). If M is closed, F/M = F/MoO is in 
separating duality with MO ; if F 1M is of dimension n, it is therefore the same for MO 
(II, p. 41, example 1). 

COROLLARY 3. - Let (F, G), (F l' G 1) be two pairs oj spaces in separating duality 
and let u be a linear mapping ojF in F l' which is continuousjor a(F, G) and a(F l' G 1). 

Then u is a strict morphism oj F in F l' if and only if, Im(lu) is a closed subspace in G 
jor a(G, F). 

Let N = ImCu) c G; we know that N° = Ker(u) in F (II, p. 47, formula (3)). 
Let p: F ~ FIN° be the canonical mapping so that u factorises as 

p w 
u : F ~ F IN° ~ F 1 ' 

where w is injective. The spaces FIN° and N are in separating duality and by for­
mula (1) of II, p. 48, we have < w(y), Z1) = < y, tU(Z1) for all y E FIN° and Z1 E G 1 . 

This relation shows that w is an isomorphism of FIN°, carrying the topology 
a(F IND, N), on u(F) with the topology induced by a(F l' G 1). The conclusion results 
therefore from cor. 1 and the definition of a strict morphism. 

COROLLARY 4. - Let (F, G), (Fl' G 1 ) be two pairs in separating duality, and let u 
be a linear mapping oj F in F 1 that is continuous jor a(F, G) and a(F l' G 1). Then u 
is surjective, if and only if, tu is an isomorphism of G 1 (With topology a(G l' F 1)) on 
tu(G 1) with the topology induced by a(G, F). 
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For, to say that u(F) = F 1 is equivalent to saying that u(F) is closed and every­
where dense in F 1 for cr(F l' G 1); cor. 4 follows then from cor. 3 applied to 'u and 
of II, p. 47, cor. 2. 

Remarks. - 1) Let (F l' G 1)' (F 2' G 2)' (F 3' G 3) be three pairs of spaces in separating 
duality and consider a sequence of two linear mappings 

(5) 

that are continuous for the weak topologies corresponding respectively with G l' G 2' 

G 3; we consider the sequence of transposed mappings 

(6) 

It is clear that '(v 0 u) = 'u 0 'v, therefore the relation v 0 u = 0 is equivalent to tu 0 tv = O. 
The sequence (5) is exact if, and only if, the three following conditions are satisfied 

a) 'u 0 tv = 0; 
b) Im('v) is dense in Ker('u); 
c) tu is a strict morphism of G 2 in G 1 . 

This follows in effect from cor. 3 of II, p. 49 and formulae (3) and (4) of II, p. 47. 
2) It must not be thought that when u is a strict morphism of F in F l' then tu is 

necessarily a strict morphism of G 1 in G; in other words u can be a strict morphism 
without u(F) being closed in Fl for cr(Fl' G 1). This is shown by the example where 
F is a non-closed subspace of F 1 and G = G liFe, U being the canonical injection. 
Similarly, the fact that the sequence (5) is exact does not necessarily imply that (6) 
is exact, however, if the sequence (5) is exact and if v is a strict morphism, then the sequen­
ce (6) is exact, by the remark I and by II, p. 49, cor. 3. 

6. Products of weak topologies 

PROPOSITION 8. - Let (F" G')'EI be a family of pairs of spaces in duality. Let F = TI F, 
'EI 

be the product space oj the F, and G = EB G, be the direct sum oj the G,. Ij, jor all 
'EI 

x = (x,) E F and all y = (y,) E G, we write <x, y) = L: <x" y,) (a sum which has 
'EI 

only jinitely many non-zero terms) then the topology cr(F, G) (relative to the bilinear 
jorm (x, y) f---* < x, y») is the product oj the topologies cr(F" GJ 

For, given a topology:Y on F; in order that, for ally E G, the linear form x f---* < x, y) 
should be continuous for:Y, it is necessary and sufficient, by the definition of < x, y), 
that each of the mappings x f---* < pr,x, y,) should be continuous for :Y, where 1 

is arbitrary in I and y, in G,; but this means that each of the mappings pr, of F in 
F, is continuous for :Y and for cr(F" G,) (I, p. lO, cor. 1); this completes the demons­
tration. 

Remark. - The duality between F and G is separating in F (resp. in G) if and only 
if for all 1 E I, the duality between F, and G, is separating in F, (resp. in G,). If the 
duality between F and G is separating in F (resp. G), then, in F (resp. G), the subspace 
orthogonal to one G, (resp. F,), canonically identified with a subspace of G (resp. F) 
is the subspace of the product of the F K where K i= 1 (resp. the direct sum of the G K 

such that K i= 1). 
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COROLLARY 1. - Let F and G be two vector spaces in separating duality. /j the 
space F (with cr(F, G)) is the direct topological sum oj two subs paces M, N then the 
space G (with cr(G, F)) is the direct topological sum ojthe subs paces MO, N° orthogonal 
respectively to M and N. 

For let p: F ---> M, q : F ---> N be the projectors corresponding to the decomposi­
tion of F into the direct sum of M and N; in these conditions the mapping 
(p, q) : F ---> M x N is a topological isomorphism. If M 1 = G IMo, N 1 = GIN°, 
then the topologies on M and N (induced by that of F) are identical with cr(M, M 1), 

cr(N, N 1) respectively (II, p.48, prop. 7). The mapping t(p, q): Ml x N 1 ---> G is 
a topological isomorphism when we give M 1 , Nl and G the topologies cr(Ml' M), 
cr(N1 , N) and cr(G, F), by prop. 8. Under this mapping Ml (resp. N 1) has as its 
image in G the subspace N° (resp. MO), and the topology cr(M 1 , M) (resp. cr(N l' N)) 
has as its image the topology induced on N° (resp. MO) by cr(G, F), from which the 
corollary follows. 

COROLLARY 2. - Let (e,)'EJ be a basis oj the vector space F with dual F*, and let 
u: R(I) ---> F be an (algebraic) isomorphism dejined by this basis. Then the transposed 
mapping tu: F* ---> RI is a topological isomorphism when F* carries the topology 
cr(F*, F) and RI the product topology. 

We know (A, II, § 2.6, prop. 10) that tu is a bijection, and that if for a x* E F*, 
we put < e" x* > = ~,* for allt E I, then the image tu(x*) is the vector (~,*) of Ri, 
so that, for all x = L ~,e, in F, we have < x, x* > = L ~,~,*. The corollary then 

1 tEl 

follows from this formula and prop. 8. 

7. Weakly complete spaces 

PROPOSITION 9. - Let F, G be two vector spaces in separating duality. If F is the 
completion oj the space F jor the topology cr(F, G) and if we consider the canonical 
injection j: F ---> G*, where G* has the topology cr(G*, G), then the continuous exten­
sion j: F ---> G* ojj is an isomorphism oj topological vector spaces. 

For, we see that G*, endowed with cr(G*, G), is Hausdorff and complete (II, 
p. 51, cor. 2); if we identify F by j with a vector subspace of G* then the topology 
induced on F by cr(G*, G) is cr(F, G), and F is dense in G* in the topology cr(G*, G) 
(II, p. 43, cor. 4); from which the proposition follows. 

Vector spaces that are complete for a weak topology are therefore the duals G* 
of arbitrary vector spaces G endowed with cr(G*, G); after II, p. 51, cor. 2, they are 
(topologically) isomorphic to products RI of real lines. To simplify the language, we 
shall call them products oj lines (for an intrinsic characterisation of these spaces see 
II, p. 85, exerc. 13 and II, p. 81, exerc. 1). 

We note that on G*, the cr(G*, G) topology is minimal among the weak topologies 
that are Hausdorff; for, a weak topology that is coarser than cr(G*, G) is necessarily 
of the form cr(G*, H) where H c G (II, p. 43, cor. 3); but if H =1= G, then there 
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exists a linear form x* E G* that is non null and is orthogonal to H (A, II, § 7.3, 
prop. 8), therefore cr(G*, H) is not Hausdorff. 

We deduce from this remark that, if F, G are two vector spaces, then a linear 
bijection u: G* -+ F*, that is continuous for the topologies cr(G*, G) and cr(F*, F), 
is necessarily bicontinuous. 

PROPOSITION 10 ...... Let G he a real vector space and F = G* its dual with the topo-
logy cr(G*, G). 

(i) The mapping Y H yo is a hijection oj the set of vector subs paces oj G on the 
set oj closed vector subspaces oj F. 

(ii) Every closed vector subspace oj F is a product of lines and has a topological 
complement. 

By the bipolar theorem (II, p. 45, cor. 2) Y H yo is a bijection of the set of vector 
subspaces Y of G, closed for cr(G, G*) on the set of closed vector subspaces of F. 
But, by definition, every linear form on G is continuous for cr(G, G*), therefore 
every vector subspace in G is closed, being defined by a system of equations 
< y, yD = 0 (where yi E G*); this proves (i). 

Now let W be a closed subspace of F; we have then W = yo with Y = WO in G. 
Let Y' be a complement of V in G. We know that F = G* can be canonically iden­
tified with y* EB Y'*, and Y'* identified with yo = W (A, II, § 2.6, cor. to prop. 10); 
further (II, p. 50, prop. 8) the topology cr(G*, G) can be identified with the product 
of the topologies cr(Y*, Y) and cr(Y'*, Y'); this proves assertion (ii). 

Though, for the topology cr(G, G*), every vector subspace of G is closed, we note that 
if G is of infinite dimension then the topology cr(G, G*) is not the finest locally convex 
topology on G, every neighbourhood of 0 for cr(G, G*) containing a vector subspace 
of infinite dimension: it is however the finest of the weak topologies on G (II, p. 43, 
cor. 3). 

8. Complete convex cones in weak spaces 

Lemma 1. -- Let E be a Hausdorff weak space and C a proper cone with vertex 0 
in E, that is complete for the uniform structure induced by that of E. Every continuous 
linear jorm in E is then the difference between two continuous linear forms in E that 
are positive in C. 

Let E' be the dual ofE and F be the algebraic dual ofE', with the topology cr(F, E'). 
Let H = CO - Co be the vector subspace of E' formed by the differences of linear 
forms that are continuous in E and positive in C (II, p. 44, prop. 4). It is sufficient 
to show that the orthogonal to H in F is {O} (II, p. 41, Example 1). Then let a E F 
be orthogonaf to H; as a is orthogonal to CO, it must belong to the bipolar of C 
in F. But E is identifiable as a subspace of F, and since C is complete, thus closed 
in F, we have a E C (U, p. 44, tho 1). Similarly a is orthogonal to - CO and therefore 
a E - C. As C is proper, we have a = O. 

PROPOSITION 11. - Let E be a Hausdorjf weak space, and C be a proper convex cone 
with vertex 0 in E and which is complete in the un (form structure induced by that of E. 
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Then there exists a set I and a continuous linear mapping u ofE in the product space 
RI with the following properties : 

a) u is an isomorphism of C on u(C) for the uniform structures induced respectively 
by those of E and of RI. 

b) We have u(C) c RI+. 
Further, if the uniform structure induced on C by that of E is metrisable, then we 

can take I = N. 
Let (f)lEI be a family of continuous linear forms in E such that the finite sums of 

pseudometrics of the form (x, y) f---+ 1J:(x - y)1 on C x C define the uniform structure 
of C. (If the structure is metrisable we can take I = N.) By lemma 1 we can suppose 
further that each of the J: is positive in C. Let u be the linear mapping x f---+ (J:(X))lEI 
of E in RI. It is clear that u is continuous and that u(C) c RI+. The restriction ulC 
is a uniformly continuous mapping that is surjective from C on u(C). Further if 
x, y in C are such thatJ,(x) = J,(y) for alit E I, then x = y since the uniform structure 
of C is Hausdorff; therefore ulC is bijective. Finally, if W is an entourage of the 
uniform structure of C, then there exists a finite set J of I and a number E > 0 such 
that the relations If.(x) - J,(y)1 :( E for t E J imply (x, y) E W; therefore ulC is an 
isomorphism of C on u(C) for the uniform structures being considered. 

COROLLARY 1. - Let E be a Hausdorff weak space and C a proper convex cone of 
vertex 0 in E that is complete for the uniform structure induced by that of E. Then 
the mapping (x, y) f---+ X + Y of C x C in C is proper. 

Because of prop. 11, we can suppose that E = RI and that C = RI+ (GT, I, § 10.1, 
cor. 1 and 4). But then the mapping (x, y) f---+ X + Y of C x C in C is written as 
((~), (T])) f---+ (I;. + T]), and we can restrict ourselves to proving that the continuous 
mapping f:(~, T]) f---+ ~ + T] of R+ x R+ in R+, is proper (GT, I, § 10.1, cor.3) , 

-1 

Now,for all ~ E R+, we see that f(~) is the set of pairs (~, ~ - ~) such that 0 :( ~ :( ~, 
therefore the inverse image by f of the interval [0, ~l is the set of the (~, T]) E R + x R + 
such that ~ + T] :( ~, which is compact. The conclusion follows applying (GT, I, 
§ 10.3, prop. 7). 

COROLLARY 2. - Let E be a Hausdorff weak space, and C a proper convex cone 
with vertex 0 in E, that is complete for the uniform structure induced by that of E. 

(i) For every point a of E, the intersection C n (a - C) is compact. 
(ii) Let A, B be two closed sets in C. Then A + B is a closed set in C. 
(i) The set of the (x, y) E C X C such that x + y = a is compact from cor. 

and from GT, I, § 10.2, tho 1, b). Now this set is also the set of the (x, a - x) for 
x E C n (a - C), which proves (i). 

(ii) If A and B are closed in C, then A x B is closed in C x C, therefore A + B 
is closed in C after cor. 1 and GT, I, § 10.1, prop. 1. 



TVS 11.54 CONVEX SETS AND LOCALLY CONVEX SPACES § 7 

§ 7. EXTREMAL POINTS AND EXTREMAL GENERATORS 

1. Extremal points of compact convex sets 

DEFINITION 1. - Let A be a convex set in an affine space E. Then we say that a point 
x E A is an extremal point of A if there does not exist an open segment that is contained 
in A and contains x. 

In other words, the relations x = AY +0- A)Z, YEA, Z E A, y =1= Z and 0 :( A :( I 
imply A = 0 or A = I (thus x = y or x = z). This implies that x cannot be the 
barycentre of a set of n points Xi of A carrying positive masses unless x is one of the 
Xi; for this is just the definition when n = 2; for arbitrary n argue by induction 
on n, as x is the barycentre of Xl and of the barycentre y 1 of the Xi with 2 :( i :( n, 
therefore x is identical with Xl or Y1' and in the second case it is sufficient to apply 
the induction hypothesis. 

To say that x is an extremal point of A also means that A - {x} is convex. 

Examples. - 1) In the space Rn, all the points of the sphere S" -1 are extremal points 

of the closed ball Bn" For, if I yf ,,; 1, I zf ,,; 1 and ° < 'A < 1, the relation 
i i 

is possible only if 

But this implies I (Yi - ZY = 0, thus Yi = Zi for all i, which proves our assertion. 
i 

2) In the nOfmed space .~(N) of bounded sequences of real numbers (1, p. 4) the 
extremal points of the unit ball are the points x = (S,,) such that Is,,1 = 1 for all n. For, 
suppose that we had Is,,1 ,,; 1 for all nand ISpi < 1 for one index p. We can then write 

1 + Sp 1 - Sp 
x = --2-Y + --2-z 

where Y (resp. z) is the point all of whose coordinates are equal to the coordinate of x 
with the same index. except in the case of index p where the coordinate is equal to I 
(resp. - 1). This shows that x is not extremal, since we have IIYII ,,; 1 and Ilzll ,,; L 
Conversely, if Is" I = 1 for all n, then x is extremal, for the relation S" = 'All" + (1 - 'A) Sn 
with 111,,1 ,,; 1, ISnl ,,; 1 and ° < 'A < I implies Sn = lln = S,,' 

3) Let u: E --> E' be an affine mapping of an affine space E in an affine space E'; 
let C c E, C c E' be two convex sets such that u(C) c C. If x' is an extremal point 
of C and x is an extremal point of u- 'ex') n C, then x is an extremal point of C, as it 
follows from def 1. 

PROPOSITION 1. - Let B be the set of extremal points of A, a non-empty compact 
convex set in a Hausdorff locally convex space E, and let f be a convex function defined 
in A and upper semi-continuous. Then f attains its upper bound in A at one point (at 
least) ofB. 
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Use IY to denote the family of subsets X of A that are non-empty, closed, and such 
that every open segment that is contained in A and meets X necessarily lies in X. It 
has the following properties; 

(i) A belongs to IY. 
(ii) A point a E A is such that {a} E IY, if, and only if, a is an extremal point of A. 
(iii) Every non-empty intersection X of a family (Xa) of sets of IY also belongs 

to IY. 
The properties (i), (ii) and (iii) follow immediately from the definitions. 
(iv) Let X E IY, and let h be a function that is convex and upper semi-cuntinuous 

in A; then the set Y of the points of X where the restriction hlX attains its upper 
bound in X is such that Y belongs to IY. 

For, hlX being upper semi-continuous in X attains its upper bound cr over X 
in at least one point of X (GT, IV, § 6.2, tho 3); thus Y is non-empty, it is also closed 
(GT, IV, § 6.2, prop. 1). On the other hand let x, y be two distinct points of A and let 
z = AX + (1 - A) y be a point of Y such that 0 < A < I; as Y c X and X E IY, 
we have X E X and y EX; on the other hand, as h is convex, we have 

h(z) ~ Ah(x) + (1 - A) hey) 

but as hex) ~ cr, hey) ~ cr and h(z) = cr, of necessity hex) = hey) = cr, that is to 
say x E Y and y E Y. Therefore Y E IY. 

With these properties established, let M be the set of x E A where f attains its 
upper bound in A; by (iv), M E IY. On the other hand, by (iii) and the fact that the 
sets of IY are closed subsets ot the compact set A, it follows that IY is inductive for 
the order relation :::J. By tho 2 ofS, III, § 2.4, M contains a subset N which is a minimal 
element of IY. We shall show that N consists of a single point and this will complete 
the proof of the proposition. Since E is a Hausdorff locally convex space, it is suffi­
cient to show that every continuous linear form u on E is constant in N (II, p. 38, 
cor. 1). Now it follows from (iv) that the set N' of the x E N where ulN attains its upper 
bound in N is such that N' belongs to IY; since N is minimal in IY we necessarily have 
N'=N. 

COROLLARY. - Let A be a compact convex set in a Hausdorff locally convex space E. 
Then every closed support hyperplane H of A contains at least one extremal point ofA. 

For, if f(x) = cr is an equation of Hand f(x) ~ cr in A, it is sufficient to apply 
prop. I to f. 

THEOREM I (Krein-Milman). - In a Hausdorff locally convex space E, every compact 
convex set A is the closed convex envelope of the set of its extremal points. 

For, let C be the closed convex envelope of the set of extremal points of A; clearly 
C c A. To see that A c C, it is sufficient to prove that, if u is an affine linear func­
tion, continuous in E and if u(x) ): 0 in C then also u(x) ): 0 in A (II, p. 39, cor. 4); 
but this follows from prop. I applied to - u. 

PROPOSITION 2. - Let x be an extremal point of a compact convex set A in a Hausdorff 
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locally convex space E. Then for every open neighbourhood V of x in E, there exists 
an open half-space F in E such that x E F n A c V n A (in other words, the traces 
on A of the open half-spaces containing x, form a fundamental ,I}'stem of neighbour­
hoods of x in A). 

For every open half-space D ofE containing x, the set AnD is a compact neigh­
bourhood of x in A, and the intersection of all these neighbourhoods is precisely 
the point x (any two distinct points can be strictly separated by a closed hyperplane 
(II, p. 38, prop. 4). By prop. 1 of GT, I, § 9.2, it is sufficient to prove that the sets 
An D form afi/ter base. Now if we write Lo = An (E- D), the set Lo is convex, 
compact and contained in the convex set A - {x} ; if D 1 , D2 are two open half­
spaces of E containing x, the convex envelope B of LOl U L02 is therefore contained 
in A - {x} ; but B is a compact set (II, p. 14, prop. 15), therefore there exists a closed 
hyperplane H that separates x strictly from B (II, p. 38, prop. 4) and if the open 
half-space determined by H and containing x is D, then we have LOl U L02 C L o , 
therefore An D c (A n D 1) n (A n D2)' 

COROLLARY.- In a HausdO/jj locally convex space let K be a compact subset of a 
compact convex set A. Then the following conditions are equivalent. 

a) A is the closed convex envelope of K. 
b) K meets every set that is the intersection of A with one of its support hyperplanes. 
c) K contains the set of extremal points of A. 
a) => b). Suppose that there exists a support hyperplane H of A whose equation 

is f(x) = rJ., such that (H n A) n K = 0 and suppose, for example, that f(x) ~ rJ. 

in A. As f(x) - rJ. > 0 for all x E K by hypothesis and as K is compact we have 

~ = inf f(x) > rJ., 
XEK 

and K is, therefore, contained in the closed half-space f(x) ~ ~; therefore the 
same is true of the closed convex envelope A of K and this is absurd. 

b) => c). Suppose that an extremal point x of A does not belong to K; there is 
a neighbourhood V of x in E such that V nAn K = 0. But by prop. 2, we can 
suppose that V is an open half-space defined by a hyperplane H with the equa­
tion fez) = rJ.. If for example f(x) > rJ., then for all y E K, we have fey) :( rJ., there­
fore K does not meet the intersection of A and the support hyperplane fez) = Y > rJ. 

parallel to H (II, p. 37, prop. 2); this is absurd. 
c) => a). This is an obvious consequence of the Krein-Milman theorem. 

Remarks. - 1) Even if the vector space E is finite dimensional thc set of extremal 
points of a compact convex set is not necessarily closed (I I, p. 89, excrc. 11). 

2) If K is a compact set in a non complete Hausdorfr locally convex space, and A, 
the closed convex envelope of K is not compact, there can be extremal points of A 
that do not belong to K (II, p. 87, exerc. 2). 

3) In a Banach space E of infinite dimension, it may happen that the closed ball 
of centre 0 and radius 1 does not possess any extremal point (II, p. 89, exerc. 14). 

4) If A is a compact convex set in a Hausdorfflocally convex space, it may happen that 
an extremal point of A does not belong to any support hyperplane of A (II, p. 78, 
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exerc. 11). The proof of theorem 1 (II, p. 56) shows that in any case A is the convex closed 
envelope of the set of extremal points of A which belong to a support hyperplane. 

2. Extremal generators of convex cones 

Let C be a convex cone with vertex 0 in a vector space E; clearly no other point 
of C than the vertex can be an extremal point; the vertex is an extremal point of C 
if and only if C is pointed and proper. 

DEFINITION 2. - Let C be a convex cone of vertex 0 in a vector space E. We say that 

a half-line DeC originating at 0 is an extremal generator of C, ifevery open segment 
contained in C, not containing 0 and meeting D is contained in D. 

It comes to the same thing to say that for all xED such that x #- 0, if y #- 0, 
y' #- 0 are two points of C such that x = y + y', then, it is necessarily the case that 
y E D and y' E D. 

Remark l. - Let C be a pointed proper convex cone in E, and consider on E the 
order structure for which C is the set of elements ~ ° (II, p. 12, prop. 13); in order 
that an element of E, say x > 0, belongs to an extremal generator of C, it is necessary 
and sufficient that every element y ~ 0, that is bounded above by x, is of the form AX 
with ° :s; A :s; 1 : in fact, to say that y is bounded above by x means that x = y + y' 
where y' E C, whence the conclusion follows. 

PROPOSITION 3. - In a vector space E, let C be a convex cone with vertex 0, and let 
Xo #- 0 be a point of C, and D a half-line that is contained in C, originating jrom 0 and 
containing xo' Let H be a hyperplane containing Xo and not passing through O. Then 
D is an extremal generator of C if and only if Xo is an extremal point of H II C. 

The condition is clearly necessary. Conversely, suppose that it is satisfied; sup­
pose that there is a line D' not containing D, passing through Xo and such that 
D' II C contains an open segment to which Xo belongs. Let y#-O be a direction 
vector of D'; the hypotheses imply that the point (1 + A)xo + ~y belongs to C 
for 111,1 and I~I sufficiently small. But then, in the plane P determined by D and D' 
and carrying the canonical topology, Xo is an interior point of P II C, and it follows 
that the line P II H contains an open segment contained in H II C and to which 
Xo belongs. This contradicts the hypothesis. 

DEFINITION 3. - Let C be a convex set in a Hausdorff topological vector space E. 
A compact convex non-empty set A oj C is called a cap oj C if the complement C - A 
oj A in C is convex. 

Let C be a pointed convex cone with vertex 0 in E and let A be a cap of C. Write 
B = C- A. For every closed half-line L c C originating at 0, the sets L II A and 
L II B are convex sets that are complements in L, whose union is L, and such that 
L II A is compact. As L II A is non-empty for at least one half-line L, we see that 
o E A, thus L II A is a closed segment with an end point at O. If A exists then C is 
proper. 



TVS 11.58 CONVEX SETS AND LOCALLY CONVEX SPACES § 7 

PROPOSITION 4. - Let C be a pointed convex cone with vertex 0 in E, a Hausdorff 
locally convex space. 

a) Let A be a cap oj C. Let p be the restriction to C oj the gauge oj A (II, p. 20). 
The set of the x E C such that p(x) ~ 1 is the set A. The junction p is lower semi­
continuous and has the jollowing properties : 

(i) For any x, y in C, we have p(x + y) = p(x) + p(y). 
(ii) For any x E C and A E R~, we have p(AX) = Ap(X). 
(iii) Ij x E C. rhe relation p(x) = 0 is equivalent to x = O. 
b) Conversely, let p be a junction dejined in C with values in (0, + 00), satisjying 

the conditions (i), (ii) of a). Let A be the set oj the x E C such that p(x) ~ 1. Then 
A and C - A are conv~x. A is a cap, if and only if A is compact and non-empty. 

The statement b) is obvious. The properties stated in a) are consequences of the 
remarks preceding prop. 4 and of the prop. 22 of II, p. 20 and prop. 23 of II, p. -20 
with the exception of 

p(x + y) ~ p(x) + p(y) . 

It is sufficient to prove this last when x =F 0 and y =F 0; we have therefore p(x) > 0, 
p(y) > O. Let /1, A be two numbers > 0 such that A < p(x), /1 < p(y), and denote 
the complement of A in C by B. We have x E AB, y E !lB, therefore x + Y E AB + !lB; 
by the convexity of B, we have AB + !lB C (A + Il)B, whence p(x + y) > 'k + 11, 
which implies the inequality stated above. 

COROLLARY I. - Let C be a painted convex cone of vertex 0 in E, a Hausdorff locally 
convex space and let p be the gauge of A, a cap of C. The extremal points oj A are 

then the point 0, and the points x on the extremal generators orC such that p(x) = 1. 
It is clear that 0 is an extremal point of A. Let x be a point on L an extremal gene­

rator of C and such that p(x) = 1. Let y, z be two points of A such that x = i(y +z). 
As L is extremal, we have y = AX and z = /1X, where A and /1 are numbers ~ 0 
such that i(A + 11) = I, A = Ap(X) = p(y) ~ I and 11 = IlP(x) = p(z) ~ 1, from 
which ''A = 11 = 1 and hence y = z = x; so, x is an extremal point of A. Conversely, 
let x =I- 0 be an extremal point of A. Obviously p(x) = 1. Let y, y' be two points 
ofC such that x = y + y', and we shall show thaty, y' are proportional to x. Without 
loss of generality we can suppose that the numbers A = p(y) and A' = p(y') are 
finite and> 0_ Then A -ly E A, A'-ly' E A, A + A' = 1 by prop. 4, (i) and the equa­
lity x = A(A - 1 y) + A'(A' - 1 y') implies, by hypothesis that 

COROLLARY 2. - Every point oj C that belongs to a cap oj C, also belongs to the 

convex closed envelope oj the union of the extremal generators of C. 
This follows immediately from cor. 1 and the Krein-Milman theorem (II, p.55, 

tho 1). 
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* Example. - Let X be a locally compact space that is a-compact. Let e be 
a closed convex cone of vertex 0 in J{ + (X) with the vague topology. We shall show 
that e is the union of its caps. Let (Xn) be an increasing sequence of open, relatively 
compact sets of X whose union is X. Let /.1 be an element =1= 0 ofe. There exist r:t.n > 0 

such that L r:t.n/.1(Xn) = 1. 

For every measure VEe, put p(V) = L r:t.nv(Xn) E (0, + 00). The function p 
n 

on e satisfies conditions (i) and (ii) of prop. 4. It is lower semi-continuous for the 
vague topology (INT, IV, 2nd ed., § 1, No.1, prop. 4). The set A of the Y E e such 
that p(y) ~ 1 is therefore closed and non-empty. On the other hand, every compact 
set of X is contained in one of the Xn , thus A being vaguely bounded is also vaguely 
compact (INT, III, 2nd ed., § 1, No.9, prop. 15). The set A is therefore a cap of e 
containing /.1. * 
PROPOSITION 5. - Let e be a proper convex cone with vertex 0 in E, a Hausdorff 

weak space; suppose that e is complete for the uniform structure induced by that oj E, 
and that there is an enumerable fundamental system of neighbourhoods of 0 in e. 
Then e is the union of its caps and is the closed convex envelope of the union of its 
extremal generators. 

The second statement follows from the first and from cor. 2 above. Using prop. 11 
of II, p. 52 reduces the proposition to the case when E = RI and e c RI+. For all 
r:t. E I, denote the projection pr~ in E by f~; then f~ is a continuous linear form. On 
the other hand let (V n)nEN be an enumerable fundamental system of neighbourhoods 
of 0 in e. By the definition of the topology of E, for each n EN, there exists a finite 
subset In of I and a number En > 0 such that Vn contains the set Wn of the x E e 
such that f~(x) ~ En for all r:t. E I n ; put J = U I n . Let y =1= 0 be a point of e, and p 

nEN 

be the function L A~(f~IC) where the A~ > 0 are chosen so that p(y) = 1; this is 
~EJ 

possible, since if f~(y) = 0 for all r:t. E J, then y E Vn for all n, which implies that 
y = 0, and this is contrary to hypothesis. Now we remark that for all r:t. E I, the 
function f~le is continuous at the point 0, therefore there is an n E N, such that f~ 
is bounded in a W n , therefore bounded above in e by a linear combination of a 
finite number of functions f~ Ie, where ~ E J. It follows that if A in the set of x E C 
such that p(x) ~ 1, then f~ is bounded in A for all r:t. E I. As p is lower semi-continuous 
in ~, it follows that A is closed and non-empty in e and therefore is compact. Since 
it is clear that p verifies the conditions (i) and (ii) of prop. 4 of II, p. 58, we see that 
A is a cap in e and contains y. 

Remark 2. - There exist proper convex cones that are weakly complete and which 
have no extremal generator (II, p. 92, exerc. 31). 

3. Convex cones with compact sole 

PROPOSITION 6. - Let E be a Hausdorff locally convex space and K a convex compact 
set in E which does not contain O. Then the smallest pointed cone C of vertex 0 which 
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contains K is a proper convex cone in E and is a locally compact and complete subspace 

of E ; also, there exists a closed hyperplane H in E that does not contain 0 and is such 
that H meets all the half-lines originating at 0 contained in C and such that H n C 
is compact. Further, ifD is the half-space containing 0 determined by H, a closed hyper­
plane with these properties, then C n D is a cap ofC andC is the union of the A(C n D) 

for. A > o. 
By prop. 4 of II, p. 38, there exists a closed hyperplane H which separates 0 strictly 

from K. Now, the convex envelope A of the union of {o} and of K is compact (II, 
p. 14, prop. 15) and is the union of the AK with 0 ~ A ~ 1. As 0 and K are strictly 
on opposite sides of H, for every x E K there exists A such that 0 < A < 1 and 
AX E H. As C is the union of the AA for A )! 1, we see that H meets every half-line 
originating at 0 contained in C and that H n A = H n C is compact. Further, 
C is also the union of the A(H n C) for A )! 0; let Cn be the union of the A(H n C) 
for ° ~ A ~ n. Clearly Cn is the convex envelope ofthe union of {O} and of n(H n C), 
therefore it is compact. Also, for all x E E, there is a closed neighbourhood V of x 
in E and an integer n such that V n C C Cn ; in fact, if H is defined by the equation 
fez) = r:J., where r:J. > 0, it is sufficient to take for V the closed half-space determined 
by nH and containing 0, where n is so large that nr:J. > f(x). This shows that C is locally 
compact (taking x E C), and that it is closed in E. We can also consider K as a subset 
of the completion E, therefore C is also closed in E and therefore complete. 

Given a cone C and a closed hyperplane H in a Hausdorff topological vector 
space E, such that H does not contain the vertex s of C and C is the smallest cone 
with vertex s containing H n C, then we call the intersection H n C a « sole» of 
the con~ C. Prop. 6 shows that in a Hausdorff locally convex space E, the smallest 
cone of vertex 0, containing a compact convex set K to which 0 does not belong, is 
a cone of compact sole, and that every convex cone having a compact sole S, is locally 
compact and complete. 

Examples. ~ 1) Every proper closed convex cone in E, a vector space of finite dimen­
sion, has a compact sole. In fact, by II, p. 52, prop. II we need only consider the case 
where E = Rn and C = R~. If (e)Hi';;n is the canonical basis of Rn, it is clear that the 
compact convex set which is the convex envelope of the ei (1 ::;; i ::;; n) is a compact 
sole for R~. 

* 2) If X is a compact space, then the cone At + (X) of positive measures on X, with 
the vague topology, is a cone with a compact sole (INT, III, 2nd ed., § 1, No.9, cor. 3 
of prop. 15). * 

§ 8. COMPLEX LOCALLY CONVEX SPACES 

1. Topological vector spaces over C 

Let E be a topological vector space over C the field of complex numbers; the 
topology of E is also compatible with the structure of the vector space over R, 
obtained by restricting the field of scalars to R. We denote by Eo the topological 
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vector space on R which underlies E (I, p. 2). Note that, in Eo, the mapping x f-+ ix 
(which is not a homothety) is an automorphism u of the topological vector space 
structure of Eo such that u2(x) = - x. 

Conversely, let F be a topological vector space over R, and suppose that there exists 
an automorphism u of F such that u2 ~ - IF (IF is the identity automorphism of F). 
We know (A, IX, ~ 3, No.2) that it is then possible to define a vector space structure 
on F relative to C writing AX = IXX + ~u(x) for all A = cr + i ~ EO C and all x EO F. 
Further since the mapping (cr, ~, x) f--+ crx + ~u(x) of R2 x F in F is continuous the 
topology of F is compatible with the vector space structure relative to C defined above; 
if E denotes the topological vector space on C defined in this manner, then F is the 
topological vector space on R which underlies E. 

Remark. - Given a topological vector space F over R, it is not always the case that 
there exists an automorphism u ofF whose square is - IF; for example, it is not possible 
to define vector space structure relative to C on a vector space over R of finite odd 
dim(lnsion. 

Let E be a topological vector space on C, and Eo the topological vector space on R 
which underlies E. Every linear variety M in E is also a linear variety in Eo, but the 
converse is false. To avoid confusion we say that a linear variety for a vector space 
structure relative to C (resp. relative to R) is a complex (resp. real) linear variety. 
A complex linear variety of finite dimension n (resp. of finite codimension n) is a 
real linear variety of dimension 2n (resp. of codimension 2n). In order that a real 
vector subspace M of E should also be a complex vector subspace, it is necessary 
and sufficient that iM c M. 

Recall that, if E and F are two topological vector spaces on C, then a mapping 
of E in F is called C-linear (resp. R-linear) if it is a linear mapping for the vector 
space structures of E and of F relative to C (resp. R); every C-linear mapping is 
evidently R-linear but the converse is false. We say that a C-linear form on E is a 
complex linear form and that an R-linear form on E (i.e. a linear form on Eo) is a 
real linear form. If f is a complex linear form on E, it is clear that the real part g = fYtf 

and the imaginary part h = § f of f are real linear forms; further, the relation 
f(ix) = ijex) implies the identity hex) = - g(ix); in other words we have 

(1) f(x) = (Plf) (x) - i(fYtf) (ix) . 

Conversely, if g is a real linear form on E, then f(x) = g(x) - ig(ix) is the unique 
complex linear form on E such that fllf = g; and f is continuous if, and only if, 
g is continuous. 

Now let H be a complex hyperplane in E, with the equation f(x) = rJ.. + i~, where 
f is a complex linear form on E; putting g fYtf, we see that H is the intersection 
of two real hyperplanes HI' H 2 with equations respectively (l(x) = rJ.. andg(ix) = - ~; 

if H is closed, so also are Hl and H2 (I, p. 13, tho 1). Conversely let Ho be a homo­
geneous real hyperplane, with equation g(x) = 0 (where g is a real linear form on E); 
then H, the intersection of Ho and iHo, is a homogeneous complex hyperplane, and 
if f is the complex linear form such that Pllj = g, then j(x) = 0 is the equation 
of H; if Ho is closed then H also is closed. 
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Let G be a topological vector space over R and let G(C) be the vector space on 
C obtained from G by extending the field of scalars to C (A, II, § 5.1). Identify G 
as a subset ofG(C) by the mapping x I--> 1 ® x. The R-linear mapping (x, y) I--> X + i.y 
is then a bijection of G x G on G(C), by means of which we transfer the product 
topology of G x G to G(C). Then G(C) with this topology is a topological vector 
space on C. We say that G(C) is the complexified topological vector space oj G. 

2. Complex locally convex spaces 

To say that a subset A of a complex vector space E is balanced means that, for 
all x E A, we have px E A for 0 ~ p ~ 1 and ei8x E A for all real 11. 

We say that a set A of E is convex if it is convex in the real space Eo which under­
lies E. In order that a convex set A =1= 0 ofE be balanced, it is sufficient that ei8A c A 
for all real 11; for this implies firstly that - A = A; as A is convex, we see that 0 
belongs to A and thus pA c A for 0 ~ p ~ I. 

Let E be a complex topological vector space. The smallest balanced convex 
(resp. closed balanced convex) set containing a set A of E is called the balanced 
convex envelope (resp. balanced closed convex envelope) of A; the balanced closed 
convex envelope of A is the closure of the balanced convex envelope of A. This last 
is the convex envelope of the union of the sets ei9 A; we can therefore define it as the 
set of linear sums L Aixi, when (x;) is any finite family of points of A, and (A;) a family 

i 

of complex numbers such that L IAil ~ I. If A is precompact so also is its balanced 
i 

envelope (I, p. 6, prop. 3). 
We say that a complex topological vector space E is locally convex if the real 

underlying topological vector space Eo is locally convex, that is to say if every neigh­
bourhood of 0 in E contains a convex neighbourhood of 0; a topology :Y on E 
is locally convex if it is compatible with the vector space structure of E (relative 
to C) and ifE, with topology:Y, is locally convex. As in this case every closed convex 
neighbourhood V of 0 contains a balanced neighbourhood W of (I, p. 7, prop. 4), 
we see that V also contains U, the balanced closed convex envelope of W; in other 
words the balanced, closed, convex neighbourhoods of 0 form a fundamental system 
of neighbourhoods of 0 in E, invariant under every homothety of ratio =1= O. 

Conversely, let E be a complex vector space and let 6 be a filter base on E formed 
by absorbent, balanced convex sets. We know then (II, p. 23, prop. 1) that the set \8, 
of the transforms ofthe sets of 6 by homotheties of ratio> 0, is a fundamental system 
of neighbourhoods of 0 for a locally convex topology :Y on the real vector space 
Eo underlying E. Further, as the sets of \8 are balanced, they are invariant under every 
homothety x I--> eillx, which shows that :Y is compatible with the vector space 
structure of E (over C) (I, p. 7, prop. 4). 

Every locally convex topology on a complex vector space E can be defined by 
a set of semi-norms, for the gauge of an open balanced convex neighbourhood of 0 
is a semi-norm on E. 
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The ideas and results for real locally convex spaces detailed in II, p. 25 to 36, extend 
to complex locally convex spaces with no modification other than the replacement 
of symmetric convex sets by balanced convex sets. 

A complex locally convex space is a Frechet space if it is metrisable and complete. 

3. The Hahn-Banach theorem and its applications 

THEOREM 1 (Hahn-Banach). - Let V be a vector subspace of E, a complex vector 
space, and let f be a (complex) linear form on V and p a semi-norm on E such that 
If(y)1 ~ p(y) for all y E V. Then there exists a linear form fl on E extending f and 
such that Ifl(x) I ~ p(x) for all x E E. 

For g = fJ1tf is a real linear form defined in V and satisfying l·y)1 :( p(y) at 
every point of V; therefore there exists a real linear form gl in E extending g and 
such that Igl(X)1 :( p(x) for all x E E (II, p.23, cor. 1). Let f 1(x)=gl(x)-ig 1(ix) 
be the complex linear form on E of which gl is the real part (II, p. 61). For all real if 

sincep is a semi-norm on the complex space E; this implies the relation Ifl (x) I :( p(x), 
and the theorem is proved. 

COROLLARY 1. - Let Xo be a point of a complex topological vector space E and p 
be a continuous semi-norm in E ; then there exists a continuous (complex) linear form f 
defined in E, such that f(xo) = p(xo) and If(x) I :( p(x) for all x E E. 

CoROLLARY 2. - Let V be a vector subspace of a complex locally convex space E 
and f be a (complex) linear form defined and continuous in V; then there exists a conti­
nuous linear form fl defined in E and extending f If E is l10rmed there exists such a 
form fl that also satisfies II fIll = II f II. 

COROLLARY 3. - Let M be afinite dimensional vector subspace of a Hausdorff complex 
locally convex space E. Then there exists a closed vector subspace N of E that is a 
topological complement ofM in E. 

The proofs using theorem I, p. 24 are the same as those of II, p. 23, cor. 2 and cor. 3, 
p. 24, prop. 2 and p. 25, cor. 2. 

PROPOSITION 1. - Let A be an open non-empty convex set in a complex topological 
vector space E and M be a non-empty (complex) linear variety that does not meet A. 
Then there exists a closed complex hyperplane H that contains M and does not meet A. 

We can suppose that 0 E M. Then there exists a closed real hyperplane Ho con­
taining M and not meeting A (II, p. 36, tho 1). As M = iM, the closed complex 
hyperplane H = Ho n (iHo) has the properties required. 

COROLLARY. - In a complex locally convex space E, every closed complex linear 
variety M is the intersection of the closed complex hyperplanes which contain it. 
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In fact, for all x rt= M, there exists a convex open neighbourhood V of x that does 
not meet M, and thus there exists a closed complex hyperplane H containing M 
and not meeting V; a fortiori H does not contain x. 

PROPOSITION 2. - Let A be a non-empty balanced open convex set of a complex topo­
logical vector space E, and B be a non-empty convex set that does not meet A. Then 
there exists a continuous complex linear form f on E and a number rx > 0 such that 

If(x)1 < rx in A and If(y)1 ~ rx in B. 

For, there exists a continuous real linear form g on E and a real number rx such 
that g(x) < rx in A and g(y) ~ rx in B (II, p. 37, prop. I). As 0 E A, we have rx > o. 
We show that the continuous complex linear form f(x) = g(x) - ig(ix) and the 
number rx have tile properties required. For, since f7lf = g, we have If(y) 1 ~ rx in B. 
On the other hand, for all x E A and all real 3, the point eiSx belongs to A, since A 
is balanced, and we have f(x) = e-i:Jf(ei!)x); then there exists a number 9 such that 
IfCx)1 = f7l(ei:1f(x)) = g(ei:fx) < rx, and the proposition follows. 

PROPOSITION 3. - Let A be a balanced, closed, convex set in a complex locally convex 
space E and let K be a non-empty compact convex set in E that does not meet A. Then 
there exists a continuous complex linear form f on E and a number rx > 0 such that 

If(x)1 < rx in A and IfCy)1 > rx in K. 
The proposition follows from II, p. 38, prop. 4 as prop. 2 follows from II, p. 37, 

prop. 1. 

4. Weak topologies on complex vector spaces 

The definition and results ofII, § 6, Nos. I and 2 apply without change to complex 
vector spaces. If F and G are two complex vector spaces in duality by a bilinear 
form B, then the underlying spaces Fo and Go are in duality by f7lB, and it follows 
from II, p.61, formula (1) that the weak topologies cr(F, G) and cr(Fo, Go) are 
identical. 

DEFINITION 1. - Let F and G be two complex vector spaces in duality. For any sub­
set M of F, the polar of M in G, denoted by MO, is the set of y E G such that 

f7l«x,y») ~ - I for all XE M. 

If MO is the polar of M c F in G then (AM)O = A -1 MO for all A E C*. 
If M is a (complex) vector subspace of E, then MO is a closed vector subspace 

(for cr(G, F)), since the relation f7l(A < x, y») ~ - I for every scalar A E C implies 
< x, y) = 0; again we say that MO is the subspace of G orthogonal to M. 

If M is a balanced set in F, then MO is a balanced set in G; in this case MO is the 
set of y E G such that 1< x, y) 1 :( I for all x EM; for this relation is equivalent to 
f7l«1;;x,y»):( 1 for all XEM and all1;;EC such that 11;;1 = 1. 

The results of II, p. 41 to 51 are also valid without restriction for complex vector 
spaces. 



Exercises 

§ 2 

I) A subset A of a vector space E, is starshaped relative to 0 if for all x EO A and every A such 
that 0 :::; A < I, the point AX belongs to A. Let A be starshaped and such that, for each x EO A, 
there exists 11 > I such that Ilx EO A. Show that if, for every pair of points x, y of A we have t(x + y) EO A, then A is convex. Give an example of a non-convex starshaped set A such that 
z(A + A) cA. 

2) Let A be a convex subset of an affine space E and B a set containing A. Show that, amongst 
the convex sets that both contain A and are contained in B there exists at least one maximal 
set; give an example where there are several distinct maximal sets. 

~ 3) Let A and B be two disjoint convex sets in a vector space E. Show that there exist two 
disjoint convex sets C, D in E such that A c C, BcD and CuD = E. (Apply tho 2 ofS, III, 
§ 2 .4 to the set of pairs of disjoint convex sets (M, N) such that A c M and BeN and express 
the fact that M and N do not meet by the relation 0 rt M - N. To show that CuD = E, 
obtain a contradiction supposing that Xo rt CuD; if C' (resp. D') is the convex envelope of 
C u {xo }(resp. D u {xo}), show that it is impossible that both C' n D =F 0 and C n D' =F 0.) 

4) Let C be a convex cone with vertex 0 in a vector space E; if (x;) 1 <:;i<:;n is a finite family of 
n 

points of C such that I AiXi = 0 for a family of numbers Ai > 0, then C contains the vector 
j = 1 

subspace of E generated by the Xi. 

5) Suppose that the vector space E has an enumerably infinite basis (en)nEN. Let C be the set 
of points X = I ~nen such that for the largest index n for which ~n =F 0, we have ~n > O. Show 

n 

that C is a pointed convex cone such that C n (- C) = {O} and C u (- C) = E; deduce 
that C is the set of elements of E that are ;::, 0 for an order structure that is compatible with 
the vector space structure of E and for which E is linearly ordered. Show that on this ordered 
vector space the only linear positive form is o. 
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6) Let E be an affine space of dimension ~ 2 and let f be a bijection of E on itself; show that 
if the image under f of every convex subset of E is also a convex set, then f is an affine linear 
mapping (consider the inverse mapping of f and note that a closed segment is the intersection 
of the convex sets which contain its extremities cf A, II, § 9, exerc. 7). 

7) Give an example of two convex sets A c R, B C Rl, such that the image of the convex set 
A x B under the bilinear mapping (A, x) '--> AX ofR X Rl in R2 is not convex. 

8) Let(A)l ~ i~p be a finite family of convex subsets of a vector space E; let Wi be the subspace 
obtained by a translation from thc affine linear variety generated by Ai (1 ~ i ~ p). If 

W = f Wi' show that the affine linear variety generated by the convex set f AiAi (where 
i= 1 i= 1 

Ai are non-zero numbers) is obtained from W by a translation. 

~ 9) Let A be a subset of the space R". 

a) Show that the convex envelope of A is identical with the set of points t AiXi , where Xi E A, 
i=O 

" 
Ai ~ 0 for 0 ~ i < n, and I Ai = 1. (Establish the following lemma; if p + 1 points Xi 

i=O 

p 

(0 ~ i ~ p) form an affinely dependent system (that is to say there exists a relation I f3iXi = 0 
i=O 

where the f3i are not all zero and f f3i = 0) and if x = f (XiXi, where the (Xi are ~ 0 and 
i=O i=O 

p 

I (Xi = 1, then there exists an index k ~ p and p numbers Yi (0 ~ i ~ p, i 1= k) such that 
i=Q 

Yi ~ 0 for all i, I Yi = 1 and x = I YiXi; for this compare those of the IXJf3i that are defined.) 
i::!=k i*k 

b) Let a be a point of the convex envelope of A which does not belong to the convex envelope 
of any subset of A with at most n points. Show then. that A contains at least n + 1 connected 
components. (We can suppose that a = O;let(b)o~i~"beafamilyofn + I affinelyindependent 
points of A such that 0 belongs to the convex envelope of the bi (cf a)). For each index i, let 
C i be the pointed convex cone of vertex 0 generated by the bj with indices.i 1= i; show that A 
does not meet the frontier of any of the cones - C i .) 

c) If C is a pointed cone with vertex 0 in R", show that the convex envelope of C is the set of 
" points I Xi' where Xi E C for I ~ i ~ n. 

i= 1 

~ 10) Let C be the convex envelope of a subset A of R", and let a be an interior point of C. 
Show that there exist 2n points Xi E A (l ~ i ~ 2n) such that a is interior to Co, the convex 
envelope of the Xi' (Suppose a = 0, and argue by induction on n, noting that by exerc. 9a) 
there exists a ~et of k .+ 1 .points Yj of A (0 ~.i ~ k, I ~ k ~ n), affinely indel?endent and 
such that, if V IS the affine linear varIety generated by the Y" then 0 E V and, relatIve to V, 0 is 
interior to the convex envelope of the set of the Yj' Then pioject C on E/V and show that 0 is 
interior to this projection relative to E/V). Show that in the above statement 2n cannot be 
replaced by 2n - 1. 

11) a) Show that, in the space R", every convex set A of dimension n contains at least one 
interior point (consider an affine1y independent system of n + I points of A). Deduce that 
if A is everywhere dense in R" then A = R". 
b) Let E be the normed space /1 (N) of absolutely convergent series of real numbers X = (1;.) 
(I, p. 4); show that the set P of x, such that 1;. ~ 0 for every index n, is a proper convex cone, 
which generates E but does not contain any interior point. 
c) Let E be a Hausdorff topological vector space on which there exists a non-continuous 
linear form f (cf II, p. 86, exerc. 17, a)). Show that the sets A and B defined by the relations 
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f(x) ;;, 0, f(x) < 0 are convex, non-empty, complementary, everywhere dense and that 
each of them generates E (algebraically). 

12) Show that in the space R", a necessary and sufficient condition that a convex set should be 
closed, is that its intersection with every straight line should be closed (cf II, p. 74, exerc. 5). 

13) Show that in the space R", every non-empty open convex set is homeomorphic to R" 
(use exerc. 12 of GT, VI, ~ 2). 

14) Let A be a non-empty closed convex subset of E, a Hausdorff topological vector space. 
a) Show that, for every a E A, the set n A(A - a) is a closed convex cone in E, with vertex 0, 

1>0 

independent of a. It is called the asymptotic cone of A and written CA- For every a E A, the 
set a + CA is the union of {a} and those open half lines that are contained in A and have a as 
an end point. 
b) If x, yare two points of A such that (x + CA) n (y + CA) is a cone whose vertex Z E A, 
then this cone is necessarily z + CA' 
c) IfB is a second closed convex subset ofE such that An B =1= 0, then CAe, R = CA nCR' 
d) Let V A be the largest vector subspace (necessarily closed in E) which is contained in CA' 
Show that if <l> is the canonical homomorphism of E on ElVA' then A = <l> -l(Ao), where Ao is 
a closed convex set in ElVA which does not contain any straight line. 
e) In the Banach space .'?l(N) of bounded mappings of N in R (I. p. 4) give an example of a 
closed convex non-bounded set A, for which CA = {O} and which is such that for every b =1= 0 
in E, there exists an integer k for which (A + kb) n A = 0. 

15) a) Let A be a closed convex subset of a Hausdorff topological vector space E. Iffor some 
point Xo E A there exists a neighbourhood V of Xo in E such that V n A is compact, then 
show that A is locally compact. Deduce that the closure in E of a locally compact convex set 
is locally compact. 
b) Let A be a closed convex set that is locally compact but not compact in E; show that the 
asymptotic cone (exerc. 14) is not the single point {O }. 

~ 16) Let A, B be two closed convex subsets of a Hausdorff topological vector space E. 
Suppose further that B is locally compact and that CA nCB = {O}. Show that A - B is 
closed in E. (Let b E B, and W be a closed neighbourhood of 0 in E such that B n (b + W) is 
compact. Let c E A - B; for every neighbourhood V of 0 in E consider the set Mv of those 
y E B such that An (c + y + V) =1= 0. Consider two cases according as to whether there 
exists a V for which Mv is relatively compact, or there does not exist such a V; in the second 
case, consider the filter base formed from the sets pv " = Mv n C (b + nW) where V varies in 
the set of closed neighbourhood of 0 in E and n varies in N; form the cone with vertex b 
generated by p v," and its intersection with the frontier of b + W). 

~ 17) In a Hausdorff topological vector space E, a closed convex set A is said to be parabolic 
if, for every z ¢c A, each half-line originating at z and contained in z + CA meets A. 
a) Give an example of a parabolic convex set A in R2 such that CA is not just a single half-line. 
b) Let A be a closed convex set in E such that CA =1= {O}, but such that A is not parabolic. 
Show that if z ¢c A is such that z + CA contains a half-line D with end point z which does not 
meet A, then neither the convex envelope of A u {z} nor the pointed cone with vertex z 
generated by A is closed in E. 

Further if D' is the closed half-line originating at z and opposite to D (so that D = 2z - D') 
then D' + A is not closed in E, and there exists a plane P containing D and a closed convex 
set B c P, such that B n A = 0 but that the distance of B from P n A (in any norm on P) 
is zero. 
c) In E, let A be a closed convex set that is locally compact and parabolic; show that if BeE, 
is closed and convex then A - B is closed (same method as exerc. 16). 
d) Let A, A' be two closed convex subsets of E that are locally compact and parabolic; show 
that the convex envelope of A u A' is closed in E (same method as in exerc. 16). Give an example 
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in RZ where A is parabolic, A' is non-parabolic and the convex envelope of A u A' is not closed 
in RZ. 
e) In E, let A be a closed convex set that is locally compact and parabolic; show that for all 
z rf; A, the pointed convex cone with vertex z, generated by A, is closed in E (usc dl). 
1) Let E 1, Ez be two Hausdorff topological spaces, Al (resp. Az) a closed convex set in El 
(resp. Ez) that is also parabolic. Show that the set Al x Az is parabolic in El x Ez. 
* g) Show that a barrelled space of infinite dimension does not contain a parabolic closed 
convex set that is both locally compact and not compact. 
h) Let Eo = [2(N), and in Eo, let K be the set of points x = (U such that I~nl ~ l/(n + 1) 
for all n; K is compact. The cone E of vertex 0 generated by K is a vector subspace of Eo and 
K is absorbent in E. Let p be the gauge of K in E; it is a lower semi-continuous function. In 
the normed product space E xR, show that the set A of points (x, ~) such that ~ ~ (p(x)j2 
is closed, convex, parabolic and locally compact. Show that A + (- A) and the convex enve­
lope of A u (- A) are not locally compact. * 

18) Let C be a proper closed convex cone of vertex 0 in Rn. Show that the complement of the 
set C n Sn-l on the sphere Sn-1 is homeomorphic to Rn- 1 (make a stereographic projection 
from a point of C n Sn- 10 and use exerc. 12 of GT, VI, § 2). If C contains an interior point, 
show that C n Sn-l' is homeomorphic to the closed ball B n - 1 (same method). 

19) a) Let A be an unbounded closed convex set in Rn, that does not contain any line, but 
does contain an interior point. Show that the frontier of A is homeomorphic to Rn- 1 (use 
exercs. 15, b) and 18). 
b) In a Hausdorlrtopological vector space E, let A be a closed convex set that does not contain 
any line and is of dimension ~ 2. Show that the frontier of A is connected (use a) and GT, VI, 
~ 2. exerc. 12). 

20) a) In a vector space E, let A be a convex set that generates E and meets every straight line 
in a set that is closed relative to the straight line. Show that the following conditions are equi­
valent: 

ct:) There exists a line D such that D meets A in a compact segment that is not empty. 
~) There exists a line D such that every line parallel to D meets A in a compact segment. 
y) A is distinct from E and is not a half-space determined by a hyperplane ofE. 

(To show that (y) => (ct:) use exerc. 14, d) of II, p. 67, and reduce to the case E = R2.) 
b) In a Hausdorff topological vector space E, let A be a closed convex set which contains an 
interior point. Show that if the frontier of A is a non-empty linear variety. then A is a closed 
half-space (usc exerc. 14. J) of ll, p. 67, to show that the frontier of A is necessarily a hyperplane, 
then apply a)). 

~ 21) a) Let Ai (1 ~ i ~ r) r > n + I, be a family of convex subsets of Rn such that any 
r - 1 of the Ai have a non-empty intersection; show that the r sets Ai have a non-cmpty inter­
section (Belly's theorem). (Let Xi be a point of the intersection of the Aj with indexes j oft i; 

there exist r numbers Ai which are not all zero and are such that :t Ai = 0 and t AiXi = 0; 
i= 1 i= 1 

in this last equation take to one side those terms with Ai ~ 0 and to the other those with 
Ai < 0.) 
b) Given a family of compact convex sets in Rn. show that the intersection of all the sets of 
the family is non-empty if the intersection of any selection of n + I sets of the family is non­
empty. 
c) In Rn, let K be a convex set and (AJl'; i';, be a family of r > n + 1 convex sets. Suppose that 
for every selection of n + 1 indices (ik ) each less than or equal to r there exists a E Rn such that 
a + K contains each of the A ik . Show that then there exists bERn such that b + K contains 
all the Ai' Show that similar results hold if « contains» is replaced by « is contained in» or 
by « meets in a non-empty set ». (For each index i, consider the set Ci of the x E Rn for which 
x + K ~ Ai (or x + K c Ai' or (x + K) n Ai oft 0»). Generalize to any family of compact 
convex sets of Rn. 
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22) In R2 consider a set of 2m points of the form (ap b;), (ap bi) where b; ~ b;' for 1 ~ i ~ m. 
Let n be an integer < m - 2. In order that there should exist a polynomial P(x) of degree ~ n 
such that b; ~ pea;) ~ b;' for 1 ~ i ~ m, it is sufficient that, for every family (ik)1~k~n+2 of 
n + 2 indices i, there exists a polynomial Q(x) of degree ~ n such that b;k ~ Q(a i ) ~ b;~ for 
every integer k such that 1 ~ k ~ n + 2. (Use exerc. 21, a).) 

23) Show that in a topological vector space, the convex envelope of an open set is an open set. 

24) Let M be an everywhere dense convex set in a topological vector space E (el II, p. 66, exerc. 
II, e)); show that, for every closed hyperplane H in E, the set H n M is dense in H (for every 
point Xo E H, and every balanced neighbourhood V of 0 in E, consider the intersections of 
Xo + V and the two open half-spaces determined by H, and deduce that Xo + V + V meets 
H n M). 

25) a) Show that, in a topological vector space, every convex set with an interior point, is 
such that its frontier is nowhere dense (use prop. 16 of II, p. 14). 
b) In a Hausdorff topological vector space E, let A be a closed convex set with an interior 
point, and let H be a closed hyperplane that contains an interior point of A. Show that the 
intersection of H and of the frontier F of A is a set which is nowhere dense relative to F (to 
show that in every neighbourhood of a point ofH n F there exist points ofF not in H, reduce to 
the case when E is of dimension 2). 

~ 26) In a Hausdorff topological vector space E, let A be a connected closed set with the 
following property: for every x E A, there exists a closed neighbourhood V of x in E such that 
V n A is convex. Show that A is convex. For this establish the following statements. 
a) Show that any two points of A can be joined by a broken line in A (same method as GT, VI, 
~ 1, exerc. 6). 
b) Show that, if two points in A can be joined by a broken line in A with n > 1 segments, then 
they can also be joined in A by a broken line with n - 1 segments. (Induction on n reduces to 
the case n = 2 which is equivalent to taking R2 as E; then let T be a triangle with vertices 
a, b, e such that the closed segments ae, be are contained in A, but the closed segment ab is 
not; consider a point of the closure of the intersection of G A and the interior of T that is 
farthest from the line ab, and show that the existence of such a point contradicts the hypo­
thesis.) 

~ 27) a) Let B be a non-empty closed convex subset of E, a Hausdorff topological vector 
space, and let X be a non-empty compact set in E. Show that if A is a subset of E such that 
A + X c B + X, then A c B (if a E A, consider a sequence (xn ) of points of X defined induc­
tively by the relation a + Xn = bn + x n + l' where bn E B). Deduce that, if A, B are two non­
empty subsets of E, using the distance in E and the proceedure of GT, IX, ~ 2, exerc. 6. Show 
A + X = B + X implies the relation A = B. 
b) Let E be a normed space, cr the distance function defined on the set ~(E) of closed non­
empty subsets ofE, using the distance in E and the proceedure ofTG, IX, p. 91, exerc. 6. Show 
that if A, B, C are three non-empty compact convex sets in E then cr(A + C, B + C) = cr(A, B) 
(if S, is the ball defined by Ilxll ~ A, note that A + S, and B + S, are closed convex sets and 
use a)). 
e) Deduce from a) and b) that the setst(E) of non-empty, compact, convex subsets of a normed 
space E, with the distance cr, can be identified with a cone in a normed space of which the laws 
of composition induce on st (E) the laws (A, B) --> A + B and (A, A) --> AA. 

28) Let f be a convex function defined over the convex subset A of a vector space E. 
a) Show that if A is absorbent and f is non-constant then f cannot attain its upper bound 
in A at the point O. 
b) Show that the subset of points of A, at which f attains its lower bound in A, is convex. 

~ 29) Let E be a Hausdorff topological vector space, and C be a non-empty open convex 
non-pointed cone with vertex 0, in E. A convex neighbourhood of 0 in E is denoted by V. If f 
is a convex function that is defined and bounded above in C n V, show that f(x) tends to a 
finite limit as x tends to 0, where x E C n V. (Let ~ = lim. sup f(x); obtain a contradiction, 

x-+ O,XECn V 
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supposing that for some a > 0, and every neighbourhood W of 0, there exists a point 
Y E C n V n W such that fey) < ~ - a. Show that there exists a E C n V such that 
f(pa) ~ ~ - 1a for ° < p ,,; 1; deduce that, on a line joining a point of the form pa (p suffi­
ciently small) to a point yin C n V such that fey) < ~ - a, and that is sufficiently close to 0, 
there exist points of C n V where f is arbitrarily large.) 

30) a) Give an example of a convex function that is defined over a compact convex subset 
K of R2, that is bounded and lower semi-continuous in K, but is not continuous at a point 
of the frontier of K (consider the gauge of a disc of which ° is a frontier point). 
b) Deduce from a) an example of a convex function defined in an open half-plane D of R2, 
not bounded above in D and not tending to a limit at a frontier point of D. 
e) Deduce from a) an example of a convex lower semi-continuous function defined over a 
compact convex subset A of R2 but not bounded above in A. (Take for A the set of points 
(~, 11) such that ~4 ,,; 11 ,,; 1 in R2.) 

"IT 31) Let Xo be a point in the closure of A, a non-empty convex subset of a Hausdorff topolo­
gical vector space E. Let f be a convex function defined over A. Use :n to denote the set of 
closed half lines D which originate at xo, for which AnD (fontains an open segment with 
end point Xo' The union C of the half lines D E :n is a convex cone with vertex Xo' 

a) Show that, for each fixed D E :n, as x tends to Xo such that xED n A and x =1= x o, either 
f(x) tends to a finite limit or to + 00. 

b) Let ~ be the subset of those D E :n, for which the limit of f(x) in a) is + 00; if Xo E A then 
~ is empty. Show that ~ cannot contain two opposite half lines; if D and D' are two distinct 
half lines in ~ and P is the plane determined by D and D' then, either, every half line D" of :n 
in P belongs to~, or D and D' are the only two half lines of~ lying in P. Deduce that if ~ =1= :n, 
then no half line D E ~ contains an internal point (II, p. 26) of the cone C relative to the vector 
subspace generated by C. 
e) Let 0: be the set of half lines in :n that are not in ~. Show that the union of the half lines 
of 0: is a convex cone, and for each half line D E 0: the limit of f(x) defined in a) is independent 
of D (use exerc. 29 above); further if Xo E A this limit is ,,; f(xo), and it is equal to f(xo) when 
!y contains two opposite half lines. 
d) Let f be a non-continuous linear form over E (el 11, p. 86, exerc. 17, a)) and take A = E; 
show that every closed half line, originating at x o' belongs to 0:, but that 

lim.inf f(x) = - 00 and lim. sup f(x) = + 00 
X-+Xo 

(use prop. 21 of II, p. 18). 

32) Let K be a compact convex set in a Hausdorff topological vector space E and let f be 
an upper semi-continuous convex function defined over K. Show that f is bounded over K. 
(Observe first that f is bounded above in K; if f is not bounded below show that 
lim. inf fey) = - 00 for every point x E K, and that this contradicts Baire's theorem.) Give 
y-x,y-=f=.x 

an example where f is not continuous. 

33) Let E be a finite dimensional Hausdorff topological vector space, and let K be a compact 
convex subset of E. Show that every convex function defined over K is bounded below in K 
(compare exerc. 31, d). 

34) Let U, V be two open convex sets in a Hausdorff topological vector space E such that 
V c U and that U does not contain any half line. Let g; be a set of convex functions defined in 
D, uniformly bounded above on the frontier ofU and uniformly bounded below on the frontier 
of V. Show that :F is equicontinuous. 

35) Let U be a non-empty open convex set in Rn and :F be a set of convex functions defined 
over U. Let <I> be a filter on :F that converges pointwise in U to a finite function fo; show 
that <I> converges uniformly to fo in every compact subset of U (use exerc. 34). 
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36) Let A be a compact convex set in Rn and B its projection on the subspace R,,-I (identified 
as the hyperplane with equation ~" = 0). Show that there exist two convex functions II' I2 
defined over B, such that A is identical with the set of points (x, 1;) of R" where x E B, Y E R 
and fl (x) 0( 1; 0( - fz(x). 

37) Lct E be a vector space; in order that a convex set F of E x R should be formed of pairs 
(x, 1;) such that f(x) 0( 1; (resp. f(x) < 1;) for a convex function I defined over a convex subset 
X of E, it is necessary and sufficient that the projection of F on E should be identical with X 
and that, for all x E X, the set F(x) of F that projects onto x should be a closed (resp. open) 
interval unlimited to the right (i.e. not bounded above). 

38) Let X be a convex set of an affine space E and p an affine linear mapping of E in a second 
affine linear space E I. Write XI = p(X). For every real-valued function f defined in X and 
every XI E XI' let 

fl (XI) = inf l(x). 
P(X)=Xl 

Show that if I is convex and if fl (Xl) > - w for all XI E XI' then II is a convex function. 

39) Let E be a finite dimensional Hausdorfr topological vector space. 
a) Let \j(E) be the family of closed non-empty sets ofE, carrying the uniform structure deduced 
from the uniform structure of E by the proceedure of GT, II. § 1, exerc. 5, a). Show that, the set 
(f(E) of non-empty closed convex sets of E, is closed in the space \j(E). Deduce that if K is a 
compact set in E, the set of non-empty closed convex sets in E that are contained in K, is a 
compact set in (f(E) (ef GT, § 4, exerc. 11). 
h) Let Ra(E) be the set of compact convex subsets of E that contain 0 as an interior point. 
F or every set A E .Ra(E), let p A be the gauge of A (II. p. 20). Show that A f--+ PAis an isomor­
phism of the uniform subspace .Ra(E) of (f(E) on a subspace of the space (fo,(E; R) of continuous 
real valued functions in E, carrying the uniform structure of compact convergence (GT, X, 
§ 1. 6). 

40) In a topological vector spacc E, let U be a convex neighbourhood of Xo and let f be a 
real-valued continuous convex function in U. Show that there exists a convex neighbourhood 
V c U of Xo and a convex continuous function j~ in E such that fliV = fiV. 

~ 41) Let H be a hyperplane in a vector space E that does not contain 0 and let S be a convex 
set contained in H. 
a) Suppose that the intersection of S with each line in H is a compact segment. Let a, b be 
two distinct points of E such that there exist two numbers A > 0, ~l > 0 for which 
b + IlS c a + AS; show that if e is the point where the line joining a and h meets the hyper­
plane H' parallel to H which contains a + AS, then C E b + IlS and b + IlS is the image of 
a + AS by a homothety of centre e transforming a into b. (Reduce to the case where E is of 
dimension 2.) 
b) With the same hypotheses on S, let a, b be two distinct points of E and suppose that there 
exists a point e E E and three numbers A> 0, ~l > 0, v~ 0 such that (a + AS) n (b + IlS) = c +vS. 
Show that if A (resp. B) is the cone with vertex a (resp. b) generated by a + AS (resp. b + IlS), 
and H" the hyperplane parallel to H passing through e, then H" nAn B = {c} (use a». 
c) Suppose that H is the affine linear variety generated by S. Let C be the cone with vertex 0 
generated by S. Show that the following two conditions are equivalent: 

IX) E is a lattice for the order on E of which C is the set of elements ~ O. 
~) For any points x, y of E and numbers ), > 0,11 > 0 such that the set (x + AS) n (y + IlS) 

is not empty, there exists Z E E and v ~ 0 such that this set is z + vS. 
(To prove that IX) implies ~), reduce to the case y = 0 and use the fact that if (s) is a finite 

family of points ofS and O,J is a family of real numbers such that 2.: AjSj = 0, then 2.: Ai = O. 
i 

To prove that ~) implies IX) use b»). 
When S satisfies the equivalent conditions IX) and ~), we say that S is a simplex in E. When 

E is of finite dimension, the convex envelope of a finite set of points affinely independent in H 
and generating H is a simplex * (the converse is also true: cf INT. n, 2nd ed., § 2. exerc. 7»). * 
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42) Generalise the prop. 18 ofII, p. 16 to the case of an ordered set E with a Hausdorff topology 
for which the intervals (a, -+ (and) <-, a) are closed for all a EO E. 

43) Let K be a complete valued division ring of which the absolute value is an ultrametric. 
In a left vector space E on K, we say that a set A is ultraconvex if the relations x EO A, y EO A, 
1"'1 ~ I, 1111 ~ 1 imply Ax + I1Y EO A. 
a) Generalize the prop. I, 2, 5, 6, 7 of II, p. 8 and p. 9. Show that the smallest ultraconvex 
set containing a given set M is the set of linear combinations I "',x" where x, EO M and 1\1 ~ 1 

for alit. 
b) Suppose that E is a topological vector space over K. Show that the closure of an ultra­
convex set is ultraconvex, and that an ultraconvex set with a non-empty interior is open. 
c) Let A be an absorbent and ultraconvex set in E. Show that if, for all x EO E, we put 
p(x) = inf Ipl, then p is an ultra-semi-norm on E (II, p.2). Generalize prop. 23 of II, p. 20, 

xepA 

to the case where the absolute value of K is obtained from a discrete valuation. 

§ 3 

1) Let P be a proper pointed convex cone, with vertex 0, in E a vector space over Rand p 
be a semi-norm on E and V the set of points x EO E for which p(x) < 1. Let M be a vector sub­
space of E and f be a linear form on M. There exists a linear form g on E, which extends f 
and is such that it is ;::, 0 in P and Ig(x)1 ~ p(x) for all x EO E, if and only if, for all 
x EO M n (V + P), we have f(x) > - 1. (To see that the condition is sufficient consider a 
point Xo EO M such that, f(x o) = I, the cone Q of vertex 0 generated by Xo + V, and apply the 
cor. of the prop. 1 (II, p. 21) to the space E carrying the relation of preorder for which P + Q 
is the cone of elements ;::, 0.) 

2) For a set S let F = ~(S) be the Banach space of the real-valued bounded functions in S 
(1, p. 4) and let M be a vector subspace of a normed space E. Show that, for every continuous 
linear mapping f of M in F, there exists a continuous linear mapping g of E in F, that is an 
extension of f and such that Ilg II = II ill. 

3) Let E be a vector space over R and let p be a sub linear function on E (II, p. 20). Let A be 
a convex set such that inf p(y) > - CfJ. 

YEA 

a) Show that the function 

q(x) = inf (p(x + tz) - t.inf p(y)) 
ZEA,t;;:: 0 yeA 

is a sublinear function on E such that - p( - x) ~ q(x) ~ p(x). 
b) Show that there exists a linear form h on E such that hex) ~ p(x) III E and that 
inf p(y) = inf hey) (take h such that hex) ~ q(X)). 
yeA yeA 

4) Let A be a non-empty set of E, a vector space over R, and p a sub-linear function on E. Let 
B be the set of z EO E such that inf p(x - z) ~ 0; we have A c Band inf p(x) ~ p(z) for all 

xeA xeA 

Z EO B; from which inf p(x) = inf p(z). 
xeA zeB 

a) Show that the set of the yEO E such that inf p(z - y) ~ 0 is the set B. 
ZEB 

b) Deduce from a) that the intersection of B and any affine line D in E is closed in D (show 
that, whatever the points a, b of E, the function t-> pea + tb) is continuous in R). 
c) Suppose that for each pair of points x, y of A there exists z EO A such that p(z - t(x + y)) ~ O. 
Show that, for each pair of points u, v of B we have t(u + v) EO B (write 

z - t(u + v) = (z - t(x + y)) + t(x - u) + t(y - v) 

for x, y, z in A). Deduce that B is then convex (use b)). 
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d) Under the hypotheses of c), show that there exists a linear form h on E such that hex) ~ p(x) 
and that we have inf p(y) = inf hey) (use c) and exerc. 3). 

YEA YEA 

5) Let A be a non-empty subset of a vector space E over R and let p be a sub linear function 
on E. Suppose that, for every pair of points x, y of A, there exists z E A such thatp(z - (x + y») ~ 0 
and that p(x) ~ 0 for all x E A. Show that there exists a linear form h on E such that hex) ~ p(x) 

in E and that hex) ~ 0 for x E A. (Apply exerc. 4, c) to the union of the.!. A for n (integer) ~ 1.) 
n 

6) a) Let H be a hyperplane in E a vector space over R and let p be a sublinear function on E. 
Let f be a linear form on H, such that fey) ~ p(y) in H. Let a be a point of G H, and let h 
be the linear form on E which extends f and is such that h(a) = inf (f(y + pea - y»). Then 

YEH 

hex) ~ p(x) in E. Show that for every linear form g on E extending f and such that g(x) ~ p(x) 
in E, we also have g(a) ~ h(a). 
b) Let V be a vector subspace of E and f a linear form on V such that fey) ~ p(y) in V. Let 
S be a non-empty set of E. Show that there exists a linear form h on E that extends f, such that 
hex) ~ p(x) in E and that there is no other linear form g on E extending f such that g(x) ~ p(x) 
in E that is distinct from h and such that g(x) ~ hex) in S. (Consider the set 0: of pairs (V', F) 
where V' is a vector subspace containing V and F a linear form on V' extending f and such that 
F(z) ~ p(z) in V' and further such that there is no other linear form f" on V' with the same 
properties and such that f"(z) ~ F(z) in S II V'. Order 0: and use a) and tho 2 of S, III, § 2.4.) 

7) Let T be a commutative monoid CA, I, § 2.1) carrying a preorder relation x ~ y such that 
if x ~ y then x + z ~ y + z for all z E T. A mapping f of T in R u { - oo} is called additive 
(resp. subadditive, resp. superadditive) if we have 

f(x + y) = f(x) + fey) (resp. f(x + y) ~ f(x) + f(y), resp. f(x + y) ~ f(x) + fey») 

for any x, y in T. 
a) If g is subadditive and increasing in T, then the function hex) = inf g(nx)/n is sub additive 

n>O 

and increasing; we have h ~ g and h(O) = 0 if g(O) ~ O. 
b) Under the same hypotheses suppose that there exist two elements x" X z of T and two 
real numbers ~p ~z such that ~, < g(x,), ~z < g(xz) and g(x, + xz) < ~, + ~z. Let y" 
yz, z, ' Zz be four elements ofT, let n" nz be two integers ~ 0 and let 0:1' O:z be two real numbers 
such that 

n,~, + g(z,) < 0:1' y, ~ nix, + z, 
nz~z + g(zz) < O:z, yz ~ nzxz + Zz . 

Show that then g(n2y, + n,yz) < nzO:, + n,0:2' 
c) Let co be a superadditive function on T such that coCO) = 0, and let Q be an increasing 
sub additive function on T such that co(x) ~ Q(x) in T. Show that there exists an increasing 
additive function f on T such that co(x) ~ f(x) ~ Q(x) in T. (Remark that the set of increasing 
subadditive functions g on T such that co(x) ~ g(x) ~ Q(x) in T is non-empty and inductive 
for the relation ~, and take a minimal element of this set for f; show using a) that 
f(O) = O. To show that there cannot exist pairs of elements of T, (x" xz) such that 
f(x, + x 2) < f(x,) + f(x z) remark that if ~j E R, and hlx) = inf(n~j + fey») where n 
varies in the set of integers ~ 0 and y in the set of elements of T such that x ~ nXj + y, then 
hj is increasing and subadditive in T (j = 1, 2), h/x) ~ ~j and h/x) ~ f(x) for all x E T. 
Then use the definition of f and part b) to obtain a contradiction.) 

~ * 8) a) Let K be a non-discrete valued division ring of which the absolute value is an 
ultrametric, non linearly compact (cf CA, III, § 2, exerc. 15); then there exists a well ordered set I 
of numbers > 0 and a family (B(P»)PEI of closed balls in K such that the relation P < p'implies 
B(p) c B(p'), that B(p) has radius p and that the intersection of the B(p) is empty (CA, VI, § 5, 
exerc. 5). For every x E K, there exists pEl such that x rt B(p); show that the number q,(x) = 
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Ix - yl for ayE BCp) depends neither on y E BCp), nor on pEl such that x rt B(p). If pEl is such 
thatxEB(p)then<p(x) ~ p .. Thisbeingso,for(xl,xz)EKZ,p~tll(xl,xz)11 = IXllifx~ = O,and 
II(xl, xz)11 = IXzl <p(X2I XI ) If Xz =1= O. Show that II(x l, xz)IIIS an ultranorm on K (I, p. 26, 
exerc. 12) and show that there does not exist any projection of norm I of K z on K x {O}. 
b) Let K be a complete non-discrete valued division ring of which the absolute value is an 
ultrametric and which is linearly compact. Let E be a vector space of dimension 2 on K with 
an ultranorm and let D be a line in E; show that for all points x E E, there exists y E D such 
that d(x, D) = d(x, y) = II x - y II (note that the intersection of D and of a ball of centre x 
is a ball in D). 
c) Deduce from a) and b) that for a complete non-discrete valued division ring K, of which the 
absolute value is an ultrametric, the following properties are equivalent: 

a) K is linearly compact. 
~) For every ultranormed vector space E on K, for every vector subspace F of E and every 

continuous linear form I on F there exists a continuous linear form g on E that extends I and 
is such that Ilg II = II I II. (Reduce to the case where E is of dimension 2 and use b).) * 

§ 4 

1) Let E be a vector space and A a convex symmetric convex subset of E. Let :T, :T' be two 
locally convex topologies on E and OU, OU' be the uniform structures defined by :T, :T' on E. 
In order that the uniform structure induced on A by OU' should be finer than that induced by OU, 
it is necessary and sufficient that every neighbourhood of 0 for the topology induced on A by:T 
should be a neighbourhood of 0 for the topology induced on A by :T '. 

2) a) Give an example of a non-compact closed set in R2, whose convex envelope is not closed. 
b) Show that, in Rn, the convex envelope of a compact set is compact (cf II, p. 66, exerc. 9, a»). 

-If 3) Let I be the compact interval [0, I] ofR and F be the vector space '(5'(I, R) of continuous 
real valued functions defined in I. Let E be the product space RF; for all a E I, let Ca be the 
element of E such that ca(f) = I(a) for all I E F. 
a) Show that, when x varies in I, the set K formed by the Cx is compact in E. 

b) Let A be an element of E such that A(f) = f I(t) dt for all IE F (Lebesgue measure). 

Show that, in E, A belongs to the closure of the convex envelope of K but does not belong to 
this convex envelope (cf FVR, II, p. 7, prop. 5). 

4) With the notations ofIL p. 72, exerc. I suppose also that the space E is locally convex. 
a) There exists a positive continuous linear form gin E that extends 1, if and only if I is bounded 
below in M n (W + P) for at least one neighbourhood W of 0 in E. 
b) Given a point x E E, there exists a positive continuous linear form g in E such that g(x) = I, 
if, and only if, - x rt p. 

5) a) Let E be an infinite dimensional normed space and :T be its topology. Show that there 
exists on E a normed space topology :T' that is strictly finer than that of:T and a normed space 
topology:T n that is strictly coarser than that of:T (define the neighbourhoods of 0 for these 
topologies, using a basis of E put in the form (aa,n) where a varies in an infinite set of indices A 
and n in the set of integers;;. 0 and where Ilaa,nll = 1 for the given norm on E). 
b) Let p be the norm defining the topology :T'. Show that, if E is complete for the topology 
:T, then p cannot be lower semi-continuous in E for the topology :T (use Baire's tho cf III, 
p. 25, corollary). Deduce that the convex set A defined by the relation p(x) < 1 does not 
contain any interior point for:T even though all its points are internal. 
c) Deduce from b), that, if E is complete for the topology :T, then there exists in E convex 
sets which are not closed for :T, of which the intersection with every linear variety of finite 
dimension is closed for:T (d II, p. 67, exerc. 12). 
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6) Let E be a vector space with its finest locally convex topology. 
a) Show that every vector subspace of E is closed, and that, if M, N are two subspaces that 
are vectorial complements in E, then E is the direct topological sum of M and N. If (e)tEI is a 
basis for E, then E is the direct topological sum of the subspaces Ret. 
b) Let F be a locally convex space whose topology is also the finest locally convex topology. 
Show that every linear mapping of E in F is a strict morphism. 

7) a) Let A be a convex set with at least one interior point in a topological vector space E. 
Show that the set of internal points of A is identical with the interior of A (cf exerc. 5, b». 
b) Show that in the normed space E = [1 (N), the convex cone P defined in II, p. 66, exerc. II , b), 
generates E but does not contain any internal point. 

8) Let E be a vector space with an enumerable basis and with the finest locally convex topology. 
Show that, if A is a set in E whose intersection with every vector subspace of finite dimension 
is closed in E, than A is closed in E (et: exerc. 5, e». 
~ 9) Let E and F be two vector spaces each with its finest locally convex topology. 
a) Show that ifE and F each have an enumerable basis then every bilinear mapping ofE x F 
in a locally convex space G is continuous (use Du Bois-Reymond's tho FVR, V, p. 53, exerc. 8»). 
b) If one ofthe spaces E, F has a basis with cardinal equal to that of the continuum. show that 
there exists a non-continuous bilinear form in E x F. (Reduce to the case where E = R(N), 
F = RN, so that F can be identified with E* and the bilinear forms on E x F correspond 
bijectively with the linear mappings of E* in itself; then consider the identity mapping of E*, 
and note that in RN, a compact set for the product topology cannot be absorbent.) 

10) Let (En) be an infinite sequence of locally convex spaces and let E be the topological direct 
sum of the family (EJ Show that the topology of E is identical with the topology :70 defined 
in I, p. 24, exerc. 14. 

II) Let I be an infinite non-enumerable set. On the vector space E = R(I), show that the finest 
locally convex topology is distinct from the topology :70 defined in I, p. 24, exerc. 14; for this 
prove that the set of the x = (~) E E such that II ~t I < I, is open in :7 but not in :70, 

tEl 
12) Let E be a vector space with an enumerable basis (en)' Let V be the balanced convex 
envelope of the set of the en and let W be the balanced convex envelope of the set of points 

an = en + (n - I) e1 (n ~ I). 

Let :71 (resp. :72) be the locally convex topology on E for which a fundamental system of 
neighbourhoods of 0 is formed by the A V (resp. A W) for A > O. Show that :71 and :72 are 
Hausdorff, but that the lower bound of :71 and :72 in the set oflocally convex topologies on E 
is not Hausdortf(cf II, p. 80, exerc. 26). 

13) WithLhe hypotheses of II, § 6, show that E is complete for topology:7 which is the inductive 
limit of the :7n , ifand only if, for each integer n and every Cauchy filter \Y on En for the topology 
induced by :7, there exists p ~ n such that \Y is convergent in Ep for the topology :7p • 

14) Let E be the strict inductive limit of an increasing sequence of locally convex spaces En 
(II, p. 33). Show that the topology of E is the finest of the topologies compatible with the vector 
space structure ofE, whether locally convex or not, and inducing on En a coarser topology than 
the given topology :7n. (Let Vo be a neighbourhood of 0 for such a topology :7 and (Vn)n ;'0' a 
sequence of neighbourhoods of 0 for:7 such that Vn+ 1 + Vn+ 1 C Vn for all n ~ 0; for all 
n ~ I, consider, in En' a convex neighbourhood Wn of 0 that is contained in En n Vn, and 
take the convex envelope of the union of the Wn in E.) 

15) Let I be an infinite non-enumerable set. Let \y(I) be the family of finite subsets of 1 and E 
the direct sum space R(I). For every J E \y(I), let FJ be the subspace R J of E, the product of the 
factors whose indices belong to J, with the product topology; let gJ be the canonical injection 
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of FJ in E. Show that there exists a topology :Yo on E that is compatible with the vector space 
structure of E, which make the gJ continuous and which is strictly finer than the finest locally 
convex topology :Y which makes the 9 J continuous. {Note that the set V of the x = (~J'EI 
in E such that I 1~,11/2 ~ I is a neighbourhood of 0 for a topology compatible with the vector 

lEI 
space structure of E, not containing any absorbent, symmetric, convex set.) 

16) a) Let E be a vector space with an enumerable basis. Show that the finest locally convex 
topology on E is the finest of the topologies on E (compatible or not with the vector space 
structure of E) which induces the canonical topology on every finite dimensional subspace 
of E. 
b) Let Eo be an infinite dimensional Banach space. Let E be the vector space that is the direct 
sum of Eo ofR(N) and let Ep be the subspace ofE that is the direct sum of Eo and of RP (identified 
as the product of the first p factors of R(N) ; we give to Ep the product topology of those of its 
factor, so that the topology ofEp is induced by that ofEp+ l' Show that on E the inductive limit 
topology of those of the Ep is not the finest of the topologies (compatible or not with the vector­
space structure of E) which induces on each Ep a coarser topology than that of Ep. We can 
proceed as follows : 

Ct.) Let q be a norm on Eo which defines a topology strictly coarser than that of Eo (II. p. 74, 
exerc. 5). For every I: > 0 define a mapping 1. of Eo in R+ by the relation 1.(x) = sup( q(x), I: --, II xii). 
Show that 1. is continuous and > 0 in Eo and that inf 1.(x) = o. 

Ilx II~' 
~) Let U be the subset of E formed by the (x, (tn)) such that tn < j;/n(x) for all n. Show that 

U n Ep is open in Ep for all p. 
y) Show that if V c U is an absorbent convex set, then V n Eo cannot contain any ball 

with centre 0 in Eo. 

17) For a subset A of a commutative group G, written additively, and for each n > 0 denote 
n n 

the set of elements of the form I xi' where Xi E A for all i by + A. We say that the set A 
i= 1 

n 

of G is convex if, for every integer n > 0 the relation nx E + A implies x EA. 
a) Show that if a commutative topological group G (written additively) is isomorphic to 
a subgroup of the additive group of a locally convex vector space (with the induced topology) 
then there exists a fundamental system of symmetric convex neighbourhoods of 0 in G. 
b) Conversely, let G be a Hausdorff topological commutative group (written additively) in 
which there exists a fundamental system, ~, of symmetric convex neighbourhoods of O. Show 
that G is without torsion, and, hence, can be considered (algebraically) as a subgroup of the 
additive group of a vector space on the field Q (A, II, § 7. 10, cor. I to prop. 26). For every set 
V E m, let V be the set of elements rx where x E V and r varies in the set of rational numbers 
such that 0 ~ r ~ 1; show that V is symmetric and convex (in the sense defined above). 
Deduce, further, that if there is no open subgroup of G distinct from G itself, then the sets V 
form a fundamental system of neighbourhoods of 0 for a topology compatible with the vector 
space structure of E on Q (Q being given its usual topology); conclude that in this case G is 
isomorphic to a subgroup of the additive group of a Hausdorff locally convex space. 
c) Let G be the group R x R ordered lexicographically (A, VI, p. 7); consider the Hausdorff 
topology :Yo(G) on G that is compatible with its group structure (GT, IV, § I, exerc. I). Show 
that for this topology there exists a fundamental system of symmetric convex neighbourhoods 
of 0, but that G is not isomorphic to any subgroup of the additive group of a Hausdorff topo­
logical vector space over R. 

§ 5 

I) a) Let E be a vector space. We say that a pointed convex cone C (of vertex 0) in E is maximal 
if C is a maximal element of the set of convex pointed cones of vertex 0 and oft E, ordered by 
inclusion. Show that a pointed convex cone C is maximal if, and only if, it is a closed half-space 
defined by a hyperplane which passes through O. To establish this result, prove successively the 
following properties of a maximal pointed convex cone C; 
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0:) We have C u (- C) = E (argue by obtaining a contradiction). 
~) If z is a non-internal (II, p. 26) point of C then - Z E C (same method). Deduce that C con­

tains internal points. 
y) The largest vector subspace H = C n (- C) contained in C is a hyperplane. (Passing to 

the quotient space F = EjH, this reduces to demonstrating, using ~) that if all the points of C 
other than the vertex are internal, then E is necessarily of dimension 1.) 
b) Give an example of a maximal non-pointed convex cone (in the set of non-pointed convex 
cones of vertex 0) which has no internal point (ef. II, p. 65, exerc. 5). 

2) Let N be a hyperplane in a vector subspace M of a vector space E and let A be a convex 
set in E, such that all the points of A n M are on the same side of N and which also possesses 
the following property; for any y =F 0 in E, there exists x E A n M such that x + Ay E A 
for all A such that IAI is sufficiently small. Show that there exists then, a hyperplane H ofE such 
that all the points of A are on the same side of H and such that H n M = N. (Reduce to the 
case N = {O}; if a =F 0 belongs to A n M, consider the set U of pointed convex cones with 
vertex 0 containing A and not containing - a; show that there exists a maximal element C 
of U and that C is a maximal pointed convex cone (exerc. 1»). Deduce a new proof of the Hahn­
Banach theorem. 

3) Let A be a convex set in a topological vector space E and Xo be a point of E. Then, there 
exists a closed hyperplane H, containing x o, and such that all the points of A lie on the same 
side of H if and only if there exists a non-pointed convex cone C with vertex x o, which contains 
at least one interior point and does not meet A. (F or an example of a convex set A =F E which 
is not contained in any half-space defined by a hyperplane, see II, p. 65, exerc. 5.) 

.,-r 4) Let E be a normed space and A a complete convex set for the uniform structure induced by 
that of E. 
a) Let x' be a continuous linear form on E that is bounded in A. Consider a number k > 0 
and the closed convex cone P in E, with vertex 0 and formed by the x E E such that 
Ilxll <:;; k < x, x' ); it is pointed and proper. Show that for the order on E for which P is the set 
of elements ~ 0, the set A is inductive (use the fact that the restriction of x' to A is increasing 
and bounded). 
b) Deduce from a) that the set of points of the frontier F of A which belong to a support hyper­
plane of A is dense in F (Bishop-Phelps th.). (For each point Z E F, consider a point y E C A 
arbitrarily close to z, and separate y strictly from A by a closed hyperplane of equation 
<x, x') = 0:, with Ilx'll = 1 and use a) with k > 1, also exerc. 3 above.) 

5) Let A be a closed convex set in R" and Xo be a point of C A; denote the euclidean distance 
in R" by d. 
a) Show, without using tho I of II, p. 36, that there exists one and only one point x E A such 
that d(xo, x) = d(xo, A), and that the hyperplane orthogonal to the line joining Xo and x, 
and passing through x is a support hyperplane of A. 
b) Deduce from a) a new proof of tho I of II, p. 36 when the space E is finite dimensional. 
(Reduce to the case when M is a frontier point Xo of A ; note that the lower bound of the distance 
of Xo from support hyperplanes of A, is zero, and use the compactness of S" - 1') 

~ 6) Let A be a closed set in R" with the following properties; for every x E R", there exists 
one and only one point YEA such that d(x, y) = d(x, A), where d is the euclidean distance. 
Show that A is convex. (Argue by reductio ad absurdum, considering a closed segment with 
end points a, b in A containing a point c E C A ; there is a closed ball B of centre c contained 
in C A; consider the set m of closed balls S which contain B and whose interiors do not meet 
A; show that the radii of these balls is bounded above, and deduce that there exists one of 
these balls So whose radius p is the largest possible. Then get a contradiction by proving that 
So can only meet A in a single point, and that this implies the existence in m of a ball 
of radius> p.) 

7) In a Hausdorff locally convex space E, let A be a complete, convex set and let B be a pre­
compact closed convex set such that A n B = 0. Show that there exists a closed hyperplane 
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separating A from B (argue in the completion E). Consider the case when A is finite dimen­
sional. 

8) In a Hausdorff locally convex space, let A and B be two closed convex sets, without common 
points, such that CA n CB = { ° } (II, p. 67, exerc. 14), and such that B is locally compact. Show 
that there exists a closed hyperplane separating A from B (er II, p. 67, exerc. 16). Similarly, if 
A and B are two closed convex cones of vertex 0, such that A n B = {o} and B is locally 
compact, then there exists a closed hyperplane passing through ° and separating A from B 
(use lemma 1 of II, p. 39). 

9) Deduce from exerc. 8 that if V is a finite dimensional vector subspace of E and C is a closed 
convex cone of vertex ° in E such that C n V = {O}, then there exists a support hyperplane 
of C that contains V (use lemma 1 of II, p. 39). 

10) In the normed space E = 11(N) of summable sequences of real numbers x = (~")nEN' 
let D be the line defined by the relations ~n = ° for n :;;, 1. Show that there exist two increasing 
sequences (cxn), (~,,) of real numbers > ° such that the convex set A defined by the inequalities 
~o :;;, Icx"~,, - ~"I for n :;;, 1 is closed, non-bounded does not meet D and that there is no closed 
hyperplane separating A from D (choose cxn and ~" so that A - D is everywhere dense). 

* 11) a) Let E be a Hilbert space and F an everywhere dense subspace of the dual E' of E 
that is distinct from E'; the unit ball B of E is compact for the weak topology cr(E, F), and 
there exists a point a of the unit sphere through which passes no closed (in cr(E, F)) support 
hyperplane of B. 
b) Give E the topology cr(E, F) and consider, in the product space G = E x R the set A of 
pairs (x, 1:;) such that Ilxll < 1, I:; :;;, Ilxll/(1 - Ilxll). Show that A is closed and locally compact, 
but that if D is the line with equation x = a in G then DnA = 0 and there does not exist 
any closed hyperplane in G separating A from D. 
e) Show that, when we give E the topology cr(E, F), there exists a continuous affine real valued 
function in the subspace B of E, that is not the restriction to B of a continuous affine function 
in E. * 

12) Consider in R 3 , the closed convex cone C defined by the relations ~1 :;;, 0, ~2 :;;, 0, 
~~ :(; ~1 ~2' Show that the line D of equations ~1 = 0, ~3 = 1 does not meet C, but that there 
is no plane through the origin ° containing D and not meeting C-{O}. 

13) Let A and B be two closed convex sets in the space R", such that if V and W are affine 
linear varieties generated by A and B respectively, then no point of A n B is both interior 
to A relative to V and interior to B relative to W. Show that there exists a hyperplane separating 
A from B. (By taking quotients, reduce it to the case where either one of the varieties V, W is 
contained in the other or V and Ware complementary vector subspaces in E.) 

14) Let A be a parabolic closed convex set (II, p. 67, exerc. 17) not containing a line. Show that 
if B is a closed convex set not meeting A then there exists a hyperplane in Rn that separates 
A strictly from B (if d is the Euclidean distance prove that d(A, B) > 0) (ef exerc. 12.) 

15) Let S, T two finite sets in R" with no common points, and such that Card(S u T) :;;, n + 2. 
In order that there exists a hyperplane separating S strictly from T, it is necessary and suffi­
cient that for every finite set F c S u T of n + 2 points, there exists a hyperplane separating 
F n S strictly from F n T (use Helly's tho (II, p. 68, exerc. 21)). Show that in this statement we 
cannot replace the number n + 2 by n + 1, and that the statement does not extend to the 
case where Sand T are infinite. 

16) Let A be a compact set with interior points in R". Show that if each frontier point of A 
lies on at least one support hyperplane of A, then A is convex. (Obtain a contradiction, showing 
that if x and y are two points of A such that the segment with end points x, y is not contained 
in A, and if z is an interior point of A not situated on this segment, then there exists a frontier 
point of A, distinct from x and y in the triangle with vertices x, y, z.) 
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17) In R", let A be a symmetric convex set of which 0 is an interior point and of which the 
frontier does not contain any genuine segment. Let H be a homogeneous hyperplane and D 
a line complementary to H. Show that there exists a point a E H II A such that at a there is 
a hyperplane of support to A that is parallel to D. 

18) In a topological vector space E, let Ai (1 :S; i :S; n) be n open non-empty convex sets. 
a) Show that if the union of the A; is distinct from E, then every point x E E not belonging 
to any of the Ai' belongs to a closed linear variety of codimension n, that contains x and does 
not meet any of the A; (argue by induction on n). 
b) If the intersection of the Ai is empty, show that there exists, in E, a closed linear variety of 
codimension n - 1 that does not meet any of the Ai (same method). 

19) Let C, C be two closed convex sets in a Hausdorff topological vector space E that are 
strictly separated by a closed hyperplane H. Let H' be a closed hyperplane of support to 
both C and C such that C and C lie on the same side of H'. Show that H' is the only hyper­
plane with these properties which contains H II H' and that H II H' is a support hyperplane 
of the trace P on H of the convex envelope of cue. Conversely, if C and C are compact, 
then for every support hyperplane D of P in H, there exists a hyperplane H' that supports both 
C and C', which contains D and such that C and C lie on the same side of H'. 

~ 20) Let A, B be two disjoint closed convex sets in a Hausdorff locally convex space E and 
let H be a closed hyperplane separating A from B; suppose that A II H =1= 0 and that the 
intersection of A II H and of every line is compact. Show that, if A or B is locally compact, 
then there exists a neighbourhood V of 0 in E such that (A + V) II B is empty. (Consider 
two cases according to whether A or B is locally compact; in the first case, note that there 
exists a hyperplane H' parallel to H such that, if S is the set of points between Hand H', then 
A II S is compact. In the second case, suppose for example that 0 E B II H; for every neigh­
bourhood V of 0 in E, consider the set (A + V) II B and consider successively the case where 
this set is relatively compact for at least one V or the case when this is not so, as in exerc. 16 
of II, p. 67.) 

~ 21) a) In R" let ai (1 :S; i :S; n + 1) be n + 1 points that are afTinely independent. Denote 
the convex envelope of the ai by S and the convex envelope of the ai with i =1= k by Fk 
for 1 :S; k :S; n + 1. For each k let Ck be a compact convex set containing F k' and suppose that 

"+1 
S is contained in the union of the C k ; show then that n C k =1= 0. (Argue by reductio ad 

k~1 

absurdum and induction on n, considering the intersection C~+ 1 of the Ci with indices i :S; n 
and supposing that C" + 1 II C~ + 1 = 0, which would allow the strict separation of the two 
convex sets by a hyperplane.) 
b) Let X be a compact convex set in a Hausdorff topological vector space E, and (C)J'EL a 
family of compact convex sets contained in X, such that for every set H c L having n (resp. m) 
elements, the intersection (resp. the union) of the C, with indices A E H is not empty (resp. is 
equal to X). Show that if m :S; n + 1 the intersection n C, is not empty. (This is effectively 

proving that for any finite set H of p :;, m indices of L, we have n C, =1= 0. Argue by induc-

tion on p assuming that the result has been proved for p - 1 indices. Argue then by reductio 
ad absurdum, considering for each index i E H a point a i E n C,' and showing by the 

aid of Helly's tho (II, p. 68, exerc. 21) that the a; generate a linear variety of dimension p - I. 
then finally apply a).) 

~ 22) In Rn let (CJl <S:i<S:", be a finite family of closed convex cones with vertex 0, such that 
the sum of any n of them is distinct from R". Show that there exists a hyperplane H, passing 
through 0, such that, for any index i no pair of points of Ci are strictly separated by H. (Dis­
tinguish two cases : 
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a) Either there exists a number r < nand r indices, say, 1, 2, ... , r such that Ci for i ~ r 
generates a cone which contains a vector subspace V of dimension ): r. Argue by induction 
on n, projecting on the orthogonal to V. 

~) Or, for all r < n, any r of the C i generate a cone C such that the maximal vector subspace 
C n (- C) contained in C is of dimension < r. Consider then a set of the cones C i , maximal 
with respect to being contained in a half-space; there are at least 11 cones in a maximal set. Let 
r be the cone generated by the union of the cones belonging to this maximal set. If Cj is a cone 
which does not belong to the maximal set considered, show that C i C - r. For this, argue 
by reductio ad absurdum, showing that in the contrary case there exists a frontier point of 
- r (relative to the vector subspace generated by r) that is interior to C. (relative to the vector 
subspace generated by C). Write such a point as the sum of the least dumber s of vectors, of 
which each belongs to a cone - C i , among those C i used in defining r ; then s ~ n - 1. Prove 
finally that these cones and C. generate a convex cone containing an s + 1 dimensional vector 
subspace, contradicting the Iiypothesis; for this use exerc. 4 of II, p. 65.) 

23) Let E be a topological vector space, and let /7' be the locally convex topology on E that 
is the finest of all those that are coarser than the given topology flo on E. IfF is a locally convex 
space, then the continuous linear mappings of E in F are the same for flo as for fl. There 
exists a continuous linear form on E that is distinct from the null form if, and only if, there 
exists a neighbourhood of 0 for .'7n whose convex envelope is not everywhere dense (for flo) 
(cf I, p. 25, exerc. 4). 

24) Let E be an infinite dimensional, metrisable, locally convex space. 
a) Show that there exists a sequence (an) of points ofE tending to 0 and a decreasing sequence 
(Ln), of closed vector subspaces of E, such that Ln is of codimension n in E and that, for all n, 
the point an belongs to Ln - Ln + 1 • 

b) Suppose further that E is complete. Show that we can then find sequences (an) and (Ln) 
verifying the conditions a), and such that in addition, for every bounded sequence of real 
number (An), the series, whose general term is Anan, is commutatively convergent in E, and that 
the linear mapping (~n) H L ~nan of the Banach space ~ (N) in E is injective and continuous. 

c) Deduce from b) that when E is an infinite dimensional Frechet space then every basis of 
E on R has cardinal at least equal to 2Card(N) (el I, p. 22, exerc. 5). 

If there exists an enumerable set that is dense in E, then every basis of E has the cardinal 
of the continuum. 

25) Let E be an infinite dimensional Frechet space of enumerable type (therefore having an 
enumerable everywhere dense subset) (cr I, p. 25, exerc. 1). Show that there exists an everywhere 
dense hyperplane H of E which meets every closed, infinite dimensional linear variety of E. 
(Use the existence of a basis, having the cardinal of the continuum, in each of the direction 
subspaces of these varieties (exerc. 24, c» and the fact that the set of closed, infinite dimensional, 
linear varieties of E also has the cardinal of the continuum (GT, IX, § 5, exerc. 17); then apply 
a method of construction of a linear form on E following from S, III, § 6, exerc. 24.) The hyper­
nlane H does not contain any infinite dimensional, closed, vector subspace. 

'IT 26) Let E be an infinite dimensional Frechet space of enumerable type. 
a) Show that there exists a sequence (a.) of linearly independent elements of E such that 
each sequence (a 2.) and (a 2n + 1) is total (use exerc. 24, c». 
b) Let F be the vector subspace of E generated by the a2n + 1 (n EN). For every n > 0 let Mn 
be the subspace generated by the a2k with k ~ n. For each n, let <Pn be the restriction to F of 
the canonical homomorphism of E on ElM., and let fl. be the topology on F which is the 
inverse image under <Pn of the quotient topology, on ElM •. Show that each of the topolo­
gies fI" on F is a Hausdorff locally convex topology, but that the lower bound of the fI" in the 
set of locally convex topologies on F is the coarsest topology on F. 
* c) Take E to be a Hilbert space; show that we can choose the sequence (a,) so that if G 
is the closed vector subspace generated by the a4 .+ 1, then G has infinite codimension and 
so that the images of the a2• and the a4n + 3 in E/G are still linearly independent. Write G. for 
the subspace of E that is the sum of G and of the subspace generated by the a4 k+ 3 with k ~ n, 
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and give to Gn the topology which is the inverse image under the canonical mapping res­
tricted to Gn, of the quotient topology on E/Mn' Show that the sequence (Gn) is an inductive 
system of topological vector spaces such that Gn is closed in Gn + 1 for the topology of Gn + 10 

but that Gn is not closed in the inductive limit space of this sequence. * 

~ 27) Let E, F be two Hausdorff topological vector spaces, and X (resp. Y) a compact convex 
set in E (resp. F). Let f be a real valued function defined in X x Y with the following pro­
perties : 

(i) For all x E X, the mapping y H f(x, y) is lower semi-continuous in Y, and for all c E R, 
the set of the y E Y such that f(x, y) ~ c is convex. 

(ii) For all y E Y, the mapping x H f(x, y) is upper semi-continuous in X, and for all 
c E R, the set of the x E X such that f(x, y) ~ c is convex. 

Show that, in these conditions, we have 

sup(inf f(x, y)) = inf(sup f(x, y)) . 
XEX YEY yeY xeX 

(Argue by reductio ad absurdum, supposing that there exists a number c such that 

sup(inf f(x, y)) < c < inf(sup f(x, y)) . 
xeX yeY yeY xeX 

For all x E X (resp. all y E Y) let Ax be the set of y E Y such that f(x, y) > C (resp. B the set of 
the x E X such that f(x, y) < c), which is open in Y (resp. in X); the Ax (resp. the B) form a 
covering ofY (resp. X) when x varies in X (resp. y varies in Y). Show that there exist two finite 
sets Xo c X, Yo c Y such that: 10 for all y belonging to the convex envelope Bo of Yo, there 
exists x E Xo such that f(x, y) > c, and Xo is minimal for this property; 2ofor all x belonging 
to the convex envelope Ao of Xo, there exists y E Yo such that f(x, y) < c, and Yo is minimal 
for this property. Then for all y E Yo, let Cy be the set of x E Ao such that f(x, y) ~ c; using 
exerc. 21, a) of II, p. 79, show that the intersection of the Cy for y E Yo is not empty. Proceed 
in the same way in Bo and obtain a contradiction.) 

~ 28) Let X be a compact convex subset of E a Hausdorff locally convex space, and let f 
be an upper semi-continuous convex function in X. Show that the set L of continuous convex 
functions g in X such that g(x) > f(x) for all x E X is decreasing directed and that its lower 
envelope is equal to f. (Let u, v be elements of L. To construct an element of L which is less 
than u and v, use reasoning analogous to that of prop. 6, II, p. 40. Interpret the set K1 analogous 
to the set K in this argument as the set of points situated above the graph of a lower semi conti­
nuous function that is less than u and v and strictly larger than f at every point; apply prop. 5 
of II, p. 39 and Dini's tho to this function. To show that the lower envelope of Lis f, note that 
f is bounded above by a constant b; (x, t) being a point of E x R situated above the graph 
of f, let K' be the convex envelope of {(x, t)} u (X' x {b}), where X' is a convenient compact 
neighbourhood of x in X; argue with K' as above for Kl') 

29) Let X be a compact convex set in a Hausdorff locally convex space E. Let u be a lower 
semi-continuous convex function in X and v an upper semi-continuous concave function in 
X such that u(x) > vex) for all x E X. Then there exists an affine linear function f that is 
continuous in E and such that vex) < f(x) < u(x) for all x E X. 

30) Let X be a compact convex set of a Hausdorff locally convex space E. Show that the set 
of lower semi-continuous convex functions in X is a lattice. 

§ 6 

I) Let F, G be two vector spaces in duality, such that cr(F, G) is Hausdorff. Show that if:Y is a 
Hausdorff topology compatible with the vector space structure of F and coarser than cr(F, G) 
(but not necessarily locally convex a priori), then :Y = cr(F, G 1)' where G 1 is a vector sub-
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space of G, dense in the topology cr(G, F). (Consider on F the locally convex topology :Y[ 
in which a fundamental system of neighbourhoods of 0 is formed by the closed, convex, balanced 
sets in :Y which are neighbourhoods of 0 for cr(F, G).) Deduce that if ffo is a Hausdorff locally 
convex topology on a vector space E, that is minimal in the set of Hausdorff locally convex 
topologies on E (II, p. 85, exerc. 13) it is also minimal in the set of topologies (locally convex 
or not) that are Hausdorff and compatible with the vector space structure of E. 

2) In R", let (C)! "i"m be a family of m ~ n + 1 convex cones with vertex 0; show that if, 
for any n + I of these cones there exists a hyperplane H through 0 and such that the cones 
lie on the same side ofH, then there exists a hyperplane Ho such that all the cones Ci (1 ~ i ~ m) 
lie on the same side of Ho (ef II, p. 68, exerc. 21, a». 

3) In R" let (D;)! "i"m be a family of m ~ 2n closed half-spaces determined by hyperplanes 
passing through O. Show that if, for any 2n of these half spaces, there exists a point i= 0 in their 
intersection, then there exists a point i= 0 in the intersection of all the Di (1 ~ i ~ m) (ef II, 
p. 66, exerc. 10). 

4) Let S, T be two finite sets in R", without common points, such that their union contains 
at least 2n + 2 points. Then there exists a hyperplane separating S from T if, and only if, for 
every finite set F c S u T of 2n + 2 points, there exists a hyperplane separating FilS from 
F 11 T (use exerc. 3 and the method of II,p. 78, exerc. IS). 

5) Let E be the vector space of quadratic forms on R", which is identified with the vector 
subspace of symmetric square matrices in the space M"(R) of square matrices of order n on R. 
We endow Mn(R) with the scalar product Tr('X. Y), which enables us to identify it with its 
dual and similarly for E. 
a) Let PeE be the set of quadratic forms for which the matrix has all elements ~ 0, and let 
SeE be the set of positive quadratic forms in R". Show that we have P = po and S = So. 

m 

b) Let B be the set of quadratic forms on R" that can be written in the form I x? for same m, 
j~ ! 

where xi is a linear form that takes values ~ 0 for all x = (x)! "i"n of coordinates Xi all ~ 0; 
let C be the set of quadratic forms that are ~ 0 for all the vectors x = (x,) with coordinates 
Xi all ~ O. Show that B = Co and C = BO (prove that B is closed, showing that every element 

m 

of B can be written in the form I Xi2, with xi positive for all x with coordinates ~ 0, and 
j~ ! 

m ~ 2"). 

6) Let F, G be two vector spaces in separating duality, and A a weakly compact convex set 
in F. Let C be a convex cone with vertex 0, that is weakly closed in G. Suppose that, for all 
y E C, there exists x E A such that < x, y) ~ O. Show that there exists Xo E A such that 
<xo, y) ~ 0 for all y E C (apply prop. 4 of II, p. 38, to A and CO). 

4[ 7) a) Let F, G be two vector spaces in separating duality and C a weakly closed convex 
cone in F. Let M be a finite dimensional vector subspace of G. Show that, either there exists 
Yo E C such that Yo E MO and Yo i= 0, or there exists Zo E M such that Zo E Co and Zo i= 0 
(argue by induction on the dimension of M). If C does not contain any line and if the two pre­
ceding properties are simultaneously satisfied, show that Zo cannot be an internal point of Co. 
b) Let the two matrices (ai), (bij) with real entries in n rows and m columns, be such that 
aij > 0 for every pair (i, j). show that there is a unique value of A E R such that there are two 
vectors x = (x) E Rm, y = (y,) ERn satisfying the relations x i= 0, y i= 0, Xj ~ 0, Yi ~ 0 
for all i, j and finally such that 

m m 

(1) A I QijXj ~ I bijxj for ~i~n 
j~ ! j~ ! 

n " (2) A I aijYi ~ I bijYi for ~j ~ m. 
i= 1 i= 1 
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(Putting ciJ = Aa'J - b,j for I ~ i ~ n, I ~ j ~ m, and cn+,.j = o'J (Kronecker's index) 
for I ~ i ~ m show that the problem reduces to finding a vector x E Rm and a vector 
z = (z) E Rn+m which are non null and satisfy the relations 

m 
(3) I CijXj ;;:, 0 for I~i~n+m 

j~ 1 

n+m 
(4) I CijZi = 0 for I ~j ~ m 

i= 1 

and Zi ;;:, 0 for I ~ i ~ n + m. Remark that, if (3) has a solution for one value AD of A, then 
it also has a solution for A ;;:, AD, and that if(4) has a solution for AD, then it also has a solution 
for A ~ AD. Finally use a).) 

.~ 8) Let T be a compact space and L a vector subspace of ~(T ; R), that is of finite dimen­
sion r; give to L the norm induced by that of ~(T; R) and to its dual L * the norm 
Ilx'll = sup <x,x'),sothatifBistheballllxll ~ linL,thenBOistheballllx'll ~ linL*. 

Ilxllo 
a) For all t E T, write e; for the linear form x f-+ x(t) on L. Show that BO is the convex envelope 
of the set of the ± e;, where t varies in T (obtain a contradiction using prop. 4 of II, p. 38). 

r 

Deduce that every linear form x' E L * such that Ilx'll = I we can write x' = I Aie;i' where 
i= 1 

the ti are r points ofT and the Ie; are real numbers such that I IAil = I (ef II, p. 66, exerc. 9, a)). 
i=1 

b) For every y E ~(T; R), there exists a unique x E L such that Ily - xii = dey, L), if and 
only iffor every non null Z E L, there exist at most r - I distinct points ti E T such that z(tJ = 0 
(Haar's th.). (To show that this condition is sufficient, observe first that it is equivalent to 
saying that for r distinct points ti E T (1 ~ i ~ r) the e;i are linearly independent in L*. Now 
argue by assuming the conclusion is false and obtaining a contradiction. If there exist two dis­
tinct points x', x" of L such that Ily - x'il = Ily - x" II = d (y, L) then there exists Xo ELand 
z E L such that, for all sufficiently small real A, we have IIY - (xo + Az)11 = dey, L). Apply the 
last part of a) to the subspace L EB Ry of C(j (T ; R) and to a suitable linear form on this space 
which vanishes in L. To see that the condition is necessary, note that if it is not true, then there 
exist r distinct points ti E T (I ~ i ~ r) such that the e;i are linearly dependent and there exists 
a function z E L that is not null and vanishes at the points t i • If a i (1 ~ i ~ r) are numbers 

not all zero such that f aie;i = 0, consider a function w E ~(T; R) such that Ilwll = I, 
i= 1 

wet,) = sgn(lX,) for I ~ i ~ r, and the function y = w(1 - IPzl) with IPI sufficiently small and 
# 0.) 
c) Suppose that T is a compact interval in R and that L satisfies the condition of Haar's tho ; let 
(t')1 "'.'" + 1 be a strictly increasing sequence of r + I points of T; then there exist r + I real 

1 -...::l-....;;r r + 1 

non zero numbers Ai such that I Aie;i = O. Show that then sgn(AJ sgn(Ai+ I) = - 1 for 
i= 1 

1 ~ i ~ r. (Consider separately the case r = 1 and the case r > 1. In the second case, suppose 
on the contrary, that for some index i ~ r - I, the number Ai is of the same sign as \-1 
or as Ai+ 1 and that Ai-I and Ai + 1 are of opposite signs. If, for example, Ai > 0, take lXi -1 > 0, 
lXi+ 1> 0 such that lXi- 1 Ai - 1 +lXi + 1 Ai+ 1 = 0, then z E L such that Z(t i _ 1) = lXi-I' z(ti+ 1) = a i + 1 

and z(t.) = 0 for j distinct from i-I, i and i + 1. Deduce that z(t,) < 0 and show that this 
contradicts the given hypotheses.) 
d) With the same hypotheses and notations as those of c), suppose that there exists y E ~(T; R) 
and z E L such that yet,) - z(t,) = (- l)ilXi with a i > 0 for I ~ i ~ r + 1. Show that we then 
have dey, L) ;;:, inf ai • (Use a) applied to L EB Ry, and c).) 

e) With the hyp~theses of c) let y E ~(T; R), and z be the unique point of L such that 
Ily - zll = dey, L). Show that there exists a strictly increasing sequence (t,)I';i';r+l in T 
such that 

yet,) - z(t,) = (- l)icll y - zll 



TVS II.84 CONVEX SETS AND LOCALLY CONVEX SPACES §6 

with e = + 1. Conversely if z has this property, then z is the unique point of L such that 
Ily - zll = dey, L). (Use c) and d». Consider the case when T is an interval ofR and when L is 
the set of the rcstrictions to T of polynomials of degree < r (T chebycheffs th.). 

9) Let F 'and G be two vector spaces in separating duality and A be a convex subset of F which 
contains O. For every y E G, writc 

HA(y) = sup(- <x,y»), 
.xEA 

so that 0 ~ HA(y) ~ + 00; we call HA the support function of A. 
a) Show that HA is the gauge of A 0 (II, p. 20). 
b) If A is weakly compact, then, for all y E G, the hyperplane with the equation < x, y) = HA(y) 
is a support hyperplane of A. 
c) HA is finite and continuous for the topology cr(G, F) if, and only if, A is finite-dimensional 
and bounded (in the finite dimensional vector subspace that it generates). 
d) Let Ai (1 ~ i ~ p) be convex sets in F which contain 0 and Ai be real numbers;:. 0 (1 ~ i ~p); 
show that the support function of the convex set A = L AjAj is HA = L AjBA,. If Y EGis 

i i 

such that the intersection C i , of Ai with the hyperplane <x, y) = HA(y), is non-empty for 
1 ~ i ~ p, show that the intersection of A and the hyperplane with equation < x, y) = HA(y) 
is the set L '!ciCj' 

e) Suppos~ that A is locally compact and does not contain any line. Then the set which is the 
union of {O} and the set of y oF 0 such that HA(y) = + 00, HA( - Y) oF +x is the polar cone 
of the asymptotic cone CA (consider the case when A is the convex envelope of {O} and of one 
half-line). 
f) Suppose that F is finite dimensional. Show that, A is parabolic (II. p. 67. exerc. 17) ifand only 
if HA is a continuous mapping of G in R (if there exists a line paralle to a half-line of CA, which 
does not meet A, note that there exists a hyperplane separating this half-line from A). 

10) To each compact convex set A in E = R" containing 0, we make correspond its support 
function HA by the duality between E and E* : HA belonging to the space '6'(E*; R) of conti­
nuous real valued functions in E*. We ascribe to the space '6'(E*; R) the uniform structure of 
compact convergence and, to the set R~(E) of the compact convex sets in E containing 0, the 
uniform structure defined in the exerc. 39 ofII, p. 71. Show that A f--+ HA is an isomorphism of 
R~(E) on a uniform subspace of (&,(E* ; R). 

Deduce that the mapping A f--+ A 0 of the set Ro(E) of compact convex sets in E which contain 
o as an interior point, on the set S~o(E*), is an isomorphism for the uniform structures of these 
two spaces (ef II. p. 71, exerc. 39). 

11) Let F, G be two vector spaces in separating duality. An ultrafilter U on F converges weakly 
to a point Xo if, and only if, Xo belongs to the intersection of all the weakly closed convex sets 
which belong to U (note that if Xo is a point of this intersection that is not a cluster point of U, 
then there exists a closed half-space belonging to U and not containing x o). 

Deduce from this result that, for a sequence of points (xn) of F to be weakly convergent to a 
point a, it is necessary and sufficient that a belongs to all the weakly closed convex envelopes of 
the sets formed by an infinity of the terms of the sequence (use prop. 7 of GT, I, § 6.4). 

12) a) Let E be a vector space and (E')'EA be an increasing directed family of subspaces of E, 
whose union is E; cach Ea is supposed to carry a locally convex topology;!, such that for 
a. ~ ~ the canonical injection Ea -> E~ is continuous. Let:;T be the topology on E, which is the 
inductive limit of the .Y, (II, p. 29, Example II); show that the dual E' of E (for :;T) with the 
topology cr(E', E) can be canonically identified with the projective limit of the duals E~, with 
topology cr(E~, E,). 
b) Let (X" <PaP) be a projective system of non-empty sets corresponding to a directed set of 
indices A, such that <P,~ are surjective and that lim X, = 0 (S, III, § 7, exerc. 4). Put F, = R(X,) 
and denote by fop : F p -> F, for a. ~ ~ the li;)ear mapping deduced canonically from <PaP 
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(A, II, ~ 1 .1 L cor. 1). If, we give to each Fa the topology which is the direct sum topology of its 
factors, the dual Ea = F~ of Fa' with the weak topology cr(Ea' Fa)' can be identified with the 
product space RXa, and tf.~ is an isomorphism ofEa on a closed subspace ofE~, having a topo­
logical complement in E~. Show that on E = liw Ea (for the tfa~) the topology which is the 
inductive limit of those of Ea is the coarsest topology (therefore non-Hausdorff) (using a) and 
noting that lim Fa = {O }). 

+-

13) Let E be a vector space. We say that a Hausdorff locally convex topology fT on E is 
minimal (and that E, with fT, is a space of minimal type) if there exists no Hausdorff locally 
convex topology on E, that is strictly coarser than fT (el II, p. 81, exerc. 1). 
a) Let fT be a minimal topology on E, and let E' be the dual ofE (when E has the topology fT) ; 
show that fT = cr(E, E') and E = E'* (note that there cannot be an everywhere dense hyper­
plane in E' for the topology cr(E', E) using the cor. 3 of II, p. 43). Deduce that spaces of mini­
mal type are products of lines. 
b) Show that in a Hausdorff locally convex space F, every subspace E of minimal type has a 
topological complement, and in particular is closed (use a) and the Hahn-Banach tho for 
extending the identity mapping ofE in itself to a mapping ofF in E). 
e) Let u be a continuous linear mapping of a space E of minimal type in a Hausdorff locally 
convex space F. Show that u(E) is closed in F and that u is a strict morphism of E in F (use b) 
and the definition of a space of minimal type). 
d) Let F be a Hausdorff locally convex space and M be a closed vector subspace of F. Show 
that, if there exists a complement N of M in F that is a subspace of minimal type, then N is 
a topological complement of M in F (use e)). 
e) Let M be a subspace of minimal type in a Hausdorff locally convex space F; show that, 
for every closed vector subspace N of F the sum M + N is closed in F (consider the quotient 
space FIN and use e)). If further N is of minimal type, then M + N is of minimal type. 

14) Let E be a Hausdorff locally convex space and F a locally convex space of minimal type 
(exerc. 13). 
a) Show that if M is a closed vector subspace of the product space E x F, its projection on E 
is closed in E (use exerc. 13, e)). 
b) Let u be a linear mapping of E in F. Show that if the graph of u is closed in E x F, then u 
is continuous (use a)). 
e) Suppose that, in E, every closed vector subspace has a topological complement (ef. V, p. 13). 
Show that, in E x F, every closed vector subspace M has a topological complement. (If N 1 is 
the projection of M on E and N 2 a topological complement of N 1 in E, if PI = M n F, and 
P 2 is a topological complement of PI in F, show that N 2 + P 2 is a topological complement of 
M in E x F, using b).) 

* 15) Let E, F be two Hausdorfflocally convex space. We say that a continuous linear mapping 
u: E -+ F is linearly proper if, for every Hausdorff locally convex space G and every closed 
vector subspace V of E x G the image of V by u x IG: E x G -+ F x G is closed. Show that 
this condition is equivalent to the following: u- 1(O) is a subspace of minimal type of E and 
for every closed vector subspace W of E, the set u(W) is closed in F. (To show that the first 
condition implies the second, consider the mapping v : E -+ {O} and, giving E the topology 
cr(E, E'), so that E is immersed in E'* with cr(E'*, E'), take the image under the projection 
v x I E" : E x E'* -+ E'* of the closure in E x E'* of the diagonal ~ of E x E. To show that 
the second condition implies the first, show that it implies that, for the topologies cr(E, E') and 
cr(F, F'), the mapping u is a strict morphism and use exerc. 13, e).) * 

16) Let F be a product oflines and C a closed convex set in F. 
a) Show that there exists Xo E F, two sets I and J and a topological isomorphism u of F on 
RI x RJ such that u(xo + C) is of the form RI x A, where A is a closed convex set of R~. 
(Note that we have F = G* where F has the topology cr(G*, G); consider the polar Co of 
C in G, the vector subspace ofG generated by Co and a complement of this subspace.) 
b) IfC does not contain any affine line, the mapping (x, y) H X + Y ofC x C in F is proper. 
e) Suppose that C is a cone with vertex 0 and that the uniform structure induced on C by that 
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of F is metrisable. Then if the sets I and J, the point Xo and the mapping u satisfy the conditions 
of a) then I is enumerable and there exists an enumerable subset H of J such that the restriction 
of the canonical projection p : RI x R J ..... RI X RH to u(xo + C) is an isomorphism of the uni­
form subspace u(xo + C) of RI x W on the uniform subspace p(u(xo + C» of RI x RH. 

17) Let E be an infinite dimensional vector space. 
a) Show that there exist hyperplanes in E* that are everywhere dense for the topology cr(E*, E). 
b) If H' is such a hyperplane. show that, in E, the only linear subvarieties oF E that are every­
where dense for the topology cr(E, H') are the hyperplanes. 

'IT 18) a) In a normed space E, let A be a closed convex set oF E; show that the function 
x f-> d(x, C A) is concave in A (use the fact that A is the intersection of closed half-spaces). 
b) Define inductively a sequence of closed convex sets An C Rn in the following manner; 
Al = R+; if Rn+l is identified with R" x R, then An+l is the set of pairs (x, s) such that 

x E An and that 

where Ilxll is the Euclidean norm. Show that An+ I does not have any support hyperplane of 
the form H x R, where H is a hyperplane of Rn and that its asymptotic cone is {O} x R+. 
c) If Pnm is the canonical projection Rm ..... Rn (Rm being identified with Rn x Rm-n) for m ;;, n, 
show that when RN is identified with the projective limit of the projective system (Rn, Pnm) 

the An form a projective system of sets and that A = I~ An is a closed convex set not relatively 
compact in RN , having no closed hyperplane of support and such that CA = {O}. 

19) a) Let A be a closed convex set in E, a product of lines, that is non-compact and such 
that CA = {O} (exerc. 18). Show that if B = A - A and if M is the convex closed envelope 
of Au (- A), then Band M contain lines (use exerc. 16, b) of II, p. 85). 
b) Let At, A2 be two closed convex sets in E such that Ai + A2 is closed and none of At, 
A2, At + A2 contain affine lines. Show that CA, +Az = CAl + CAz (use exerc. 16, b) oflI, p. 85). 
e) Let A be a closed convex set in E that docs not contain any affine line and M 1 , ... , Mn 
closed convex sets contained in A. IfB is the convex envelope ofU M i , show that B = B + I CM; 

i 

and CB = I CM , (same method). 

'IT 20) Let F = RfA), G = R\ where A is any infinite set: suppose that F and G are put in 
separating duality by the bilinear form < x, y) = I x(a) yea) . 

• EA 

a) Let N be an additive subgroup of G; we denote by N* the subgroup of the x E F such that 
< x, y) is an integer for all YEN and by N** the subgroup of the Z E G such that < x, z) is 
an integer for all x E N*. If N is the closure of N for the topology cr(G, F), show that N* is 
closed in F for cr(F, G) and that N** = N (to establish this last point, use GT, VII, ~ 1.3, 
prop. 6, projecting N on the finite dimensional coordinate varieties of G). 
b) Suppose that A = N. Let M be a closed subgroup of F for cr(F, G); show that if V is the 
largest vector subspace contained in M, then M is the topological direct sum of V and of a 
closed subgroup P that is a free Z-module having an enumerable base. (Consider F as the 
union of an increasing sequence (Fn) of finite dimensional vector subspace and apply GT, 
VII, ~ 1.2, tho 2 and ~ I, exerc. 7.) P is discrete (for the topology induced by Ci(F, G», if, and 
only if, P is of finite rank. 
e) Deduce from a) and b) that when A = N, every closed subgroup of G (when G carries the 
product topology Ci(G. F» can be transformed, by an automorphism of the topological 
group G, in a product RI x ZJ, where I and J are two sets of N without common elements. 
d) In the space E = RN, carrying the topology cr(E, E*), show that the subgroup ZN is closed 
and does not contain any line, even though it is not a free Z-module (A, VII, p. 59, exerc. 8); 
the results of b) do not therefore extend when A is not enumerable. 
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1) Let A be a convex set. Then, a point x EO A is extremal in A if, and only if, for any subset 
B of A, the statement x belongs to the convex envelope of B, implies that x EO B. 

2) With the notation ofII, p. 74, exerc. 3, let G be the vector subspace ofE generated by K U {A}. 
Show that, in G, the point A is an extremal point of the closed convex envelope of K, but 
that A does not belong to K (el II, p. 25, corollary). 

~ 3) Let A be a convex set in a vector space E, and let x be a point of A. We call the set formed 
by x, and the y =1= x in A such that the line passing through x and y contains an open segment, 
that is contained in A and contains x, the jaeet of x in A. The internal points relative to the 
linear variety generated by A (II, p. 26) (resp. the extremal points) of A are the points whose 
facet in A is equal to A (resp. is a single point). 
a) Show that the facet F x of a point x EO A is the largest convex set B c A such that x is an 
internal point of B (relative to the linear variety generated by B). 
b) For every pointy EO F x' the facet F y of y in A is identical with the facet of y in F x' In order 
that F = F x' it is necessary and sufficient that y is an internal point of F x (relative to the 
linear ~ariety generated by FJ. Deduce that, if Fx is finite dimensional, and if y is a non­
internal point of Fx (relative to the linear variety generated by FJ, then the dimension of Fy 
is strictly less than that of F x' 

e) A linear variety V in E which meets A and is such that for every x EO A II V, every open seg­
ment contained in A and containing x, is necessarily contained in V, is called a support variety 
of A. Show that, for all x EO A, the linear variety M generated by the facet Fx of x in A is the 
smallest support variety of A which contains x, and that M II A = Fx' For every support 
variety V of A, the intersection V II A is the facet in A of each of its internal points (relative 
to the linear variety generated by V II A). 
d) Let A and B be two convex sets in E. For every point x EO A II B, the facet of x in A II B 
is the intersection of the facets of x in A and in B. 
e) Let B be a closed convex set in a Hausdorlf topological vector space E, and let B contain 
a closed linear variety M of finite codimension n; then every facet in B of a point ofB contains 
a closed linear variety of codimension n (II, p. 67, exerc. 14, d)). If A is a convex set then the 
facet in A II B of a point x in A II B is of finite dimension if, and only if, the facet of x in A 
is of finite dimension: further if p and q are the dimension of the facet of x in A and of the facet 
of x in A II B, then p :( q + n. In particular if x EO A II B is an extremal point of A II B, 
then its facet in A is of dimension :( n. 
j) Deduce from e) that if A is compact, and V is a closed linear variety in E, of finite codimen­
sion n, then every extremal point of V II A is a linear combination of at most n + 1 extremal 
points of A. 

4) In the plane R 2, consider the convex set A formed by the points (~, 11) satisfying - 1 :( ~ :( 1, 
- 1 - )1 - ~2 :( 11 :( 1 + )1 - ~2. Show that there exist frontier points of A for which 
the facet is distinct from the intersection of A and of the lines of support of A passing through 
this point. 

5) In the Banach space I'X\N) of bounded sequences x = (~n) of real numbers, let A be the 
closed convex set defined by the inequalities - 1 In :( ~n :( 1 for n ?o 1 and - 1 :( ~o :( 1. 
Show that A has a non-empty interior, that the origin is a frontier point of A and that the 
facet of 0 in A is not closed. If we give to A the topology induced by that of the product space 
RN, show that A is compact but that the facet of 0 in A is not closed in A. 

6) Let E, E' be two vector spaces in separating duality, and A be a convex set in E containing 0 
and closed for cr(E, E'). For all a EO A, the set F~ of points x' EO AO such that <a, x'> = - 1 
is a closed (for cr(E', E)), convex set of A o. Show that F~ is the facet in A 0 of each of the internal 
points of F~ relative to the linear variety generated by F~. We say that F~ is the dual jaeet 
of a in A o. If Fa is the facet of a in A, show that F~ is also the dual facet in A 0 of each of the 
internal points of Fa relative to the linear variety generated by Fa; further, if A is identified 
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with ADO, the dual facet in A of each internal point of F~ relative to the linear variety generated 
by F~, contains Fa' When F~ is not empty (which is always the case when E isjinite-dimen­
sional and a oj:. 0, cf II, p. 78, exerc. 13), we say that each of Fa. F~ is the dual facet of the other. 

We say that a point a E A is smooth point of A if F~ is a single point (in other words if there 
exists one closed hyperplane of support of A passing through a); we say that a is a point of 
strict convexity (or is an exposed point) if there exists a closed hyperplane H supporting A 
so that H n A = {a}; this is the same as saying that there exists an internal point of F~ 
(relative to a linear variety generated by F~) which is a smooth point of AO. 

~ 7) Let E be a vector space of finite dimension n and let A be a closed convex set in E of 
which ° is an interior point. 
a) Let F and F' be two dual facets of A and A ° (exerc. 6); if F is of dimension p and F' of 
dimension q, then show that p + q :( n - 1. For every frontier point x of A, the dimension 
of the facet of x in A is called the order of x, and the dimension of its dual facet in A ° is called 
the class of x. The order (resp. the class) of a facet F of A is by definition the order (resp. the 
class) of one of the internal points ofF relative to the linear variety generated by F. An extremal 
point of A is a point of order 0; a smooth point of A (exerc. 6) is a point of class 0. 
b) A frontier point of A of class n - 1 (and hence of order 0) is called a vertex of A. Show 
that the set of vertices of A is enumerable (consider the set of dual facets of the vertices of A, 
GT, VI, ~ 2, exerc. 12). 
c) Let F be a p-dimensional facet of A, and M a linear variety of dimension n - p, which 
meets F in the single point a, such that a is an internal point ofF and which contains an interior 
point of A Show that, if V is a support hyperplane of M n A in M, that passes through a, 
then the hyperplane H generated (in E) by F u V is a support hyperplane of A 
d) We say that a facet F of A of order p and of class q is an ultrajacet if p + q = n - 1; the 
dual facet is then also an ultrafacet of A 0. If a linear variety M of dimension n - p meets an 
ultrafacet F in a single point that is an internal point of F (relative to the linear variety gene­
rated by F), show that this point is a vertex of the convex set M n A, and conversely (use c». 
Deduce that the set of ultrafacets of order p of A is enumerable. (Identify E with Rn, consider 
the projection of A on each of the coordinate varieties of Rn of dimension p; if the set of ultra­
facets of order p of which the projection on V is p-dimensional, is not enumerable, show that 
there exists a point of V which is an interior point to a non-enumerable infinity of these pro­
jections considering the points of V with rational coordinates; then use b).) Give an example 
of a convex set with a non-enumerable infinity of facets, each of which is not a single point 
nor an ultrafacet. 
e) If all the frontier points of A are smooth, show that the mapping, which puts each point x 
of the frontier G of A in correspondence with the unique point of the dual facet of x, is a con­
tinuous mapping of G on the frontier of A 0 (cf TG, I, ~ 9.1, corollary). In what case is this 
mapping bijective ? 

8) Let E be a vector space of finite dimension n and A be a compact convex set in E. 
a) Let H be a hyperplane in E. Show that in an open half-space determined by H and contain­
ing at least one point of A, there exists a point of strict convexity of A (II, p. 87, exerc. 6). (Con­
sider, in H, a closed euclidean ball C of dimension n - 1 and of sufficiently large radius that 
contains H n A, then the euclidean balls B of dimension n and of larger radius containing A 
and such that B n H = C.) 
b) Show that A is the closed convex envelope of the set of points of strict convexity (use a». 
c) Show that every extremal point of A is a cluster point of the set of points of A of strict 
convexity. (Using b) and the exerc. 9, a) of II, p. 66, note that an extremal point is the limit of 

n n 

a sequence of points of the form L Aimxim' where Aim ~ 0, L Aim = 1 and the xim are points 
i=O i=O 

of strict convexity of A; next use the compactness of A) 

9) Show that in the product space E = RN, the cube IN, where I = (0, 1), is a compact convex 
set with no point of strict convexity. 

10) In the space R2, show that the set of extremal points of a closed convex set A is closed 



§ 7 EXERCISES TVS II.89 

(show that the set of points of A whose facet in A is of dimension 1 form an open set relative 
to the frontier of A). 

11) a) In the space R 3, consider the compact convex set A which is the convex envelope of 
the union of the circle S = 0, ~ 2 + 112 - 2~ = ° and the two points (0, 0, 1) and (0, 0, - 1). 
Show that the set of extremal points of A is not closed in A. 
b) Let A be a metrisable compact convex set in a Hausdorff topological vector space E. 
Show that the set of extremal points of A is the intersection of a sequence of open sets in A. 
(If d is a distance defining the topology of A, then for each integer n consider the set of points 
x = ~{y + z), where y, Z are in A and dey, z) ;:0, lin.) 

12) In the Banach space ["'(N), let en be the sequence all of whose terms are zero except the 
n-th which is 1. Let A be the convex closed envelope of the set formed from ° and the points 
e,,/(n + 1) (n ;:0, 0). Show that A is compact but that it is not identical with the convex enve­
lope of the set of its extremal points. 

* 13) In the Hilbert space [2(N), let A be the set of points x = (~n) such that we have 
I 22n~; ~ 1. Show that A is convex, compact and that it is the closure of the set of its extremal 

points. * 

14) Let E be a closed vector subspace of the Banach space [WeN), formed of the sequences 
x = (~n) such that lim ~n = 0. 

n~ro 

a) Show that, in the Banach space E, the closed unit ball B does not have any extremal points. 
b) Let u be the continuous linear form (~n) I-> I rn~n on E. Show that there does not exist 

any support hyperplane of B that is parallel to the closed hyperplane with the equation u(x) = 0. 

15) Let A be a compact set in the normed space E. 
a) Show that the distance apart of two parallel support hyperplanes of A is at most equal 
to the diameter 8 of A. 
b) Show that there exist pairs of points (a, b) of A such that Iia - bll = 8; for such a pair of 
points, there exist two parallel support hyperplanes of A passing respectively through a 
and b and whose distance apart is 8 (consider the closed ball of centre a and radius 8). 

16) a) Let A be an n-dimensional compact convex set in the space Rn, normed with the Eucli­
dean norm; for every Z E Sn _ l' denote by p(z) the upper bound of lengths of segments parallel 
to the vector z and contained in A. Show that there exist two points u, v of A such that the 
segment with end points u, v is parallel to z and is of length p(z); deduce that there exist two 
support hyperplanes of A that are parallel and pass respectively through u and v (consider 
the set A' = A + p(z) z, and separate the sets A and A' by a hyperplane). 
b) Let d be the lower bound of the distances between two parallel support hyperplanes of A; 
show that there exist two points a, b of A such that Iia - bll = d, and that the hyperplanes 
passing respectively through a and b and orthogonal to a - b, are support hyperplanes of A 
(use a). 

17) In the space [W(N), let A be the compact convex set defined in the exerc. 12 of II, p. 89 and 
let E be the closed vector subspace of [W(N) generated by A. Show that the lower bound of 
the distance between two parallel closed support hyperplanes of A in the space E is equal 
to 0, even though A is not contained in a closed hyperplane of E. 

18) In a Hausdorff locally convex space E, let (K')'Ei be a decreasing directed family of convex 
sets that are compact and non-empty. For all cr E I, denote the set of extremal points of K. 
by A., and by F. the closure of the union of the Ap for ~ ;:0, cr, so that (F.) is a decreasing directed 
family of compact sets. Let A be the intersection (non-empty) of the F., and K the intersection 
(non-empty) of the K •. Show that K is the closed convex envelope of A. (If f is a continuous 
linear form on E, and x. a point ofF. where f attains its maximum in F., show that fey) ~ f(x.) 
for all y E K; then take a cluster point of the family (x.) following the filter of sections of 1.) 
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~ 19) In the space Rn, let (K.) be a family of compact sets, in number;;:, n + 1, and such 
that none of them is contained in an affine hyperplane. Suppose that for every family (u.) 
of affine automorphisms of Rn, if any n + 1 of the sets u.(K.) have a common point, then all 
the u.(K.) have a common point. Show that under these conditions the K. are convex. (Sup­
pose on the contrary that there exist n + 1 points x1"'" xn + 1 in the same set K. and a point Xo 
which belongs to the convex envelope of the set of the Xi (i ;;:, 1) but does not belong to K •. 
Note that for every index i ;;:, 1, there is an affine automorphism U i of Rn and an index Ct.i 
such that Xo and the x· of index j =1= i are extremal points of u;CK.), and show that the n + 2 
sets K. and u;CK.) ha~e no points in common.) . 

20) Give an example of a compact convex set K in R2, containing 0 and such that the cone 
of vertex 0 generated by K is not closed in R 2 • 

~ 21) a) In a Hausdorff locally convex space E, let A be a locally compact closed convex 
cone, that does not contain any line. Show that A is a cone of compact sole (apply prop. 2 
of II, p. 55, to the vertex of A, which is an extremal point of A). Deduce that there exists a 
closed support hyperplane H of A, which contains the vertex s of A and is such that HilA = {s}. 
b) Let A, B be two closed convex cones with vertex 0 in E, that are locally compact and do 
not contain a line. Show that if A 11 B = {O}, then A - B is a closed, locally compact, cone 
not containing any line (method as in II, p. 67, exerc. 16). Deduce that there exists a closed 
hyperplane that supports both A and B, that separates A from B and such that 
HilA = H 11 B = {O}. 
e) Give an example of a locally compact closed convex cone A such that A - A is not locally 
compact (ef II, p. 78, exerc. 11). 
a) Let A be a locally compact closed convex set in E, which does not contain a line. Let Xo 

be a point of A, CA the asymptotic cone of A (ef II, p. 67, exerc. 14) and H a support hyper­
plane of Xo + CA passing through Xo and such that (xo + CA) 11 H = {xo }. If f(x) = a is 
the equation of H and if f(x) ;;:, a in Xo + CA , then show that for every real number b, the 
set of the YEA such that fey) ~ b is compact. 

~ 22) By an extremal ray of a convex subset A of a vector space E we mean a closed half 
line D contained in A, such that, for all XED and every open segment with end points a, b 
in A, and which contains x, it is necessarily the case that a E D and bED; the end point of 
D is an extremal point of A. 
a) In a Hausdorff locally convex space E, show that every locally compact closed convex 
set, not containing a line, is the closed convex envelope of the union of its extremal rays and 
its extremal points. (Suppose the contrary, and writing B for this closed convex envelope, 
note first that by exerc. 21, d), there exists a closed hyperplane H so that HilA is compact 
and non-empty and H 11 B = 0. Show then that if a E HilA is an extremal point of HilA 
(therefore not an extremal point of A by hypothesis) and if the open segment S with end 
points b, e contained in A and not contained in H, contains a, then the line D containing S 
necessarily contains a segment containing a and whose end points are extremal points of A, 
or contains an extremal ray of A containing a.) 
b) Prove that if E is finite dimensional, then every closed convex set in E, that does not contain 
any line, is the convex envelope of the union of its extremal points and its extremal rays (argue 
by induction on the dimension of E). 

23) In R 3, consider a closed convex set A with an interior point, whose fonction F contains 
two open segments S, T lying in two non-parallel lines D, D' (the points of S, T are thus non­
extremal in A), and all of whose other frontier points are extremal (one shows how to define 
such convex sets). For every x E R 3, put f(x) = (d(x, D)f Let B the convex closed set in 
R4 = R3 X R formed by the pairs (x, t;) such that x E A and S ;;:, f(x). Show that in B the set 
of extremal points, the union of the extremal rays, the set of end points of extremal rays, and 
all the unions of two or three of these sets are not closed and non-empty. 

~ 24) In Rn, every intersection of finitely many closed half spaces (resp. of closed half-spaces 
determined by hyperplanes passing through the same point) is called a polyhedron (resp. a 
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polyhedral cone). A convex set C c:: R" is locally polyhedral in a point x E C if there is a neigh­
bourhood V of x in C which is a polyhedron. 
a) Show that. if a closed convex set C c:: Rn is locally polyhedral at a point x E C, then the 
cone with vertex x generated by C is polyhedral. 
b) Show that a compact convex set in R" that is locally polyhedral at each of its points is a 
polyhedron (use a». 
c) Let P c:: Rn be a closed convex set with an interior point. Show that the following condi­
tions are equivalent: 

ex) P is a polyhedron. 
~) P has only a finite number of facets (II, p. 87, exerc. 3). 
y) P is the convex envelope of a set which is the union of finitely many points and finitely 

many closed half lines. 
(To show that (1) implies ~) take P as the intersection of the smallest possible number of closed 

half spaces, and show that the hyperplanes defining these half-spaces are generated by facets 
of dimension n - I of P. To show that ~) implies y), argue by induction on n. Finally, to see 
that y) implies ex), consider the polar po of P.) 
d) Show that every convex polyhedron P can be written in the form Q + Cp , where Q is a 
compact polyhedron and C p the asymptotic cone of P. A non compact polyhedron cannot 
be parabolic. 
e) Show that every facet of a convex polyhedron is an ultrafacet (II, p. 88, exerc. 7. d» (argue 
by induction on n). 

~ 25) a) Let C c:: R" be a closed convex cone with vertex O. Show that the projections of C 
on every 2-dimensional subspace ofRn are closed if and only if C is a polyhedral cone (exerc. 24). 
(Reduce to the case when C contains no line : argue by induction on n using the existence 
of a compact sole S of C (II, p. 90. exerc. 21. a», and project onto a hyperplane parallel to a 
line joining 0 to an extremal point of S, and deduce that S is locally polyhedral (exerc. 24). 
b) Deduce from a) that, if we give Rn the order for which C is the set of elements?: 0, then, 
every positive linear form on any vector subspace F of Rn can be extended to a positive linear 
form on R" if, and only if, C is a polyhedral cone (apply a) to the polar cone CC). If C is the 
cone in R3 generated by the (~1' ~2' ~3) such that ~1 = I, ~3 ?: (~D-, and F is the subspace 
~3 = 0 give an example of a positive linear form on F that cannot be extended to a positive 
linear form on R3. 
c) Let A be a polyhedron in R". Then, the convex envelope of A u B is closed for every poly­
hedron B, if and only if. A is compact (use exerc. 24, d». 

26) a) Let E be a Hausdorff, locally convex space and let A be a cap of a convex set C in E. 
If SEC is a point not belonging to A and if B is the cone with vertex s generated by A show 
that the closure of B n (C n CA) is a cap in B. 
b) Suppose that E is finite dimensional. Show that every cap A of a closed convex set C in E 
can be obtained in the following manner: consider a facet F of C (II, p. 87, exerc. 3) and a 
hyperplane H in the affine linear variety V generated by F, such that F is entirely on one side 
of H, take as A the set of points of F contained between H and a hyperplane H' of F parallel 
to H (use a) and prop. 4 of II, p. 38). Every extremal point of a facet of C is an extremal point 
of C. 
c) Give an example of a compact convex set C in a Hausdorff locally convex space E and 
of a cap A of C such that A and C n CA each generate E and that A and C n CA cannot be 
separated by a closed hyperplane of E (cf II, p. 78, exerc. 11). 

27) Let C be a closed convex set in a product of lines, E, and let a be an extremal point of C. 
Show that for every neighbourhood V of a in C. there exists an open half-space F in E such 
that a E F n C c:: V. (Reduce to the case when C is compact.) 

28) Let I be a non enumerable infinite set. Show that every cap of the cone Rl+ in RI is con­
tained in the sum of subs paces of the form R J, where J is an enumerable subset ofl (use prop. 4 
of II, p. 38). Deduce that there are points of R~ which do not belong to any cap of R1+, even 
though RI+ is the convex closed envelope of the union of its extremal generators. 
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29) a) Let (En) be a sequence of Hausdorff locally convex spaces and E = TI En their product. 
" In each En. let Cn be a convex cone with vertex 0 and An a cap ofCn" Show that there exists a cap 

of C = TI Cn which contains TI An (argue as in prop. 5 of II. p. 59). 
n n 

b) Let (En. <Pmn) be an enumerable directed projective system of Hausdorff locally convex 
spaces and let E = lim E" be its projective limit. For all n, let C" be a convex cone of vertex 0 
such that (Cn ) is a projective system of sets. Show that if, for each n, the set e" is the union 
of its caps, then this is also true of C = ~ C" (use a». In particular, if the C n are cones with 
compact soles then C in the closed convex envelope of the union of its extremal generators. 

30) Let E be a Hausdorff locally convex space and A a cap of C, a closed convex set in E. 
Show that if a E A is an extremal point of A then the facet F of a in C (II, p. 87, exerc. 3) is of 
dimension:( I (use exerc. 26 ofIL p. 91). Deduce that F n A is a cap ofC. 

~ * 31) Let X be the compact interval (0, I) ofR and <I> the set formed from the continuous 
real valued functions defined in X and the functions t f-+ 1 t - a 1-', where a E X and 0 < C( < I 
(we put 0-' = + oc for r:l > 0). In the space jlt(X) of measures on X, let uttej>+ be the set of 
the measures J..L ;? 0 such that all the functions of <I> are J..L-integrable. 
a) Give JI'I'; the uniform structure induced by the product structure of Rej>. Show that ./1'1'; 
is a proper convex complete cone for this uniform structure. (Note that for every function 
f E <I> there exists 9 E <I> such that, for all E > 0, there exists u E 'b (X ; R) such that 0:( f - u:( Eg.) 

b) Show that the cone .ttej>+ has no extremal generator. (Observe that if J..L E .4iej>+, then all 
the measures" such that 0 :( " :( J..L belong to ullej>+') 
c) Show that the set S of the J..L E ./I'Iej>+ such that J..L(l) = 1 is a sole of the cone jllej>+ and a sim­
plex in Rej> (II, p. 71. exerc. 41). * 

32) Let E and F be two Hausdorff locally convex spaces, let A be a convex subset of E, and 
u a linear mapping of E in F. 
a) The inverse image under u of a support variety of u(A) (II, p. 87, exerc. 3. c) is a support 
variety of A. 
b) If A is compact and u is continuous, then every extremal point of utA) is the image under 
u of an extremal point of A. 
c) If A is a locally compact cone with vertex 0 and if u is continuous then every extremal 
generator of u(A) is the image under u of an extremal generator of A. 

~ 33) Let E be a Hausdorff locally convex space and A a subset of E. 
a) Denote by r o(A) the set of points x E E such that, for every continuous linear mapping 
u of E in a jinite dimensional vector space, the image u(x) belongs to the convex envelope 
of u(A). This comes to the same as saying that for every closed linear variety V of E con­
taining x and of finite codimension n > O. there exists a subset of A having at most n + I ele­
ments, and of which the convex envelope meets V. Show that r o(A) is a convex set containing 
A, that r o(r o(A») = r o(A) and that r o(A) is contained in the closed convex envelope of A 
(use prop. 4 of II, p. 38). 
b) Let (X')'EI be a family of elements of A and ("JOEl a family of positive numbers such that 
I ", = 1 and that the family C",x,) is summable in E. Show that the sum s = I "oxo belongs 
~ ~ 

to r o(A). (With the aid of a) reduce to the case where E is of finite dimension and identical 
with the linear variety generated by the )'ox, ; then argue by reductio ad absurdum. considering, 
for every finite subset J of I, a closed hyperplane H J that passes through s and does not meet 
the convex envelope of the set of the Xo such that C( E J, then using the compactness of the 
unit sphere in a finite dimensional space.) 
c) Show that if A is compact. then r o(A) is identical with the convex closed envelope of A. 
d) If K is a compact convex set in E, and A the set of its extremal points show that K = r o(A) 
(use exerc. 22. b) of II, p. 90, and exerc. 32). 
e) With the notations of II, p. 74, exerc. 3,Iet A be the set formed of the Ex' where x varies in 
the set of rational numbers such that 0 :( x :( I. Show that r oCA) is distinct from the convex 
envelope of A and from the convex closed envelope of A. 



§ 7 EXERCISES TVS n.93 

liT 34) Let S be a closed convex set of E, a Hausdorff locally convex space, and A a subsct 
of S such that S = [' o(A) (exerc. 33), and let So be the convex envelope of A (so that S = So). 
Let N be a closed convex subset of E containing a closed linear variety offinite codimension, 
M =S n Nand Mo = So n N. 
a) Show that M = Mo. (N ote, using exerc. 33, a), that every closed linear variety of finite 
codimension in E. containing a point x E M, meet Mo, and use the prop. 4 of 11, p. 38.) 
b) Suppose that for every finite subset F of A, the intersection of N and of the facet (in S) 
of each point of the convex envelope of F, is compact or of finite dimension and does not 
contain a line. Show then that M is the convex closed envelope of the set of its extremal points. 
(By the aid of a), this reduces to proving that every point of Mo is contained in the convex 
closed envelope ofthe set of extremal points of M. Use exerc. 3. e) ofII, p. 87, the Krein-Milman 
tho (II, p. 55) and exerc. 22, b) of II. p. 90.) Deduce that every closed support hyperplane of 
M contains an extremal point of M. 

35) Let 1 be a non enumerable set, write E = R(I) and E' = E x R. Denote the canonical 
basis of E by (e.)'Ei and let s be the element (0, 1) of E'. Define a separating duality between 
E and E', by (e" eB) = B'B' (e" s) = 1 for all (1 E 1. Let C be the pointed cone Rt+ in E. 
a) Show that the topologies induced on C by cr(E, E') and by the norm p(x) = I Ix.1 on E 
coincide. 'Et 

b) Show that the uniform structure induced on C by cr(E, E') is not metrisable. 

36) Consider the space E = R(N), with the weak topology cr(R(Nl, RN); let C be the closed 
convex cone in E formed by the points x = (xn) such that x" ~ 0 for all n. 
a) Let x = (xn) be a point of C and let J be the finite set of integers n for which xn > 0; if 
m is the number of elements of J, then let A be the set of the points Y = (Yn) of C such that 
y" = 0 for n E J and L Ykx'; 1 :;;;; m. Show that A is a cap of C containing X. 

kEJ 

b) Show that there does not exist a cap B in C such that C is the union of the sets nB for n > O. 
(Let p be the restriction of the gauge of B to C; p will be finite in C and, if (eJ is the cano­
nical basis of E, we have peen) > 0 for all n (II, p. 58, prop. 4), and the points zln) = en/p(e.) 
belong to B ; but show that there exists z' E RN such that the sequence ( z(n), z'») is not bounded.) 

37) Let F be the Banach space /1 (N) of summable sequences x = (x,,) of real numbers and 
let E be the space of sequences y = (Yn) which tend to 0; we give F the weak topology cr(F, E) 
where E and F are in separating duality using the form B(x, y) = L xnJ'n' 

n 

a) Let C be the convex cone in F formed of the points x = (x,,) such that "" ~ 0 for all 11. 

Show that C is closed in F. 
b) Let A be the set of the x = (x,,) E C such that L xn :;;;; I. Show that A is a cap of C, that 

is metrisable for the topology induced by that of F~ and that C is the union of the sets nA for 
n > O. 
c) Show that a sole of C is not compact (such a set S would be the set of the x = (x,,) E C 
such that L znxn = 1. where (zn) E E and zn > 0 for all n. If em = (Bmn)n~O' the points zn-1en 

" belong to S, but do not form a relatively compact set in F). 
d) Show that C is not metrisable for the topology induced by that of F (use Baire's th., noting 
that there is no point in A that is an interior point relative to the subspace C). 

38) Let E be a Hausdodf locally convex space and X a compact convex set in E. Denote by 
d(X) the set of continuous affine functions in X (not necessarily restrictions to X of conti­
n uous affine functions in E, cf. II, p. 78, exerc. 11). For every real valued functionj'that is bounded 
above in X. put (x) = inf(/i(x)) for all x E X where h varies in the set of fL;nction of d(X) 
such that h ~ I h 

a) Show that I is an upper semi-continuous concave function. If f itself is upper semiconti­
nuous and concave, then 1= f (ef II, p. 39, prop. 5). 
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b) Suppose that f is upper semi-continuous. Show that 1 is the lower envelope of the func­
tion g, when g varies in a set of functions that are continuous in X of which f is the lower 
envelope. 
c) For all x E X, write uf/x for the set of finite families f..l = ((f..lj' x)) where the Xj are points 
of X, the f..lj are numbers ~ 0 satisfying I f..lj = I, such that x = I f..ljX j . For each real valued 

j j 

function f bounded above in X, put f'(x) = sup I f..lJ(x) for all x E X. Show that f' is 

a concave function in X and that f' ~ J. 
d) Suppose that f is continuous in X. Given E > 0, let (Uk) \ ";k";N be a covering of X by convex 
open sets such that the relations x E Uk' Y E Uk imply the inequality If(x) - f(y)1 ~ E. Put 
A\ =U\ and, for k > I, Ak = Ukn C(UI u U 1 U U 3 u ... u Uk-I)' Show that, for all XEX, 
there exists a family f..l = ((f..lk' xk») of N terms belonging to .$/x with Xk E Uk for I ~ k ~ N 
such that I f..lJ(xk ) ~f'(x) - 2E (if we have the inequality I),/c}) ~ flx) - E, group 

k 

the Yj belonging to the same Ak together). 
e) Deduce from d) that when f is continuous then f' is upper semi-continuous and f' = /' 
(If U is an ultrafilter on X finer than the filter of the neighbourhoods of a point x E X and 
if f'(y) ~ r for all the points Y of a set belonging to U, show that f'(x) ~ r - 2E, by making 
a family f..l y E ./1/)" correspond to each y, which satisfies condition a) and proceeding to the 
limit through n.) 

39) Let H be a closed hyperplane in a Hausdorlf locally convex space E, that does not con­
tain 0 and let S be a compact simplex contained in H (II, p. 71, exerc. 41). 
a) Let C be the cone with vertex 0 generated by S. Show that if (X)iEI and (})jEJ are two finite 
families of points of C such that I Xi = I Yj' then there exists a finite family (zij)(i.jl EI x J 

iEI JEI 

of points of C such that Xi = I Zij for all i E I and Yj = I Zij for all j E J (argue by induction 
jEJ iEI 

to reduce to the case I = J = {I, 2}). 
b) Let f be a convex, upper semi-continuous function in S. Show that the function 1 (defined 
in ex ere. 38) is an affine function. (First reduce to the case where f is contLnuous by using 
exerc. 38, b) and II. p. 81. exerc. 28. Next use the fact iff is continuous, then f =f' (exerc. 38, 
e», and show that f' is convex using a) to bound f'CCi I Xl + Ci1X1) above when:;(l ~ 0, Ci1 ~ 0, 
Ci\ + Ci1 = 1.) 

40) Let X be a compact convex set in E, a Hausdorlf locally convex space, and let f be an 
upper semi-continuous function that is bounded below. Let g be a lower semi-continuous 
concave function, such that g ~ f Show (with that notations of ex ere. 38) that g ~ 1 (Reduce 
to the case where inf(g(x) - f(x») > o. If (fo.) is a decreasing directed family of continuous 

XEX 

functions such that f = inf(fo.), show that then also inf(g(x) - fo.(x») ~ 0 for Ci ~ Cia, and 
XEX 

so reduce the problem to the case where f is continuous. Then use exerc. 38, e).) 

41) Let S be a compact simplex contained in a Hausdorff locally convex space E (II. p. 71 
exerc. 41), and f an upper semi-continuous convex function that is bounded below. Let g 
be a lower semi-continuous function that is concave and such that g ~ f 
a) If we write u = .1 v = - (- g) .1 then u and u are affine functions such that u ~ v (use 
ex ere. 39, b) and exerc. 40). 
b) Show that there exists an affine function h, continuous in X and such that f ~ h ~ g 
(D. Edwards' th.). (We can replace f by u and g by v. Construct three sequences (um ), (um), 

(hrn) of affine functions such that in X, the function Urn is upper semi-continuous, the function 
Urn is lower semi-continuous and the function hrn is continuous and 

Use exerc. 29 of II, p. 81, for this.) 
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1) Extend the results of exerc. 8 of II, p. 83 to the spaces <g(T; C) and to their finite dimensional 
subspaces. 

2) Show that, when z varies in the unit disc Izl :( 1 in C, then the convex cone generated by 
the points (z, Z2, ... , zn) in the spaces cn, is the whole of the space C". (Note that there cannot 

n 

exist complex numbers Ck not all zero (1 :( k :( n) such that i?4( L ckeki8 ) ~ 0 for 0 :( 0 :( 2 IT, 
k~l 

f2" 

using the faet that eki6de = 0 for every integer k oj 0.) 
o 

3) For the topological vector spaces on H, the division ring of quaternions, give the defi­
nitions and properties corresponding to those of this paragraph. 



CHAPTER III 

Spaces of continuous linear mappings 

In this chapter, all the vector spaces under consideration are vector spaces over a 
field K, which may be R or C. 

We recall (II, p. 2) that a semi-normed space is a vector space E endowed with a 
semi-norm p and with the topology defined by p. Let r be a real number > O. The 
set of all x E E such that p(x) :s; r is called the ball (closed) of radius r of E (or of p). 
When r = 1, this ball is also called the unit ball. 

§ 1. BORNOLOGY IN A TOPOLOGICAL VECTOR SPACE 

1. Bornologies 

DEFINITION 1. - A bomology on a set E is a subset \E of the set of all subsets of E 
satisfying the following conditions (cf GT, X, § 1 .2, Remark 2). 
(Bl) Ever,V subset of a set of \E belongs to \E. 
(B2) Every finite union of a set of\E belongs to \E. 

We say that \E is covering if every element of E is contained in a set which belongs 
to \E, or. which is the same, if \E is a cover of E. 

Example. - Let E be a metric space; the set of all bounded subsets of E (GT, IX, 
§ 2, No.2) is a covering bomology on E. Let G be the group of isometries of E ; the set 
of all subsets M of G such that for every x E E, the set M. x is a bounded subset 
of E, is a covering bomology on G. 

If \E is a bomology on a set E, a subset \E 1 of \E is said to be a base of \E if every 
set of \E is contained in a set of \E 1 . 

The intersection of a family of bomologies on E is a bomology; consequently 
for every subset 6 of I.]3(E), there exists a smallest bomology containing 6; this 
bomology is said to be generated by 6 and admits as a base the set of finite unions 
of sets of 6. If E and E' are two sets, and \E (resp. \E') a bomology on E (resp. E'), 
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the product bomology is the bomology on E x E' which admits the sets M x M' 
as a base, where M E ~ and M' E ~'. 

DEFINITION 2. ~ Let E be a vector space. A bornology ~ on E is said to be convex, 
if for every X E ~ and t E K, the homothetic set tX and the convex balanced envelope 
reX) (II, p. 10) of X belong to ~. 

If X and Yare two subsets of E, we have 

X + Y c 2reX u Y) 

AX c treX) for IAI:( t. 

Consequently, if ~ is a convex bomology on E, if A is a bounded subset of K 
and if X, Y belong to ~, then X + Y E ~ and A.X E~. 

2. Bounded subsets of a topological vector space 

DEFINITION 3. ~ Let E be a topological vector space. A subset A of E is said to be 
bounded if it is absorbed by every neighbourhood 0[0 in E (I, p. 7, def 4). 

In order that A be bounded, it is sufficient that A be absorbed by every neigh­
bourhood of a fundamental system of neighbourhoods of O. Since there exists a 
fundamental system of balanced neighbourhoods of 0 (I, p. 7, prop. 4), this is the 
same as saying that, for every neighbourhood V of 0 in E, there exists A E K such 
that A c AV. 

Suppose the topology of E is defined by a fundamental system r of semi-norms 
(II, p. 3); then a subset A of E is bounded if and only if every semi-norm pEr is 
bounded on A. 

In particular, if E is a semi-normed space, a subset A of E is bounded if and only 
if it is contained in a ball. In other words, if E is normed this means that A is bounded 
for the metric space structure of E (GT, IX, § 2, No.2). 

z 

Remarks. - 1) If E is a semi-nnfmed space, the balls form a fundamental system 
of bounded neighbourhoods of 0 in E. Conversely, if E is a locally convex topological 
vector space, and if there exists a bounded neighbourhood of 0 in E, this neighbourhood 
contains a convex balanced neighbourhood W, and the gauge of W is then a semi­
norm defining the topology of E. 

Thus, if E is locally convex and metrizable, and if its topology cannot be defined 
by a single norm, then there exists no distance on E defining its topology and such 
that the bounded subsets for d (GT, IX, § 2, No.2) are the bounded subsets of E. More 
precisely, for every distance d on E, which is translation invariant and which defines 
the topology of E, the bounded subsets of E are bounded for d (III, p. 38, exerc. 3), 
but the converse is false. 

2) Let M be a vector subspace of E endowed with the induced topology. In order 
that a subset of M be bounded in M, it is necessary and sufficient that it be bounded 
in E. 

3) Let N be the intersection of all neighbourhoods of 0 in E, so that E = E/N is the 
Hausdorff vector space associated with E. Then N is bounded; if n: E --> E is the canoni­
cal homomorphism then a subset B of E is bounded if and only if nCB) is bounded. 

4) Let E be a Hausdorff locally convex space; then for every x # 0 in E, there exists 
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a continuous semi-norm p such that p(x) of 0; this semi-norm is not bounded on the 
real half-line R+. x generated by x. Hence no non-null subspace of E is bounded. In 
particular, a bounded subset does not contain any line. 

DEFINITION 4. - Let E be a locally convex space. A bornology 5B on E is said to be 
adapted to E, if it is convex, is composed of bounded subsets of E and if the closure of 
every set of 5B belongs to 5B. 

PROPOSITION 1. - Let E be a locally convex space. The set of bounded subsets ofE 
is an adapted bomology. 

We need to establish the following properties : 
a) If B is a bounded subset of E, every subset of B is bounded. 
b) The union of two bounded subsets is bounded. 
c) Every set that is homothetic to a bounded set is bounded. 
d) The closed convex balanced envelope (II, p. 13) of a bounded subset is bounded. 
If p is a continuous semi-norm on E, the balls of p are convex, balanced, closed 

and the set homothetic to a ball is a ball. Hence, if p is bounded on two subsets X 
and Y of E, it is also bounded on the closed convex balanced envelope of Xu Y, 
and on the sets homothetic to these. This establishes properties b), c) and d), and a) 
is obvious. 

DEFINITION 5. - Let E be a locally convex space. The set of all bounded subsets 
of E is called the canonical bomology of E. 

If 5B is a set of bounded subsets of E, then there exists a smallest bomology m 
adapted to E and containing 5B. The sets of m are those that are contained in a 
set homothetic to the closed convex balanced envelope of a finite union of sets of 5B. 

Every adapted bomology is contained in the canonical bomology. 

PROPOSITION 2. - In a locally convex space E, every precompact set is bounded. 
Let A be a precompact subset of E, and V be a convex balanced neighbourhood 

of O. There exists a finite sequence (a)t ";i";n of points of A such that 

A c U (a i + V). 
1 ~i~n 

Since B = {a p ... , an} is bounded, there exists a scalar Ie such that 0 < Ie < 1 
and leB c V; we have leA c leB + Ie V c V + V, from which the proposition 
follows. 

COROLLARY. - In a locally convex space, the set of points of a Cauchy sequence is 
bounded. 

In fact, this set is precompact (GT, II, § 4, No.2). 

Remark 5. - In general the bounded subsets of a locally convex space E are not all 
precompact (for example, if E is an infinite dimensional normed space, its unit ball 
is not compact (I, p. 15, tho 3)). However, this is so if E is a weak space (II. p. 42) : for 
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the Hausdorff topological vector space associated with E is then isomorphic to a sub­
space of a product KI whose bounded subsets are precompact (cf III, p. 4, cor. 2). 

For other examples, see IV, p. 18. 

PROPOSITION 3. - Let A be a subset of a locally convex space E. Suppose that A 
is bounded; then for every sequence (x,,) of points of A and for every sequence (A,,) 
of scalars tending to 0, the sequence (A"x,,) tends to 0. Conversely, if there exists a 
sequence (A,,) of non-zero scalars such that for every sequence (x,,) of points of A, the 
sequence (Anx,,) is bounded, then A is bounded. 

Suppose that A is bounded. If (An) is a sequence of scalars tending to 0, and V is 
a neighbourhood of 0, we have AnA c V whenever n is large enough, and the first 
assertion follows. 

Conversely, if A is not bounded and if (A,,) is a sequence of scalars "# 0, then there 
exists a continuous semi-norm p and a sequence (xn) of points of A, such that 

p(xn) ~ I~n I . We have then that P(Anxn) ~ n, and the sequence (A"xn) is not bounded. 

COROLLARY. - A subset A ofE is bounded if and only if every countable subset of A 
is bounded. 

3. Image under a continuous mapping 

PROPOSITION 4. - Let E and F be two locally convex spaces and f:E ~ F a conti­

nuous mapping. Assume that f(O) = ° and that there exists a real number m ~ ° 
such that f(b) = Amf(x) for every A > 0. Then, if A is a bounded subset ofE, f(A) 
is bounded in F. 

In fact, if V is a neighbourhood of ° in F, then f - 1(V) is a neighbourhood of ° 
in E. If A is bounded in E, there exists A > ° such that A c Aj-1(V) and this implies 
that f(A) c A mv. 

COROLLARY 1. - Let E and F be two locally convex spaces, and u : E ~ F be a conti­
nous linear mapping. If A is a bounded subset ofE, then u(A) is bounded in F. 

COROLLARY 2. - Let E = n Ei be the product of a family of locally convex spaces. 
ieI 

Then a subset of E is bounded if and only if all its projections are bounded. 
M ore generally : 

CoROLLARY 3. - Let E be a vector space, (F)iEi a family of locally convex spaces 
and J; a linear mapping from E into Fi (for i E I). Suppose E is assigned the coarsest 
topology (locally convex) for which all the J; are continuous (II, p. 26). Then, for a 
subset A of E to be bounded, it is necessary and sufficient that J;(A) is bounded in Fi 
for all i E I. 

In fact, if A is bounded, so are the J;(A)(cor. 1). Conversely, if the J;(A) are bounded 
and if p is a continuous semi-norm on E, then there exists a finite subset J of I and 
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a family (q.) 'EJ' where qj is a continuous semi-norm on F j , such that p :S; sup (q i 0 J) 
J J jEJ . 

consequently p is bounded on A. 

COROLLARY 4. - Let E j (1 :S; i :S; n) and F he locally convex spaces, and f he a 
n 

continuous multilinear map from TI Ei into F. If Bi is a bounded sunset of Ei' for 
;~ 1 

II 

I :S; i :S; n, then I( TI B;} is bounded in F. 
i~ 1 

COROLLARY 5. - Let E and F he two locally convex spaces and u: E --> F he a conti­
nuouS polynomial mapping. If A is a hounded suhset of E, then u(A) is bounded. 

4. Bounded subsets in certain inductive limits 

PROPOSITION 5. - Let (E)iEI he a family of Hausdorff locally comex spaces, and 
let E he the rop%gical direct sum of this family (II. p. 29). In order that a subset B 
of E he hounded, it is necessary and sufficient that there exists a finite suhset 1 of I 
such that prj(B) is bounded in E; for i Eland pri(B) c {O} for aff i i J. 

Let 1 be a finite subset of 1. Since the topology of E induces the product topology 
onTI Ej(II, p. 30, prop. 7 and p. 31, prop. 8), it follows from III, p. 4, cor. 2 that the con­

jE] 

dition is sufficient. 
Conversely, let B be a bounded subset of E. Then pri(B) is bounded for all i (TTl, 

p. 4, cor. 1). Therefore it is enough to prove that there exists a finite subset J of I 
such that pri(B) c {O} for all i i 1. If not, then there exists an infinite sequence (iJ 
of distinct elements of I and an infinite sequence (XII) of clements of B such that 
pro (XII) i= O. Since E j is Hausdorff, there exists a continuous semi-norm p on E. 
su~h that Pn(pri.,(xn)) '~ n. Hence p = L PII 0 prin is a continuous semi-n'~rm o~ 

fJ ~ 1 

E and p is not bounded on B, which is a contradiction. 

PROPOSITION 6. - Let E he a locafly convex space which is the strict inductive limit 
of an increasing sequence (Ell) of closed vector subspaces of E (II, p. 33). A subset B 
ofE is bounded!f and only if it is contained in one of the subspaces En' and is bounded 
in this subspace. 

The condition is sufficient, since the topology induced on Ell by that of E is preci­
sely the given topology of Ell (II, p. 32, prop. 9). To see that the condition is necessary, 
it is enough (III, p. 4. prop. 3) to prove that if a sequence (xm) of points of E is not 
contained in any of the subspaces Ell' then it cannot tend to O. By extracting a sub­
sequence of the sequence (xm ), we can assume that there exists a strictly increasing 
sequence (nk ) of integers such that, for every index k. we have xk i Ellk and X k E Ellk + 1 • 

Then there exists (II, p. 33, lemma 2) an increasing sequence (Vk) of convex sets 
such thatVk is a neighbourhood 01'0 in E llk , Vk+l n Ellk = Vk and such that xk i Vk+l 
for every index k. The union V of the V k is then a neighbourhood of 0 in E, and we 
have X k i V for all k. This proves that the sequence (xk ) does not tend to O. 
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The conclusion of prop. 6 is not necessarily true for a space E which is the inductive 
limit of a non-denumerable directed set of closed subspaces ofE (rr III, p. 38, exerc. 7). 

PROPOSITION 7. - Let (En)n;"O be a sequence of Hausdorff locally convex spaces, 
and for every 11, let Un: En --+ En + 1 be an injective linear mapping which is compact 
(i.e. such that There exists a neighbourhood of 0 in En whose image under Un is relatively 
compact; this implies That un is continuous). Let E be the inductive limit of the system 

(En' un) (11, p.29), and let vn be the canonical mapping from En into E. Then the locally 
convex .Ipace E is Hausdorff. Moreover, for every subset A ofE, the following condi­

tions are equivalent : 
(i) A is bounded; 
(ii) there exists an integer n such that A is the image under Vn of a bounded subset 

of En ; 
(iii) A is relatively compact. 
We identify En with a vector subspace of E (endowed with a topology finer than 

the induced topology). 

Lemma 1. - Under the hypothesis of prop. 7, the topology olE is thefinest topology 

for which all the mappings L'n : En --+ E are continuous. 
We need to prove that, if U is a subset of E such that U n En is open in En for 

every n, then U is open in E; in other words, we must prove that, for every x E U, 
there exists a convex balanced set V such that x + V c U and that V n En is a 
neighbourhood of 0 in En for every large enough n (II, p. 27, prop. 5). For every n, 
let Wn be a convex balanced neighbourhood of 0 in En such that the closure Hn 
of W n in En + 1 is compact. Let x E U and let no be an integer such that x E E"o. We 
shall construct, by induction, a sequence (En)n;"O of scalars > 0 such that 
x + L GjHj is contained in U for n ~ no. Suppose that the Ei for i < n have 

no:::;;' i:::S n 

been constructed. If Il = no, set Vn- 1 = {O}; if not, set 

Vn - 1 = L E;Hi· 
no~i~I1-1 

Then V" _ 1 is compact in En' and a fortiori in En + 1 . Since U n En + 1 is open in En + 1 , 

there exists a scalar En > 0 such that x + Vn = X + Vn - 1 + EnHn is contained 
in U (GT, II, § 4, No.3, cor.). Let V = U Vn. Then V is convex and baJanced; for 

n~no 

II ~ /lo, we have V n En ::J EnHn n En ::J E"Wn, hence V n En is a neighbourhood 
of 0 in En. This completes the proof of the lemma. 

The set U = E - {O} is such that the set U n En = En - {O} is open in En 
for every n, hence U is open in E, which proves that E is Hausdorff(GT, Ill, § 1, No.3, 
prop. 2). It is clear that property (ii) implies (iii) and that (iii) implies (i). Finally 
we show that (i) implies (ii). For this it is enough to show that if a subset A of E is 
not absorbed by any of the sets L Hi' then A is not bounded. But then there 

O~i::::;'n 

exists a sequence (Xn)n;" 1 of points of A such that, for every n, we have xn rt n 2 L Hi. 
O~i~n 
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Then the set of the x,,/n is closed by virtue of lemma 1, since its intersection with Em 
is discrete for every integer 111. The complement of the set of the .\)n is then an open 
neighbourhood of 0 which docs not absorb the sequence (x). hence A is not bounded. 

Remarks. - I) With the above notations, let F" be the vector space generated by 
H", with a norm equal to the gauge of HII . We shall see (III, p. 8. cor.) that F" is a 
Banach space. The injection from FII into Ell + 1 is compact, hence afortiori also the 
injection w" from F" into F,,+ l' Further, E is the inductive limit of the inductive system 
(F", wII) of Banach spaces. For, a convex balanced neighbourhood V of 0 in E is 
such that V (\ Ell absorbs H,,-l for all n ~ 1, and conversely, if a convex balanced 
set W in E is such that W (\ E" absorbs H,,_ l' then W (\ E,,_ 1 contains a set homo­
the tic to Wn - 1 for all n ~ 1, and hence W is a neighbourhood of 0 in E. 

2) Let F be a locally convex space, k an integer ~ 0 and f: Ek -+ F a 
multilinear mapping. For I to be continuous, it is necessary and sufficient 
that the restriction of f to E~ is continuous for every n. We verify imme­
diately that Ek has the final locally convex topology for the family of linear 
mappings 1"" x ... x v":E,, x ... x E" -+ Ex'" x E (II, p. 28, cor. 2 and p. 30, 
prop. 7) and that u" x ... X u" is a compact injective linear mapping from (E,/ 
into (E,,+ l)k. It is now enough to apply lemma 1. 

5. The spaces EA (A bounded) 

Let E be a locally convex space and A be a convex balanced subset of E. We 
recall that EA denotes the vector space generated by A, with PA the gauge of A, 
as the semi-norm (II, p. 26, Example 3). We verify immediately that the canonical 
injection of EA into E is continuous if and only if A is bounded. If, in addition, E is 
Hausdorff, a bounded set A does not contain a line (Ill, p. 2, Remark 4) and so PA 
is a norm (II, loc. cit.). 

We shall say that a uniform space X is semi-complete if every Cauchy sequence 
in X is convergent. A complete uniform space is semi-complete; but the converse 
is not always true (GT, II, § 4, exerc. 4) ; however, a metrizable semi-complete space 
is complete (GT, IX, § 2, No.6, prop. 9). 

PROPOSITION 8. - Let E be a HausdOlfJ locally convex space and let A be a closed, 
balanced, bounded and convex subset ()fE. Let (x,,) he a Cauchy sequence in EA' Then 
this sequence converges in EA if and only if it converges in E. 

The canonical injection from EA into E is continuous. Hence, if (x) converges 
in EA, it converges in E. Conversely, suppose (XII) converges to y in E. There exists 
an increasing sequence of integers (nk ) such that PA(Xm - x,,) ~ 2- k - 1 if m ~ nk 

and n ~ nk . Therefore the sequence (Xllk + rkA) is decreasing. Since A is closed 
in E, we have ),En(x"k + 2- kA), which proves that (XIIJ, hence (:x), converges 

k 

to y in EA' 
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CoROLLARY. - If A is semi-complete (in particular, complete) then EA is a Banach 
space. 

In fact, a Cauchy sequence in EA is also a Cauchy sequence for the topology of 
E and is contained in a set homothetic to A, hence converges in E. 

6. Complete bounded sets and quasi-complete spaces 

DEFINITION 6. - A locally convex space E is said to be quasi-complete if every closed 
and bounded subset ofE is complete (for the uniform structure induced by that of E). 

A complete locally convex space is quasi-complete, but the converse is not always 
true. * For example, if E is an infinite dimensional Hilbert space, or more generally, 
an infinite dimensional reflexive Banach space, then E with its weakened topology 
is quasi-complete but not complete (II, p. 51, prop. 9). * 

A quasi-complete space is semi-complete, since every Cauchy sequence is con­
tained in a closed and bounded subset (III, p. 3, corollary and prop. 1). In particular, 
a locally convex metrizable and quasi-complete space is complete. 

In a Hausdorff quasi-complete space, the closure and the closed convex balanced 
envelope of a precompact subset are compact; in fact, they are precompact (II, 
p. 25, prop. 3), and complete being closed and bounded (III, p. 3, prop. 2). 

PROPOSITION 9. - (i) A closed vector subspace of a quaSi-complete locally convex 
space is quasi-complete. 

(ii) The product of quasi-complete locally convex spaces is quasi-complete. 
(iii) The topological direct sum of quasi-complete locally convex spaces is quasi­

complete. 
(iv) A locally convex space which is the strict inductive limit of a sequence of closed 

quasi-complete subs paces is quasi-complete. 
Assertion (i) follows from Remark 2 (III, p. 2), (ii) from III, p. 4, cor. 2, (iii) from 

prop. 5 (III, p. 5) and (iv) from prop. 6 (III, p. 5). 

We shall see later that the quotient space of a quasi-complete locally convex space 
by a closed vector space is not necessarily quasi-complete (IV, p. 63, exerc. 10). 

PROPOSITION 10. - Let E be a locally convex space, M a vector subspace of E such 
that every point ofE is in the closure of a bounded subset ofM. Then every continuous 
linear mapping f from M into a Hausdorff quasi-complete locally convex space F 
uniquely extends to a continuous linear mapping from E into F. 

The hypothesis implies that M is dense in E, hence f extends uniquely to a conti­
nuous linear mapping j from E into the completion F of F (GT, III, § 3, No.4, corol­
lary). But every x E F lies in the closure ofa bounded subset B ofM; hence f(x) is in the 
closure of f(B) in F. But f(B) is bounded in F, hence its closure in F is complete, 
and coincides with its closure in F. This proves that j(x) E F. 
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7. Examples 

a) Let X be a topological space. Let ~(X), the vector space of numerical (finite) 
functions on X be assigned the topology of compact convergence (OT, X, S 1, No.3) : 
this is the coarsest topology for which the restriction mappings .J1'(X) -+ ~(H) 

are continuous (where H runs through the family of compact subsets of X and 
where ~(H) is assigned the topology of uniform convergence). Cor. 3 of Ill, p. 4 shows 
that a subset A of ,~(X) is bounded if and only if, for every compact subset H of X, 
the set of restrictions to H of functions belonging to A is uniformly bounded. 

* b) (Spaces of infinitely differentiable functions.) Let n ~ 1 be an integer. For 
every open set U in R/I, let (6'''XJ(U) denote the vector space of infinitely differentiable 
functions on U(VAR, R, 2. 3). Letfbein ~Xl(U). For every multi-index ex=(ex1 .... , ex/l) 
in Nil, 8"fdenotes the partial derivative 81"1f!8x~' ... ?X~'; this is a continuous function 
on U (V AR, R, 2.3 and 2.4). For every integer In ~ 0, and every compact subset 
H of U, set 

(1) Pm.if) = sup 18~f(x)l· 
1"I:;;m 

XEH 

Then Pm,H is a semi-norm on ~ Y(U). 
Let !{;' X(U) be assigned the topology defined by the semi-norms Pm,H' This is 

the coarsest of the topologies for which the mappings f --+ 8~l from ~ oo(U) into 
.~(U) are continuous, where ~(U) is assigned the topology of compact convergence. 
There exists an increasing sequence of compact subsets (H)/I '" 0 of U whose interiors 
cover U; the family of semi-norms Pm.Hn defines the topology of ~ oo(U) , which then 
becomes a locally convex metrizable space. The space Cf3 feU) is complete; in other 
words, it is a Frechet space (II, p. 24) : in fact, let (1;J be a Cauchy sequence in ~ oo(U) ; 
for every ex E Nil. the sequence (8"t;J converges in the complete space 31>(U) (TO, X, 
§ 1, No.5, tho 1) to a continuous function gao By induction on lexl, we deduce from tho 1 
of FVR. 11, p. 2 that go = 8"go for every ex E Nil. In other words, the sequence (1;) 
converges to go in ~ O0(U). 

Let A be a subset of C(fX'(U). In order that A be bounded, it is necessary and suffi­
cient that the number sup Pm,HU) is finite for every integer m ~ ° and for every 

fEA 
compact subset H of U ; this condition means that for every ex E Nil, the sct of func-
tions a~llH for f E A is uniformly bounded for every compact H c U. 

Let H cUbe compact. We denote by C(f~(U) the subspace of C(f OO(U) consisting 
of those functions whose support lies in H. The space '6"(U) of infinitely differen­
tiable functions with compact support in U is the directed increasing union of 
subspaces Cf3;;"(U) where H runs through the family of compact subsets of U. Each 
space C(f ~(U) will be assigned the topology induced by that of (~W(U), and 'lJ oXc(U) 
with the corresponding inductive limit topology. If the sets HII are such that their 
interiors form a cover of U, then the space (g ooo(U) is the strict inductive limit of 



TVS IILIO SPACES OF CONTINUOUS LINEAR MAPPINGS § 1 

the Frechet spaces ~.L.(U); it is therefore complete (II, p. 32, prop. 9) and every 
bounded subset of XCV) is contained in one of the subspaces ~.L.(V) (I II, p. 5, 

prop. 6). * 
c) (Gevrey's spaces.) Let I be a compact interval in R. For every integer 11 ~ 0, 

D,,! denotes the nth derivative of a numerical function f defined on I (whenever 
this derivative exists). Let s ~ 1 and M ~ 0 be two real numbers. Let ~s.M(I) denote 
the vector space of those infinitely differentiable functions f on I (FVR, I, p. 28) 
for which the sequence (ID'11/M"(n !)S)1l '" 0 is bounded in the space ~(I) of all conti­
nuous functions on I (with the topology of uniform convergence). The space ~S.M(I) 
is a Banach space with the norm 

Ilflls.M = sup ID"f(x)I/M"(n!)s. 
n ~ O,xEI 

For M ~ M', we have ~l}s.\I(I) C ~s.M,(I), and 

Ilflis,M' ~ IIIlls,M 

for every IE ~s.M(I). Let ~lT) denote the union of the spaces ~,.:,iI) and endow 
it with the inductive limit topology of the topologies of ~s.M(I). 

Let M < M' and let B be the unit ball (closed) in ~s.\1(I). We will prove that B 
is a compact subset of the Banach space ~s.rvl'(I). It is clear that B is closed in ~s.M,(I) 
and so it is enough to prove that B is precompact in ~s.\I,(l), Let E > 0 and let N 
be a positive integer such that (M/M,)N ~ E/2. Let k be a positive integer; the set 
of all functions Dk + if, as f ranges over B, is bounded in ~(I), hence the set of all 
functions Dk{, as I ranges over B, is relatively compact in ~(I) : this follows from 
the theorem of finite increments (FVR, I, p. 23, cor. 1) and from Ascoli's theorem 
(GT, X, § 2, No.5). We define a norm on ~s.M(I) by 

qeD = sup ID"I(x)I/M"'(n !)S . 
O~n~N 

xEl 

The above argument shows that B is precompact for the topology associated with 
the norm q; in other words, there exists a finite subset C of B such that for every 
fEB, there exists gEe such that q(f - g) ~ E. Finally, for every n > N, we have 

from which we get II f - gil ~ E. This proves that B is precompact in ~s.M(T), 
The space ~s(I) is the inductive limit of the spaces ~sin as k ranges over N : by 

prop. 7 (III, p. 6) every bounded subset of q/I) is contained in one of the spaces 
~s.k(I) and is relatively compact in this space. 

* d) (Spaces of holomorphic functions.) Let n ~ I be an integer. For every open 
subset U of en, yt'(V) denotes the space of functions holomorphic in V, and is 
assigned the topology of compact convergence in U. For every compact subset L 
of C", ,iIf'(L) denotes the space of germs of hoi om orphic functions in a neighbourhood 
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of L; we endow this space with the finest locally convex topology for which the 
canonical mappings Te v : X(U) -+ X(L) are continuous, where U ranges over the 
set of open neighbourhoods of L. 

For every integer m ~ 1, let Urn be the set of points of C" which are at a distance 
< 11m from L. It can be shown that the canonical mapping Teum from X(Um) into 
X(L) is injective, and that the restriction mapping from x(U rn ) into X(Up ) is 
compact for p ~ m. We can then apply prop. 7 (III, p. 6). Let A be a bounded subset 
of X(L); then there exists an integer m ~ 1 such that A consists of germs of func­
tions in a neighbourhood of L, belonging to a bounded set B in X(Um ). Moreover, 
a mapping <!> from X(L) into a topological space T is continuous if and only if 
the mapping <!> 0 Teu from X(U) into T is continuous for every open neighbourhood 

U of L. * 

§ 2. BORNOLOGICAL SPACES 

In this paragraph, E denotes a locally convex space, and I.E its canonical bor­
nology (III, p. 3, def. 5). 

Lemma 1. - Let G be a semi-normed space, p its semi-norm, and u a linear mapping 
fi"om G into E. The following conditions are equivalent : 

(i) u is continuous; 
(ii) the image of the unit ball of Gunder u is bounded in E; 
(iii) for every sequence (x") of points ofG tending to 0, the sequence (u(x")) is bounded 

in E. 

It is immediate that (i) implies (ii) (III, p. 4, cor. 1) and that (ii) implies (iii). Let V 
be a neighbourhood of 0 in E; if u- leV) is not a neighbourhood of 0 in G, then there 

exists a sequence (y") of points of G - u-l(V) such that p(y") :::; ~. Hence the 
n 

sequence x" = ny" tends to 0 in G and u(x") ~ nY, which implies that the sequence 
(u(x"») is not bounded. Therefore (iii) implies (i). 

PROPOSITION 1. - The following conditions are equivalent : 
(i) Every semi-norm on E which is bounded on bounded subsets ofE is continuous. 
(i') Every convex balanced subset of E which absorbs the bounded subsets of E 

(I, p. 7, def. 4) is a neighbourhood of 0 in E. 
(ii) E is the inductive limit of the semi-normed spaces EA , where A ranges over the 

directed increasing set of closed, convex, balanced and bounded subsets of E. 
(ii') There exists a family (E)iEl of semi-normed spaces, and for every i E I, a linear 

mapping ui : Ei -+ E such that the topology ofE is the Jinest locally convex topology for 
which the ui are continuous. 

(iii) For an arbitrary locally convex space F, a linear mapping u : E -+ F is continuous 
if and only iffor every sequence (x,,) ofpoints in E tending to 0, the sequence (u(x,,») is 
bounded in F. 



TVS IIU2 SPACES OF CONTINUOUS LINEAR MAPPINGS §2 

(iii') For an arbitrary semi-normed space F, a linear mapping u : E ---+ F is conti­

nuous if and only if u(X) is bounded in F for every bounded se t X in E. 
It is immediate that (i) and (i') are equivalent in view of the correspondence 

between semi-norms and convex, balanced, absorbent subsets (II, p. 20). If p is a 
semi-norm on E, which is continuous on each EA , then p is bounded on bounded 
subsets of E; hence (i) implies (ii) (II, p. 27, prop. 5). It is clear that (ii) implies (ii'). 

Now let (Ei' U)iEI be as in (ii') and let u be a linear mapping from E into a locally 
convex space F, such that (u(xn)) is bounded in F for every sequence (XII) of points of 
E tending to 0. It follows from lemma I ofIII, p. 11 that the linear mapping u 0 ui : Ei---+ F 
is continuous for all i E 1. Hence, if the topology of E is the finest locally convex 
topology for which the ui are continuous, then u is continuous (II, p. 27, prop. 5). 

This proves that (ii') implies (iii). 
It is immediate that (iii) implies (iii') (III, p. 3, cor.) Finally, if p is a semi-norm on E, 

which is bounded on bounded subsets ofE, the condition (iii') asserts that the identity 
map is continuous from E into the semi-normed space (E, p); in other words, p is 
continuous. This proves that (iii') implies (i). 

DEFINITION 1. ~ A locally convex space is said to be bornological if it satisfies the 

equivalent conditions of prop. 1. 

Examples. ~ 1) Every semi-normed space is bomological. 
2) In particular, every finite dimensional locally convex space is bomological. 
3) On account of the transitivity of final locally convex topologies (II, p. 28, cor. 2), 

we deduce at once from condition (ii') that if(EJiE' is a family oflocally convex bomo­
logical spaces and if E is assigned the finest locally convex topology for which the 
linear mappings ui : Ei ---+ E (for i E 1) are continuous, then E is bomological. In 
particular, all inductil'e limit, a direct sum, a quotient space olbornological spaces are 
bornological spaces. 

On the other hand, a closed subspace of a bomological space is not necessarily 
bomological (IV, p. 63, exerc. 8). 

COROLLARY . ~ Every Hausdorff and semi-complete bornological space is an inductive 

limit of Banach spaces. 

In fact, the spaces EA, where A is closed and bounded are Banach spaces (III, 
p. 8, corollary). 

PROPOSITION 2. ~ A locally convex metrizable space is bornological. 

Suppose E is metrizable, and p a semi-norm on E which is bounded on bounded 
subsets of E, but which is not continuous. Let A be the set of all x E E such that 
p(x) < 1. Let (VII)n '" 1 be a decreasing sequence forming a fundamental system of 
neighbourhoods of ° in E. Since p is not continuous, A is not a neighbourhood of 0; 
hence for every n > 0, we have A:::p n-1Vn and there exists a point xn in Vn' such 
that n -1 Xn ¢ A, that is, p(xn) ~ n. The sequence (x,.) tends to 0, hence is bounded 
(III, p. 3, corollary); this contradicts the hypothesis on p. 
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COROLLARY. - Every Frechet c\pace (II, p. 24) is the inductive limit of Banach spaces. 

§ 3. SPACES OF CONTINUOUS LINEAR MAPPINGS 

1. The spaces 23 (E ; F) 

Let F be a topological vector space, E an arbitrary set, and 6 a family of subsets 
of E. Consider the vector space FE with the uniform structure of 6-convergence 
(GT, X, § 1, No.2). We know that this structure is compatible with the commutative 
group structure of FE (GT, X, § 1, No.4, cor. 2). The topology so deduced is called the 
6-topology. If X is a subset of FE, or more generally, a set with a mappingj: X --+ FE, 
then the unverse image underj of the 6-topology on FE is called the 6-topology on X. 

Remarks. - 1) The 6-topology is identical with the 6'-topology, where 6' denotes 
the bomology generated by 6 (III, p. 1). 

2) Let M E 6 and let V be a neighbourhood of 0 in F; let T(M, V) denote the set 
of all f E FE such that f(x) E V for every x E M. If 6 is stable under finite unions, 
the sets T(M, V) form a fundamental system of neighbourhoods of 0 for the 6-
topology of FE. 

PROPOSITION 1. - Let E be a set, 6 a family of'subsets of' E, F a topological rector 
space and H a rector subspace of FE. In order that the 6-topolog}' be compatible with 
the vector space structure of H. it is necessary and sufficient that u(M) is bounded in F 
for every u E H and every M E 6. 1/; moreover, F is locally convex, then the 6-topology 

on H is locally convex. 
On account of Remarks 1) and 2) above, we see that a necessary and sufficient 

condition for the 6-topology to be compatible with the vector space structure of H 
is that the sets H n T(M, V) are absorbent in H (I, p. 7, prop. 4); but this implies 
that for every u E H, every subset M E 6, and every balanced neighbourhood V of 0 
in F, there exists Ie i= 0 such that u(M) c leV; that is to say (III, p. 2) that u(M) is 
bounded in F. Finally, the last assertion of the proposition follows from the fact 
that if V is convex, so is T(M, V). 

COROLLARY, - Let E and F be two locally convex spaces, 6 a family of bounded sub­
sets ofE, and 2(E; F) the vector space of continuous linear mappings from E into F. 
Then the 6-topology is compatible with the vector space structure of 2 (E; F) and 

is locally convex. 
I t is enough to remark that if u is a continuous linear mapping from E into F and M 

is a bounded subset of E, then u(M) is bounded in F (III, p. 4, cor. 1). 

Given two locally convex vector spaces E and F, and a family 6 of bounded 
subsets of E, let 23 (E; F) denote the locally convex space obtained by assigning 
the 6-topology to 2(E; F). 
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Examples. - 1) If is is the set of all finite subsets of E, then the is-topology is 
the topology of simple convergence and the space !i'G (E; F) is also denoted by 
!i'/E; F). A bounded subset of !i's(E; F) is called a simply bounded subset of !i' (E ; F). 

2) If is is the set of compact (resp. precompact, compact convex) subsets, then the 
is-topology is called the topology of compact (resp. precompact, compact convex) 
convergence and the space !i'6(E; F) is also denoted by !i'c(E; F) (resp. !i'pJE; F), 
!i'c/E; F)). (Cf IV, p. 48, exerc.7.) 

3) If is is the set of all bounded subsets of E, we say that the is-topology is the 
topology of bounded convergence and the space !i'G (E; F) is denoted by !i'b(E; F). 

4) When F = K, the space !i'(E; F) is the dual E' of E. We denote by E'G, E~ etc. 
the space !i' 6 (E; K), !i'sCE; K) etc. The space E~ (resp. E~) is called the weak dual 
(resp. strong dual) of E. A bounded subset of E~ (resp. E~) is said to be weakly (resp. 
strongly) bounded. We observe that the weak topology on E' is none other than 
0(E', E) (II, p. 42). 

When E = F, we denote by !i'(E), !i'G (E) etc. the space !i'(E; F), !i'G (E; F) etc. 
Letp be a continuous semi-norm on F and M a bounded subset ofE. Let 

(1) PM(U) = sup p(u(x)) . 
XEM 

It is immediate that PM is a semi-norm on !i'(E; F) and that if r is a fundamental 
system of semi-norms on F, the family of semi-norms PM' where p ranges over rand 
M ranges over a base for the bomology generated by 6, is a fundamental system of 
semi-norms of !i'G (E; F). 

In particular, if E and Fare semi-normed spaces, and if p (resp. q) denotes the 
semi-norm of E (resp. F), then the topology of bounded convergence on !i'(E; F) 
is defined by the semi-norm 

(2) r(u) = sup q(u(x») 
p(x)~ 1 

(ct: GT, X, § 3, No.2). When we consider !i'b(E; F) as a semi-normed space, we 
shall always, unless the contrary is expressly stated, mean the semi-norm (2). If F 
is a normed space, the semi-norm (2) is a norm. 

Remarks. -- 3) Let A be a dense subset of the unit ball of E. In view of the continuity 
of u, we also have 

(3) r(u) = sup q(u(x» . 
XEA 

For example 

(4) r(u) = sup q(u(x». 
pix) < 1 

Since we have u(tx) = tu(x) for t E R, we also have, 

(5) 

whenever p i= O. 

q(u(x» 
r(u) = sup q(uCx» = sup -(-)-

pix) ~ 1 pix) oF 0 P x 

4) The formula (2) shows that the map u f-+ r(u) is lower semi-continuous on !l'sCE; F). 
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PROPOSITION 2. - Let E and F be /11"0 locally COl11'ex spaces and let G be a sel of 

bounded subsets of E. 
1) The G-topologl' on 2(E; F) is identical with the '~-topology, where 6 denotes 

the smallest adapted, bomoloxy (III, p. 3) on E which cOl1tains2:. 
2) Suppose that {O} is I/O! dense in F and let 6' be another set of hounded subsets 

of E. Then the G'-/opologr is coarser than the 6-topology if alld only if 6' c 6. 
Let u E 2J(E: F). M E 2: and let p be a continuous semi-norm on F. Since p 0 u 

is a continuous semi-norm on E, this is the same as saying that p 0 u is bounded 
above by 1 on M or on the closed, convex balanced envelope M ofM; in other words, 
we have PM = PM' Moreover, it is clear that we have PAM = APM for all A > 0 and 
PMuM' = SUP(PM' PM')' from which the first assertion follows, since 6 has the set 
of homothetics of the closed convex balanced envelopes of finite unions of sets of 6 
as a base. 

We now prove the second assertion: first, if F is the base field. it follows from the 
definition that the 6-topology on E' = 2(E; F) has as a fundamental system of 
neighbourhoods of 0, the set of polars of the sets of ~. Let A be a bounded subset 
of E, whose polar A C is a neighbourhood of 0 for the ~-topology; then there exists 
a closed convex balanced set B E 6 such that A 0 =:J B, and so A c BOo; but by 
cor. 3 of II, p, 45, we have Bee = B, and hence A c B and A E ~. Therefore if 6' 
is a set of bounded subsets of E, the G'-topology is coarser than the G-topology 
on E' if and only if 6' c 6. The general case follows immediately, since if Y E F 
is not in the closure of 0, we can verify that the mapping which makes fEE' cor­
respond to the mapping x ~ f(x) y is an isomorphism of the locally convex spaces 
E'~ onto its image in 2 6 ,(E; F). 

2. Condition for 22: (E ; F) to be Hausdorff 

PROPOSITION 3.-- Lf!t E and F be two locally COIIl'ex spaces, F hf!ing assumed 

Hausdorff, and let \3 be a f{zl11ily of bounded subsets of E. If I he union A ol the sets of 6 
is total in E, then the space :t'e;CE; F) is Hausdorff. 

Let Uo be a non-zero element of 2(E; F); since Uo is continuous and A is total 
in E, there exists an Xo in A such that uo(xo) i= 0, Since F is Hausdorff, there exists 
a neighbourhood V of 0 in F such that uo(xo) if v. Let M E 6 be such that Xo E M, 
Then the set U of all u E 2 (E; F) such that u(M) c V is a neighbourhood of 0 in 
2(E; F), and we have Uo if U, hence 2(E; F) is Hausdorff. 

In particular, the following topologies on 2(E; F) arc Hausdorff whenever F is 
Hausdorff : simple convergence, compact convergence, precompact or compact 
convex, and bounded convergence. 

3. Relations between :t' (E ; F) and 2 (E ; F) 

Let E and F the two Hausdorff locally convex spaces, and suppose F is com­
plete; let E be the completion of E. Since every continuous linear mapping u from E 
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into F extends uniquely to a continuous linear mapping Ii from E into F, we can 
identify the spaces 2'(E; F) and 2'(E; F) by the mapping u f--+ u. In addition, let 
6 be a family of bounded subsets of E; the 6-topology on 2'(E; F) coincides with 
the 6-topology on 2'(E; F) and also with the eo-topology, where 2; denotes the 
family of closures in E of sets of 6. 

For example, if E is normed, the topology of bounded convergence on 2'(E; F) 
is identical with the topology of bounded convergence on 2'(E; F) : for, every 
bounded subset of E is contained in the closure of a bounded subset of E. Since the 
unit ball ofE is the closure of the unit ball ofE, it follows from formula (3) (III, p. 14) 
that ifF is a Banach space, the map u f--+ U is an isometry from 2'(E; F) onto 2'(E; F). 

We observe that if E is not a normed space, then there may exist bounded subsets 
ofE which are not contained in the closure of any bounded subset ofE (for example, 
if E is the weak dual of an infinite dimensional Banach space); however, this is so 
if E is metrizable and satisfies the first axiom of countability (III, p. 39, exerc. 16). 

4. Equicontinuous subsets of 2' (E ; F) 

Let E and F be two locally convex spaces. For a subset H of Y(E: F) to be equi­
continuous it is necessary and sufficient that it is equicontinuous at the point 0 in E 
(I, p. 9, prop. 6); this implies that for every neighbourhood V of 0 in F, the set 
n u- leV) is a neighbourhood of 0 in E; or that for every continuous semi-norm 

UEH 

p on F, the function sup (p 0 u) is a continuous semi-norm on E. Moreover (I, p. 5), 
UEH 

H is uniformly equicontinuous. We note that the convex balanced envelope of an 
equicontinuous subset is equicontinuous, since if p is a continuous semi-norm on 
F and H the convex balanced envelope of H, we have, for the U j in H, the inequality 
po (I lejuJ ~ I IleJ(p 0 uJ hence sup(p 0 u) = sup(p 0 u). 

j j ~H ~H 

Consequently, the family of equicontinuous subsets is a convex bomology on 
2'(E; F)(JII, p. 2, def 2). 

PROPOSITION 4. - Let E, F be two locally cOl1l'ex spaces, and F be Hausdorf.f: Let 
the space FE of all mappings from E into F be assigned the topology of simple conver­

gence. Then 
(i) The set of linear mappingsfrom E into F is closed in FE. 
(ii) IfH is an equicontinuous subset of 2'(E; F), the closure H of H in FE is con­

tained in 2'(E; F) and is equicontinuous. 

We know that His equicontinuous (GT, X, § 2, No.3, prop. 6). It remains to prove 
the assertion (i). Let x, y be in E and Ie, f.! in K, and let A(x, y, Ie, f.!) be the set of all 
u E FE such that 

u(b + flY) - leu(x) - f.!u(y) = O. 

This set is closed in FE since the mapping u f--+ u(x) from FE into F is continuous 
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for every x E E and since F is Hausdorff. But the set of linear mappings from E into F 
is equal to 

n A(x, y, Ie, 11) . 
x,y,J....,J.l 

Thus this set is closed in FE. 

COROLLARY 1. - For an equicontinuous subset H of 2(E; F) to be relative~v compact 
in 2s(E; F), it is necessary and sufficient that for all x E E, the set H(x) of all u(x) 
as u ranges over H, is relatively compact in F. 

In fact, this condition is necessary and sufficient for H to be compact in FE (GT, I, 
§ 9, No.5, cor.). 

COROLLARY 2. - Every equicontinuous subset of the dual E' of E is relatively compact 
for the weak topology O'(E', E) on E' (III, p. 14, Example 4). 

For, ifH is an equicontinuous subset ofE', sup lui is a continuous semi-norm on E; 
UEH 

in particular, for every x E E, the set H(x) is bounded, hence relatively compact in 
the field of scalars. 

COROLLARY 3. - In the strong dual E~ of a semi-normed space E, every closed ball 
is compact for the weak topology O'(E', E). 

This ball is also closed for O'(E', E). 

PROPOSITION 5. - Let E and F be two locally convex spaces and let T be a total subset 
of E. The following uniform structures coincide on every equicontinuous subset H of 
2(E; F) : 

1) the uniform structure of simple convergence in T; 
2) the uniform structure of simple convergence in E; 
3) the uniform structure of convergence in the precompact subsets of E. 
We recall (III, p. 15, prop. 2) that the S-topology on 2(E; F) coincides with the 

6-topology, where 6 is the smallest bomology adapted to E and containing S. 
In the statement of prop. 5, we can therefore replace the word « total» by « every­

where dense ». The proposition then follows from the general properties of equi­
continuous sets (GT, X, § 2, No.4, tho 1). 

Examples. - * 1) Let J.l be the Lebesgue measure on R, and let E be the semi-normed 
space 2 P(J.l) (1 :(; p < co) (INT, TV). For every numerical function f and every real 
number h, let .f;. be the function x f--> f(x - h). Clearly the mapping f f--> J;. defines a 
linear isometry from E onto itself. If f is continuous and has compact support, then fh 
converges to f uniformly, hence also in the mean of order p, as h tends to O. Since the 
set ff(R) of all continuous functions with compact support is dense in E, and the set 
of linear isometries of E is equicontinuous, it follows from prop. 5 that for every fEE, 
J;. converges in the mean of order p to f as h tends to O. 

For p = 1, consider the Fourier transform, which associates to each f E 2 1(J.l) the 
function J on R defined by 

J(y) = f e- 2inxYf(x) dJ.l(x) . 
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The set of linear forms .f f-> ley) is an equicontinuous subset of the dual of 5£' 1 (J.l). 
On the other hand, we know that the set T of all characteristic functions of closed 

bounded intervals is a total subset of 5£' 1(J.l); and we verify easily that for all .f E T, 
the Fourier transform I is a continuous function tending to zero at infinity. We deduce 
that this is true for all .f E 5£' 1(J.l) (<< Riemann-Lebesgue theorem »). 

The relation sup 1/(y)1 ~ Ilfii 1 shows that the map f f-> I is a continuous map 
.vER 

from 5£'1 (J.l) into the space .~(R) of all bounded functions on R with the structure of 
uniform convergence. Since lis continuous for all f E T, it follows that lis continuous 
for all .f E U(J.l). The fact that ltends to zero at infinity follows from the fact that the 
subspace '?fa(R) of all continuous functions tending to zero at infinity is closed in &i9(R). 

2) Let E be the space of all continuous numerical functions on R endowed with the 
topology of compact convergence. Let K be a compact subset of R and let (J.ln) be a 
sequence of measures on R with support in K. Suppose IIJ.lnll ~ 1 for all n. The set of 
the J.ln is then an equicontinuous subset of E'. Therefore, if for every function .f E E, 

we have lim J.l,,(.f) = 0, the sequence of functions x f-> fei,xdJ.ln(t) converges to 0, 
lI-tifj 

uniformly on every compact subset of R (since the set of functions t f-> ei'x, as x ranges 
over a compact subset of R, is compact in E). * 

COROLLARY. - Suppose F is Hausdorff Let H be an equicontinuous subset of 2(E; F). 
If a filter <D on H converges simply to a mapping Uo from E into F, then Uo is a continuous 
linear mapping Fom E into F, and <D converges uniformly to Uo on every precompact 
subset of E. 

The first assertion follows from prop. 4 (III, p. 16) and the second from prop. 5 
(III, p. 17). 
PROPOSITION 6. - Let H be an equicontinuous subset of 2(E; F). If F is metrizable 
and (f there exists a countable total set in E, then the uniform structure on H of simple 
convergence in E is metrizable. If in addition, there exists a countable total set in F, 
then there exists a countable everywhere dense set in H (for the topology of uniform 
convergence on compact subsets of E). 

Let (an) be a total sequence in E. Then the mapping u f-+ (u(an)) is an isomorphism 
from 2(E; F), where 2(E; F) has the uniform structure of simple convergence 
on the set of the an' onto a uniform subspace ofFN. IfF is metrizable (resp. metrizable 
and satisfies the first axiom of countability) then this is also true for FN (GT, IX, § 2, 
No.4, cor. 2 and § 2, No.8, corollary), and the proposition follows from prop. 5 
(III, p. 1 7). 

COROLLARY 1. - Let E be a locally convex metrizable space, and F a normed space. 
Suppose that E and F both satisfy the first axiom of countability. Then 2(E; F) is the 
union of a countable family of equicontinuous subsets and there exists a countable 
set in 2(E; F) which is dense for the topology of uniform convergence on precompact 
subsets of E. 

Let B be the unit ball of F and (Vn) a countable fundamental system of neighbour­
hoods of 0 in E. For every integer n, the set Hn of all u E 2(E; F) such that u(Vn) c B 
is equicontinuous and 2(E; F) is the union of the Hn. The corollary then follows 
from prop. 6. 
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COROLLARY 2. - Every closed ball in the dual E' of a normed space satisfying the jirst 
axiom of countability, is a compact metrizable space for the weak topology cr(E', E). 
andfor this topology there exists a counfaMe dense subset in E'. 

This follows from prop. 6 and from HI, p. 17, cor. 3. 

5. Equicontinuous subsets of E' 

In this section, E denotes a locally convex space and E' its dual. Whenever we 
talk of the polar M O of a set M in E (resp. E'), we shall always mean, unless otherwise 
stated, the polar of M relative to the duality between E and E'. Recall that if Y is a 
closed convex balanced neighbourhood of 0 in E, we have YOO = Y (II, p. 45, cor. 3). 

PROPOSITION 7. - Let M be a subset of E'. The j()llowing conditions are equivalent: 
(i) M is equicontinuous; 
(ii) M is contained in the polar of a neighbourhood of 0 in E; 
(iii) the polar of M is a neighbourhood of 0 in E. 
If M is equicontinuous, there exists a convex balanced neighbourhood Y of 0 

such that iu(x)i ~ 1 for all x E Y and all u EM; then we have that M c yo and (i) 
implies (ii). With the same notations, if M c yo then Y c YOO c Me and (ii) implies 
(iii). Finally, if M O contains a convex balanced neighbourhood Y of 0, then 
M c Me, c yo and the relations x E £Y, u EM imply iu(x)i ~ £ for all £ > 0, 
which proves that (iii) implies (i). 

We remark that every x E E defines a mapping j(x): u H u(x) from E' into K. 
Hence we can talk of the 6-topology on E, whereS is a family of subsets of E' : this 
is the inverse image under j of the 6-topology on KE'. We verify immediately that 
if S is a convex bomology on E', then the po lars of sets ofS form a fundamental 
system of neighbourhoods of 0 for the S-topology on E. This is so, in particular, 
when 6 is the family of equicontinuous subsets of E' and prop. 7 implies: 

COROLLAR y 1. - The topology of E is identical )vith the topology of uniform con ver­
gence on equicontinuous subsets of E'. 

More generally, let F be a locally convex space; every u E 2'(E; F) defines a map 
j(u): (x, f) H f(u(x)) from E x F' into K (i.e. into R or C). This enables us to define, 
on the space 2'(E; F), the topology of uniform convergence on a set of subsets of 
E x F'. Tn particular: 

COROLLARY 2. - Let S be a family of bounded subsets of E. TheS-topology 
on 2'(E; F) is the topology of uniform convergence on sets of the form A x BeE x F', 
where A is in 6, and B belongs to the family of equiconrinuous subsets ofF'. 

For every u E 2'(E; F), every A E 6 and every closed convex balanced neighbour­
hood Y of 0 in F, the relation u(A) c Y is equivalent to «j(u) (A x YO) is contained 
in the unit ball of K ». 

PROPOSITION 8. - Let H be a family of linear mappings from E into a locally convex 
space F. For H to be equicontinuous, it is necessary and sujficient that for every equi-
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continuous subset X in the dual F' of F, the set of linearforms f 0 u, for f E X and u E H, 
is equicontinuous. 

It is obvious that the condition is necessary. Suppose it is verified, and let V be 
a closed convex balanced neighbourhood of ° in F. Since VO is equicontinuous, 
there cxists a neighbourhood W oro in E such that If(u(x»1 :(: 1 for all x E W, U E H 
and f E VO ; in other words, u(W) c v eo = V for all u E H, hence His equicontinuous. 

6. The completion of a locally convex space 

THEOREM 1 (Grothendieck).- Let E be a locally convcx 5pace, and let 6 be an adapted 
and covering homology on E. Let F c E* be the space of those linear forms on E 
\I'hose restriction 10 each set belonging to 6 is continuous. If F is assigned Ihe 2-
IOjiO!ogy, then tlze canonical injection Fom E'e: into F extends to an isomOlphismji'o/11 
the completion E'e: of Fe: onto F. 

Since every simple limit of linear forms on E is a linear form (Ill, p. 16, prop. 4) 
and since the bornology 6 on E is covering, it follows from GT, X, ~ 1, No.6, cor. 2 
that the space F with the 6-topology is Hausdorff and complete. It is clear that Es is a 
topological vector subspace of F; hence it is enough to prove that E'e: is everywhere 
dense in F. This follows from the following lemma: 

Lemma 1.- Let A be a closed convex balanced subset of E and let u be a linear form 
on E whose restriction to A is continuous. Then for every £ > 0, there exists an x' E E' 
such that 

lu(x) - <x, x'>1 :(: £ for every x EA. 

Let £ > O. There exists a closed convex balanced neighbourhood U of ° in E such 
that lu(x)1 :(: £ for all x E UnA. We know that the polar U ofU in E* is contained 
in E' and is compact for the topology O'(E*, E) (III, p. 17, cor. 2). Since the polar 
A C of A in E* is closed for cr(E*, E), it follows that AC + U C is a closed convex subset 
of E* (GT, III, § 4, No. 1, cor. 1). 

Let C be a closed convex balanced subset of E. Then C is closed for cr(E, E') 
(II, p. 45, cor. 3), hence also for cr(E, E*), and as a consequence, we have C = Coo 
(for the duality between E and E*). As a result, we have 

from which, we get 

(A n ur c (A C + uey" = A' + U . 

Since the linear form E - 1 U belongs to (A n U). there exist z; E A 0 and W E U C such 
that u = lO(u + w). Hence x' = lOW belongs to E' and u - x' = lOU is bounded above 
in absolute value by £ on A; hence the lemma. 

Now let E be a locally convex Hausdorff space and E its completion. Every conti­
nuous linear form f on E extends to E by continuity: hence we have (E)' = E' 
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(III, p. 16) and every element of E defines a linear form on E'; that is, an element of 
the algebraic dual E'* of E'. In addition, the duality between E (resp. E) and E' is 
separating (II, p. 24, cor. 1). Consequently E and E can be identified with vector 
subspaces of E'*. 

THEOREM 2. - Let E be a locally convex HausdOl:ff space and E its completion; we 
identify E and E with vector subspaces of E'*. Then for an element f E E'* to belong to 
E, it is necessary and sufficient that the restriction off to every equicontinuous subset 
of E' is continuous for the topology a(E', E). 

The space E can be identified with the topological dual of E' when E' is assigned 
the topology a(E', E) (II, p. 43, prop. 3); on the other hand, if 6 is the set of equi­
continuous subsets ofE', the given topology on E is the6-topology (III, p. 19, cor. 1). 
Then it follows from III, p. 13, prop. 1, that the sets of 6 are bounded for a(E', E) 
(cl later on, III, p. 22, prop. 9); in other words, 6 is an adapted and covering bor­
nology for the topology a(E', E). Theorem 2 is then a consequence of tho 1 if we 
replace E by E' and E'e; by E. 

COROLLARY 1 (Banach). - Let E be a Hausdorff and complete locally convex space. 
In order that a linear form on E' be continuous for the weak topology a(E', E) (i.e. 
arises from an element of E) it is sufficient that its restriction to every equicontinuous 
subset of E' is continuous for a(E', E). 

Remark. - Suppose in addition, that there exists a countable total set in E; then 
every equicontinuous subset of E' is metrizable for the topology a(E', E) (III, p. 18, 
prop. 6); therefore to verify that a linear form u on E' is weakly continuous, it is 
enough to verify that for every equicontinuous sequence (x;,) in E' which converges 
to 0 for a(E', E), we have lim u(x;,) = O. 

n~oc 

COROLLARY 2. - Let (E);EI be a family of Hausdorff local(y convex spaces and let E 
be their topological direct sum. Then the canonical mappingji'om the direct sum of the 
E; into E is an isomorphism. In particular, E is complete if and only if all the E; are 
complete. 

We know that the dual of E can be identified with the product of the duals of the 
Ei (II, p. 30. formula (1)). Let u E E, and let ui E E;* be the restriction of u (considered 
as an element ofE'*) to E; c E'. It is immediate that it is enough to prove that ui = 0 
except for a finite number of indices i E I. Suppose on the contrary that there exists 
a sequence (in)n~N of distinct indices such that ui" #- O. Then there exists Xi" E E;" 
such that ui,,(x;) = n. The set H of all Xi" is equicontinuous in E' and the restriction 
of U to H is not bounded, which is impossible. 

7. 6-bomologies on f/! (E ; F) 

Let E and F be two locally convex spaces and 6 a family of bounded subsets of E. 
To say that a subset H of f/!(E; F) is bounded for the 6-topology means that for 
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every M E 6, every neighbourhood V of 0 in F absorbs the set H(M) = U u(M); 

this is the same as saying that for every M E 6, the set H(M) is bounded in F. Equi­
valently, this means that for every neighbourhood V of 0 in F, the set n u- 1(V) 

UEH 

absorbs every subset M of 6. 

PROPOSITION 9. - Let E andF be two locally convex spaces and 6 afamily of bounded 
subsets of E. Then every equicontinuous subset of 2(E; F) is bounded for the 6-
topology. 

For, if H is an equicontinuous subset of 2(E; F) and V a neighbourhood of 0 
in F, the set n u- 1(V) is a neighbourhood of 0 in E, hence absorbs every bounded 

UEH 

subset of E. 
A subset of 2(E; F) which is bounded for a 6-topology is not necessarily equi­

continuous, even if 6 is covering and 6 is the canonical bomology on E (IV, p. 50, 
exerc. 17). In the following paragraph we shall study, under the name barrelled 
spaces, the spaces E such that every simply bounded subset of 2(E; F) is equiconti­
nuous. For the present note the following result : 

PROPOSITION 10. - Let E be a bornological space (in particular, a metrizable locally 
convex space) and F a locally convex space. Every subset H of 2(E; F) which is 
bounded for the topology of bounded convergence is equicontinuous. 

For every convex balanced neighbourhood V of 0 in F, the set n u- 1(V) absorbs 
UEH 

every bounded subset of E, hence is a neighbourhood of 0 in E; this proves that H 
is equicontinuous. 

8. Complete subsets of 26 (E ; F) 

PROPOSITION 11. -- Let E and F be two locally convex spaces, (S a cover of E con­
sist ing of bounded subsets. If F is Hausdorff and quasi-complete (III, p. 8), then every 
equicontinuous subset H of 2(E; F) which is closedfor the 6-topology is a complete 
un(form subspace of 26 (E; F). 

Since H is bounded in 2 6 (E; F) (III, p. 22, prop. 9) and closed in FE for the 6-
topology (III, p. 16, prop. 4), this follows from cor. 3 ofGT, X, § 1, No.5. 

Remark 1. - Let M be a complete uniform subspace of 26 (E; F). For every set 
of bounded subsets 6 ' ::::> 5 of E, the 5 '-topology is finer than the 5-topology on 
2(E; F); on the other hand, there exists a fundamental system of neighbourhoods 
of 0 for the (S'-topology which are closed for the topology of simple convergence 
(III, p. 13, Remark 2), and a fortiori for the 6-topology. We conclude (GT, III, § 3, 
No.5, cor. 1) that M is complete for the (S'-topology. 

COROLLARY. - Let E and F be two locally convex spaces, H an equicontinuous subset 
of 2(E; F). If F is Hausdorff and quasi-complete and if a filter <II on H converges 
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simpfy at all points of a total subset T ofE, then there exists a eontinuous linear mapping 
u from E into F such that <l> converges uniformly to u on evelT precompact subset of E. 

For, by virtue of prop. 5 (Ill, p. 17) <D is a Cauchy filter for the uniform structure 
of precompact convergence in E; by prop. 11, the closure H of H in £'pc(E; F) is 
complete and so <l> converges uniformly on every precompact subset ofE to a mapping 
uEH. 

Remark 2. ~ Let (un) be a sequence of continuous linear mappings from a Banach 
space E into a Banach space F; it may happen that (un(x») has a limit at every point 
of an everywhere dense vector subspace T of E, without the sequence (un) being 
bounded in the normed space 2(E; F). For example, take E to be the space of all 
continuous numerical functions on R, tending to zero at infinity, with the norm 
Ilfll = sup If(x)1 and let T be the subspace of continuous numerical functions 

XER 

with compact support. The sequence of continuous linear mappings f I-> nf(n) 

from E into R converges to 0 for all f E T, but is not bounded in St;,(E; R). The 
same example shows that in the space 2(T; R), a sequence (c,) may be simply 
convergent and non-bounded for the topology of bounded convergence. 

n 

On the other hand. the seq uence of continuous linear mappings f I-> I f(k) 
k= 1 

is a Cauchy sequence in 2(T; R) for the topology of simple convergence, but does 
not tend to a limit in 2(T; R) for this topology. 

PROPOSITION 12. ~ Let E be a bomologicallocally convex space, F a complete locally 
convex Hausdorff space and 6 a family of bounded subsets of E containing the image 

of every sequence cOl1l'erging to O. Then the space 26 (E: F) is complete. 
Let <D be a Cauchy filter in ~6 (E; F). Then <D is a Cauchy filter for the topology 

of simple convergence, hence converges in FE; moreover, its limit u is a linear mapping 
from E into F and <D convcrges to u uniformly on every set of 3 (GT, X, § 1, No.5, 
prop. 5). It follows that the image under u of a sequence converging to zero is a sequen­
ce converging to zero. hence. that u is continuous, since E is bomological (III, p. 11, 
prop. 1, (iii»). 

COROLLARY 1. ~ The strong dual of a bomological space is complete. 

COROLLARY 2. ~ Let E be a semi-normed space, and F a Banach (resp. Frechet) 
space. The space 2 b(E; F) is a Banach (resp. Frechet) space. In particular, the dual 
of a semi-normed space is a Banach space. 

§ 4. THE BANACH-STEINHAUS THEOREM 

In this paragraph E denotes a locally convex space and E' its dual. Whenever we 
talk of the weak topology on E', we shall mean cr(E', E). 
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1. Barrels and barrelled spaces 

PROPOSITION 1. - Let T be a subset of E. The following conditions are equivalent: 
(i) T is convex, balanced, closed and absorbent. 
(ii) T is the polar of a convex, balanced and weakly bounded set M in E'. 
(iii) There exists a lower semi-continuous semi-norm p on E, such that T is the set 

of all x E E satis/ving p(x) ~ 1. 

(i) => (ii) : under the hypothesis of (i), let M = TO; then M is convex and balanced 
in E'. For every x E E, there exists a real number I' > 0 such that rx E T, hence 

lu(x)1 ~ ~ for all u EM; in other words M is weakly bounded. From cor. 3 of II, 

p. 45, we have T = MO, hence T satisfies (ii). 
(ii) => (iii) : under the hypothesis of (ii), let p(x) = sup lu(x)1 for all x E E. It is 

UEM 

immediate that T = MO consists of all x E E such that p(x) ~ 1. The semi-norm 
p on E' is lower semi-continuous, being the superior envelope of a family of conti­
nuous functions (GT, IV, § 6, No.2, corollary). 

(iii) => (i) : this is clear. 

COROLLARY. - The following conditions are equivalent 
(i) every weakly bounded subset of E' is equicontinuous; 
(ii) every convex, balanced. closed and absorbent set in E is a neighbourhood of 0; 
(iii) evel]! lower semi-continuous semi-norm on E is continuous. 

DEFINITION 1. - A set T satisfying the equivalent conditions of prop. I is said to 
be a barrel in E. 

DEFINITION 2. - A space E is said to be barrelled if it satisfies the equivalent condi­
tions of the corollary of prop. 1. 

We know (III, p. 22, prop. 9) that every equicontinuous subset of the dual E' of E 
is strongly and weakly bounded. We can therefore restate the definition of barrelled 
spaces as follows: 

Scholium. - In the dual of a barrelled space, the class of equicontinuous sets, the class 
of strongly bounded sets, the class of weakly bounded sets and the class of relative~v 
compact sets for the weak topology are all identical. IfE is Hausdorff and barrelled, 

and if E~ is its strong dual, the polars of the neighbourhoods of 0 in one of the spaces 
form a base of the canonical bomology of the other, and the polars of bounded subsets 
of one of the spaces form a base for the filter of neighbourhoods of 0 of the other space. 

PROPOSITION 2. - Every locally convex space E which is a Baire space (GT, IX, § 5, 
No.3) is barrelled. 

Let T be a barrel in E; since T is absorbent, E is the union of closed sets nT (n 
integer> 0); since E is a Baire space, at least one of these sets contains an interior 
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point, hence T itself has an interior point x. If x =I- 0, since - x E T, and 0 is a point 
of the open segment with extremities x and - x, 0 is an interior point of the convex 
set T (II, p. 14, prop. 16). Therefore T is a neighbourhood of O. 

COROLLARY. - Every Frechet space (and in particular, every Banach space) is barrelled. 
This follows from Baire's theorem (GT, IX, § 5, No.3, tho 1). 

PROPOSITION 3. - Let (F)iEI be a family of barrelled spaces, and for every i E I, let J; 
be a linear mapping from Fi into a vector space E. The space E with the finest locally 
convex topology for It'hich the J; are continuous (II, p. 27, prop. 5), is a barrelled space. 

Let Tbe a barrel in E. Since J; is continuous, J;-l(T) is a convex, balanced, closed 
and absorbent set in Fi; in other words, a barrel in Fi ; since Fi is barrelled, J;-l(T) 
is a neighbourhood of 0 in Fp for all i E I. This implies that T is a neighbourhood 
of 0 in E (II, p. 27, prop. 5). 

COROLLARY 1. - Every quotient space of a barrelled space is barrelled. 

COROLLARY 2. - Let (E)iEI be a family of locally convex spaces and let E be the topo­
logical direct sum of thisfamily. For E to be barrelled, it is necessary and sufficient that 
each Ei is barrelled. 

The condition is evidently sufficient by virtue of prop. 3; it is also necessary, by 
cor. 1, since each Ei is isomorphic to a quotient space ofE (II, p. 31, prop. 8). 

COROLLARY 3. - Every inductive limit of barrelled spaces is a barrelled space. 
We shall prove later (IV, p. 14, corollary) that every product of barrelled spaces 

is barrelled. 

2. The Banach-Steinhaus theorem 

THEOREM 1. - Let E be a barrelled space, F a locally convex space. Every simply 
bounded subset H of £l(E; F) is equicontinuous. 

For, let p be a continuous semi-norm on F; let q = sup (p 0 u). Since H is simply 
UEH 

bounded, we have q(x) < + Cf) for all x E E and q is a lower semi-continuous semi­
norm, being the finite superior envelope of continuous semi-norms. Since E is 
barrelled, q is a continuous semi-norm and therefore H is equicontinuous. 

COROLLARY 1. - Let E and F be two Banach spaces, H afamily of continuous linear 
mapping ji-01n E into F; ij~ for all x E E, we have sup II u(x) II < + 00, we also have 

UEH 

sup !Iull < + 00. 
UEH 

In fact, the hypothesis says that H is simply bounded and the conclusion that it is 
equicontinuous. In addition, every Banach space is barrelled (III, p. 25). 

COROLLARY 2. - (Banach-Steinhaus theorem). - Let E be a barrelled space. F a 
locally convex Hausdorff space, and let (uJ be a sequence of continuous linear mappings 
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from E into F, which converges simply to a mapping ufrom E into F. Then u E 2(E; F), 
and (un) converges to u uniformly on every precompact subset of E. 

The sequence (un) is, in fact, simply bounded, hence equicontinuous, and the 
corollary follows from the cor. of prop. 5 of III, p. 18. 

Remarks. - 1) The property expressed by cor. 2 does not imply that E is barrelled : 
we shall see later that the strong dual of a Frechet space possesses this property, 
while not necessarily being barrelled (IV, p. 23, cor. to prop. 2 and p. 58, exer~ 

2) Let E and F be two Banach spaces, and (u,,) a sequence of continuous' linear 
mappings from E into F such that sup Ilu,,11 = + CIJ. Then the set X of all x E E such 
that sup II u,,(x) II = + CIJ is dense in E and is the intersection of a sequence of open sets 
in E. For, let Xk denote the set of all x E E such that sup II un(x) II > k (for k integer> 0). 
Each Xk is open and X is the intersection of the X k . Since E is a Baire space, it is enough 
to show that each Xk is dense in E. But, if the complement of X k contains a non-empty 
open set U, we would have Ilun(x)11 ~ 2k for x E U - U and, since U - U is a neigh­
bourhood of 0, we would have sup II un II < + CIJ. 

COROLLARY 3. - Let E be a barrelled space, F a locally convex Hausdorff space 
and 1> a filter on 2 (E; F) which converges simply in E to a mapping u from E into F. 
If 1> contains a Simply bounded subset of 2(E; F), or if 1> has a countable base, then 
u is a continuous linear mapping from E into F and 1> converges uniformly to u on 
every precompact subset of E. 

Suppose first that 1> contains a simply bounded set H ; since H is equicontinuous 
(th. 1), the corollary follows from the corollary of prop. 5 (III, p. 18). If 1> has a coun­
table base, every elementary filter lJ' associated with a sequence Un (GT, I, § 6, No.8) 
which is finer than 1> is then simply convergent to u in E and it follows from cor. 2 
that u is a continuous linear mapping from E into F, and that lJ' converges to u for 
the topology of uniform convergence on precompact subsets of E. Consequently, 
the same holds for 1>, since the latter is the intersection of elementary filters, each 
finer than 1> (GT, I, § 6, No.8). 

We observe that a filter on 2(E; F) which converges simply and has a countable 
base does not necessarily contain a simply bounded set : to see this consider the 
example of the filter of neighbourhoods of 0 in 2(K; F) when the topology of F 
is metrizable, but cannot be defined by a single norm. 

Example. - Let E be the Banach space (over C) consisting of continuous complex 
functions with period 1 in R, with the norm II f II = sup I f(x)l. 

x 

For every integer n E Z and every function f EO E, let cn(f) = f f(x) e-2irrnXdx 

(n-th Fourier coefficient of f) ; each of the mappings If-> c,,(f) is a continuous linear 
form on E. Let (cx,,) be a sequence of complex numbers such that, for every function 
fEE, the serie with the general term cxncn(.f) + cx-ncn(.f) is convergent. Under these 
conditions, the mapping u:f f-> cxoco(.f) + I [cx"c,,(.f) + cx_"cn(.f)] is a continuous 

n~l 

linear form on E; * in other words, there exists a measure 1.1 on [0, I] such that 

u(f) = ff(X) dl.l(x) for every function lEE, and CXn is the n-th Fourier coefficient 

m 

of 1.1. * In fact, for every integer m > 0, the mapping f f-> I CXkCk( f) is a continuous 
k= -m 
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linear form urn on E, and for all fEE, the sequence (urn(f)) converges to u(f), by hypo­
thesis. The assertion then follows from Banach-Steinhaus theorem, since E is barrelled. 

COROLLARY 4. - Let E and F be two locally convex spaces, 6 a cover of E consisting 
of bounded subsets. If E is barrelled and F Hausdorff and quasi-complete, the space 
£'6 (E; F) is Hausdorff and quasi-complete. 

In fact, every bounded and closed subset of £'6 (E; F) is simply bounded (because 
6 is a cover of E), hence equicontinuous (III, p. 25, tho 1) and consequently is a 
complete subspace of £'6 (E; F) because of prop. 11 (III, p. 22). 

COROLLARY 5. - The strong dual and the weak dual of a barrelled space are quasi­
complete. 

3. Bounded subsets of £'(E; F) (quasi-complete case) 

THEOREM 2. - Let E be a locally convex Hausdorff space, F a locally convex spaa 
and 6 a family of closed, convex, balanced, bounded and semi-complete subsets of E 
(III, p. 7). Every simply bounded subset H of £,(E; F) is bounded for the 6-topology. 

Let A E 6. The space EA is then a Banach space (III, p. 8, corollary), hence bar­
relled. On the other hand, the canonical image of H in £'(EA; F) is simply bounded, 
hence equicontinuous (III, p. 25, tho 1). Consequently, the set of all u(x) for u E H 
and x E A, is bounded in F, which proves that H is bounded for the 6-topology. 

COROLLARY 1. - Let E be a locally convex Hausdorff space, F a locally convex space, 
and 6 afamity of bounded subsets ofE. IfE is semi-complete, then every simply bounded 
subset of £'(E; F) is bounded for the 6-topology. 

It is enough to apply tho 2, after replacing the sets of 6 by their closed, convex, 
balanced envelopes, since this does not change the 6-topology. 

When E is semi-complete (for example quasi-complete), we can talk of the bounded 
subsets of £'(E; F) without specifying the 6-topology, since these are the same for 
all the 6-topologies whenever 6 is a cover of E. 

COROLLARY 2. - Every semi-complete bornological space is barrelled 
Every simply bounded subset of the dual of such a space is strongly bounded 

(cor. 1), hence equicontinuous (III, p. 22, prop. 10). 

COROLLARY 3. - Let E be a locally convex space. Every subset of E which is bounded 
for a(E, E') is bounded. 

Let A be a subset of E. Saying that A is bounded for a(E, E') means that every 
continuous linear form on E is bounded on A; Saying that A is bounded means that 
every continuous semi-norm on E is bounded on A. Let N be the closure of 0 in 
E and n the canonical mapping from E onto EjN. The continuous linear forms on 
E are the mappings of the form f 0 n with f E (EjN)' and we have an analogous 
characterization of continuous semi-norms on E. Replacing E by EjN and A by 
neAl we can thus limit ourselves to the case where E is Hausdorff. 
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Let 6 be the set of equicontinuous subsets of E'; when E' is assigned the topo­
logy cr(E', E), E can be identified with (E')'6 (III, p. 19, cor. 1). Every closed equiconti­
nuous subset of E' is compact for cr(E', E) (III, p. 17, cor. 2), hence complete for 
cr(E', E). It is now enough to apply tho 2. 

§ 5. HYPOCONTINUOUS BILINEAR MAPPINGS 

1. Separately continuous bilinear mappings 

Let E, F, G be three locally convex spaces. For every bilinear mapping u from 
E x F into G, and for every x E E (resp. y E F), we denote by u(x, .) (resp. u(., y)) 
the mapping y f---+ u(x, y) (resp. x f---+ u(x, y)) from F into G (resp. from E into G). 

DEFINITION 1. - A bilinear mapping u from E x F into G is said to be separately 
continuous if, for all x E E, the linear mapping u(x, .) from F into G is continuous, 
and for all y E F, the linear mapping u(., y) from E into G is continuous. 

The following proposition follows immediately from the definition. 

PROPOSITION 1. - For a bilinear mapping u from E x F into G to be separately 
continuous, it is necessary and sufficient that for all y E F, the linear mapping u(., y) 
from E into G is continuous and that the linear mapping y f---+ u(., y) from F into 2's(E; G) 
is continuous. 

We can also say that, to every linear mapping v E 2' (F; 2'sCE; G)) is associated 
the bilinear mapping (x, y) f---+ V (y) (x), then we define a linear bijection from 
2' (F ; 2's(E; G)) onto the vector space of separately continuous bilinear mappings 
from E x F into G. 

A separately continuous bilinear mapping from E x F into G need not necessarily 
be continuous on E x F (III, p. 47, exerc. 2; cf however III, p. 30, and IV, p. 26, 
th.2). 

The notion of a separately continuous bilinear form on a product El x E2 of 
two locally convex spaces is directly related to that of a continuous linear mapping 
when El and E2 are assigned the weak topologies (II, p. 42), Suppose that (E1, F 1) 

and (E2, F z) are two pairs of real (resp. complex) vector spaces in separating duality 
(loc. cit.); we assign to Ei (resp. F) the weak topology cr(Ei, F) (resp. cr(Fi' E)) 
for i = 1, 2, and denote by B(E1 , E2 ) the vector space of separately continuous 
bilinear forms on El x E2. Applying prop. 1 to the case when G = K, we see that, 
for every bilinear form <I> E B(E1 , E2) and every X z E E2 , the mapping Xl f---+ <I>(x1 , x 2) 

is a continuous linear form on E1 , hence (II, p. 43, prop. 3) there exists one element, 
and only one d<l>(X2) E F 1 such that 

(1) 

for every Xl E El and X z E Ez ; moreover, the mapping d<l>: Ez --+ F 1 is linear and 
continuous for the (weak) topologies of E2 and of Fl' 
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Conversely, for every continuous linear mapping u: EZ -> F 1 the mapping 
(x 1, X 2) I-+<D(X l' x 2) = < Xl' U(X 2» is a separately continuous bilinear form on 
El x Ez, and we have u = d<D. Thus we have defined an isomorphism d:<D 1-+ d<D 
from B(E1, Ez) onto 2'(Ez ; F 1)' said to be canonical. Similarly the formula 

(2) 

defines a canonical isomorphism s: <D -> S<D from B(Ep Ez) onto 2'(E1, F z); we 
have evidently the commutative diagram 

(3) 

where t is the isomorphism of transposition (II, p. 46, prop. 5 and corollary). In view 
of the definition of weak topologies on F 1 and F z' it is immediate that when B(E1 , Ez), 
2' (E1 ; Ez) and 2' (Ez ; F 1) are assigned the topology of simple convergence, the 
isomorphisms of diagram (3) are topological vector space isomorphisms. 

2. Separately continuous bilinear mappings on a product of Frechet spaces 

PROPOSITION 2. - Let E, F and G be three locally convex spaces. Suppose that E 
and Fare metrizable andE is barrelled. Let H be a set of separately continuous bilinear 
mappingsfrom E x F into G. Suppose thatfor every x E E, the set of mappings u(x, .) 
from F into G, where u runs through H, is equicontinuous. Then H is equicontinuous. 

Let Un (resp. Vn) be a fundamental sequence of neighbourhoods of 0 in E (resp. F). 
If H is not equicontinuous, there exists a closed, convex, balanced neighbourhood 
W of 0 in G such that for all n, H(U n x V n) is not contained in W. There exists then 
a sequence of pairs (xn' Yn) E Un X Vn, and a sequence (un) of elements of H, such 
that un(xn, Yn) 1= W. Let p be the gauge of W. For every Y E F and every u E H, the 
mapping u(., y) from E into G is continuous, hence po u(., y) is a continuous semi­
norm on E. On the other hand, for every x E E, the set of mappings u(x, .) 
for u E H is equicontinuous; since the sequence (Yn) tends to 0, it is bounded, and 
the set of all u(x, Yn), for n ~ 0 and u E H, is bounded (III, p. 22, prop. 9). It follows 
from this that the function p'(x) = sup p(u(x, Yn)) is a lower semi-continuous semi-

UEH 
11;3:0 

norm (finite) on E. Since E is barrelled, p' is continuous (III, p. 24, corollary). Since 
(xn) tends to 0 in E, p'(x,.) tends to 0, so that we have p'(xn) :(; 1 if n is large enough; 
but then p(un(xn, Yn)) :(; p'(xn) :(; 1, hence un(xn, Yn) E W, which contradicts the 
hypothesis on un' Xn' Yn· 
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COROLLARY 1. - Let E and F be two Prechet spaces, and G a locally convex space. 
Every separately continuous bilinear mapping from E x F into G is continuous. 

In fact, every Frechet space is barrelled (III, p. 25, corollary). 
Let E and F be two locally convex spaces. We use .?l(E, F) to denote the space 

of continuous bilinear forms on E x F, with the topology of uniform convergence 
on sets of the form A x B, where A (resp. B) is bounded in E (resp. F). The formula 

u(x, y) = <y, <P (u)(x) > 
(for x E E, y E F and u E .?l(E, F)) defines a continuous linear injective mapping <p 
from .?l(E, F) into 2"b(E; F~). 

COROLLARY 2. - Suppose that E andF are metrizable and that E is barrelled Then <p 
is a topological vector space isomorphism from .?l(E, F) onto 2"b(E; F~). 

Let f E 2"b(E; F~). Put u(x, y) = <y, f(x) > for x E E and y E F. The bilinear form 
u on E x F is separately continuous; by prop. 2, it belongs to .?l(E, F), and we have 
f = <p (u). Hence <p is a linear bijection from .?l(E, F) onto 2"b(E; F~). It is immediate 
that <p is bicontinuous, hence cor. 2 follows. 

3. Hypocontinuous bilinear mappings 

In what follows, we shall define a notion which is intermediate between that of 
a continuous bilinear mapping and that of a separately continuous bilinear mapping. 

PROPOSITION 3. - Let E, F, G be three locally convex spaces, 6 a family of bounded 
subsets of E. Let u be a separately continuous bilinear mapping from E x F into G. 
The following properties are equivalent: 

a) Por every neighbourhoodW of 0 in G and every set M E 6, there exists a neigh­
bourhood V of 0 in F such that u(M x V) c W. 

b) Por every set M E 6, the image of M under the mapping x ~ u(x, .) is an equi­
continuous subset of 2"(F; G). 

c) The mapping y ~ u(., y) from F into 2"6 (E; G) is continuous. 
a) expresses that y ~ u(., y) is continuous at the point 0, on account of the defi­

nition of neighbourhoods of 0 in 2"6 (E; G) (III, p. 13); likewise a) expresses that 
the image of M under the mapping x ~ u(x, .) is equicontinuous at the point 0 
(III, p. 16). 

DEFINITION 2. - Let u be a bilinear mapping from E x F into G. We say that u is 
6-hypocontinuous if u is separately continuous and if it verifies one of the equivalent 
conditions a), b), c) of prop. 3. 

The condition c) of prop. 3 shows that the notion of 6-hypocontinuous bilinear 
mapping depends on 6 only through the 6-topology on 2"(E, G). 

For every set:l: of bounded subsets ofF, we define similarly the notion of:l:-hypo­
continuous mapping, by interchanging the roles of E and F in prop. 3. A separately 
continuous bilinear mapping u is said to be (6, :l:)-hypocontinuous if it is both 6-
hypocontinuous and :l:-hypocontinuous. 
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Every continuous bilinear mapping from E x F into G is (6, ~)-hypocontinuous 
for every pair (6, ~) of sets of bounded subsets: for every neighbourhood W of 0 
in G, there exists a neighbourhood U of 0 in E and a neighbourhood V of 0 in F 
such that u(U x V) c W; since every set M E 6 is bounded, there exists A > 0 
such that AM c V, and so 

u(M x A V) = u(AM x V) c u(U x V) c W . 

The converse is in general false (III, p. 47, exerc. 3). 

PROPOSITION 4. -- Let u be a 6-hypocontinuous bilinear mapping from E x F into G. 
For every set ME 6, the restriction of u to M x F is continuou.-" and u(M x Q) 
is bounded in G for every bounded subset Q of F. 

The first assertion follows from cor. 3 of GT, X, § 2, No. I. Let W be a neighbour­
hood of 0 in G; there exists, by hypothesis, a neighbourhood V of 0 in F such that 
u(M x V) c W. Since there exists A =f. ° such that AQ c V, we have Au(M x Q) = 

u(M x AQ) c W, and this proves the second part of the proposition. 

PROPOSITION 5. - Let u be a (6, ~)-hypocontinuous hilinear mapping from E x F 
into G. For every pair of sets ME 6, N E~, U is uniformly continuous on M x N. 

The proposition follows immediately from prop. 2 of GT, X, § 2, No.1 and prop. 5 
of GT, X, § 2, No.2. 

PROPOSITION 6. -- If F is a barrelled space, every separately continuous bilinear 
mapping u from E x F into a locally convex space G is 6-hypocontinuous for every 
set 6 of bounded suhsets of E. 

In other words, the linear mapping y 1---+ u(., y) from F into 2 b(E; G) is continuous. 
It is enough (III, p. 30, prop. 3) to prove that the image of every bounded subset M 

of E under x 1---+ u(x, .) is equicontinuous in 2'(F; G). But, by virtue of prop. 1 
(III, p. 28) this image is a simply bounded subset of 2'(F : G), and since F is barrelled, 
every simply bounded subset of 2' (F ; G) is equicontinuous (III, p. 25, tho I). 

Remark. - Suppose the topology of F is the finest locally convex topology on F 
for which the linear mappings h~ : F cr -1- F are continuous (II, p. 27). Then condition c) 
of prop. 3 (III, p. 30) shows that if E and G are locally convex, then the 
bilinear mapping u: E x F -1- G is 6-hypocontinuous if and only if each of the 
bilinear mappings 

from E x F~ into G is 6-hypocontinuous. 
Now suppose that E is a locally convex space which is the strict inductive limit 

of an increasing sequence (En) of closed vector subspaces of E (II, p. 33) ; then every 
set M E 6 is contained in one of the En and is bounded in this subspace (III, p. 5, 
prop. 6). We denote by 6 n the family of all subsets belonging to 6 contained in En' 
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Condition a) of prop. 3 (III, p. 30) shows that for a bilinear mapping u: E x F -4 G 
to be 6-hypocontinuous, it is necessary and sufficient that each of the restrictions 
un:En x F-4G of u is 6 n-hypocontinuous. 

4. Extension of a hypocontinuous bilinear mapping 

PROPOSITION 7. - Let E, F, G be three locally convex spaces, G being assumed 
Hausdorff; let Eo (resp. Fo) be a dense vector subspace ofE (resp. F). Let u be a sepa­
rately continuous bilinear mapping from E x F into G. 

1) Ifu(Eo x Fo) = {O}, then u = O. 
2) Let 6 0 be a family of bounded subsets of Eo; if the restriction of u to Eo x F 0 

is 6 0 -hypocontinuous then so is u. 
1) By hypothesis, for all x E Eo, the continuous linear mapping u(x, .) is null on 

F o, hence on F : therefore for all y E F, the continuous linear mapping u(., y) is 
null on Eo, hence on E. This proves that u = O. 

2) For every closed neighbourhood W of 0 in G and for every set ME 6 0 , there 
exist~ by hypothesis, a neighbourhood V of 0 in F 0 such that u(M x V) c W. 
But V is a neighbourhood of 0 in F; for every x E M, the relation u( {x} x V) c W 
implies Q:at u( { x} x V) c W, since u(x, .) is continuous and W is closed; therefore 
u(M x V) c W, which proves that u is 6 0-hypocontinuous. 

PROPOSITION 8. - Let E, F, G be three locally convex spaces; assume that G is 
Hausdorff and quasi-complete. Let Eo (resp. Fo) be a dense vector subspace of E 
(resp. F), 6 0 (resp. ::to) a family of bounded subsets of Eo (resp. F 0) such that every 
point ofE (resp. F) is in the closure of an element of 6 0 (resp. ::to). Then every (60 , ::to)­
hypocontinuous bilinear mapping u from Eo x F 0 into G extends uniquely to a sepa­
rately continuous bilinear mapping u from E x F into G and u is (60 , ::to)-hypo­
continuous. 

The uniqueness and hypo continuity of u follows from prop. 7; it remains to 
prove the existence of U. For every y' E F 0' the continuous linear mapping 
x' f---+ u(x', y') from Eo into G extends uniquely to a continuous linear mapping 
x f---+ u1 (x, y') from E into G (III, p. 8, prop. 10). It follows immediately that for every 
x E E, the mapping y' f---+ u1 (x, y') from F 0 into G is linear; and we shall show that 
it is continuous. By hypothesis, there exists ME 6 0 , such that x E M. For every 
closed neighbourhood W of 0 in G, there exists, by hypothesis, a neighbourhood 
V of 0 in F 0 such that u(M x V) c W; since x f---+ u1 (x, y') is continuous, we deduce 
that u1 (M x V) c W, and in particular u1 (x, y') E W for all y' E V. This establishes 
our assertion. By virtue of prop. 7, the bilinear map u1 from E x F 0 into G is (60 , ::to)­
hypocontinuous. We end the proof by interchanging the roles of E and F in the first 
part of the proof, applied to u1 • 

5. Hypocontinuity of the mapping (u, v) f---+ V 0 u 

PROPOSITION 9. - Let R, S, T be three locally convex Hausdorff spaces. Suppose that 
the spaces ,P(R; S), 'p(S; T), ,P(R; T) are each assigned the topology of simple 



No.5 HYPOCONTINUOUS BILINEAR MAPPINGS TVS III.33 

(resp. compact, bounded) convergence. Then the bilinear mapping (u, v) 1--+ V 0 U from 
2(R; S) x 2(S; T) into 2(R; T) is (6, '2)-hypocontinuous, where '2 is the family 
ofequicontinuous subsets of 2(S; T), and 6 thefamily offinite (resp. compact, bounded) 
subsets of 2(R; S). 

We first prove that (u, v) 1--+ V 0 u is '2-hypocontinuous. Let H be an equicontinuous 
set in 2 (S ; T), let W be a neighbourhood of 0 in T and let M be a finite (resp. compact, 
bounded) subset of R. We must show that there exists a neighbourhood V of 0 in 
S such that if u(M) c V and v E H, then v(u(M)) c W. But for this, it is enough 
to have v(V) c W for all v E H, and the existence of such a neighbourhood follows 
from the equicontinuity of H. 

To see that (u, v) 1--+ V 0 u is 6-hypocontinuous, we shall prove that, for every 
neighbourhood W of 0 in T, every finite (resp. compact, bounded) subset M of R 
and every finite (resp. compact, bounded) subset L of 2(R; S) there exists a finite 
(resp. compact, bounded) subset N of S such that the relations v(N) c Wand u E L 

imply that v(u(M)) c W. Evidently it is enough to show that we can take N = U u(M), 
UEL 

i.e. that the set N is finite (resp. compact, bounded) whenever Land M are. This is 
immediate ifL and M are finite, or ifM is bounded in Rand L is bounded in 2(R; S) 
(for the topology of bounded convergence, cf III, p. 22). Finally, we show that if M 
is compact in Rand L is compact in 2(R; S) for the topology of compact con­
vergence, then N is compact in S. But if uM is the restriction to M of u E L, the mapping 
u 1--+ UM from L into the space C(5 (M ; S) of all continuous mappings from Minto S, 
with the topology of uniform convergence, is continuous; hence the image of L 
under this mapping is compact, and our assertion then follows from the continuity 
of the map (w, x) 1--+ w(x) from C(5(M; S) x Minto S (GT, X, § 1, No.6, prop. 9). 

In the two corollaries that follow, we assume as in prop. 9, that the spaces 2 (R ; S), 
2(S; T), 2(R; T) are all three assigned the topology of simple convergence, or 
all three the topology of compact convergence, or all three that of bounded conver­
gence. 

COROLLARY 1. - For every equicontinuous subset H of 2(S; T) the map (u, v) 1--+ V 0 U 

from 2(R; S) x H into 2(R; T) is continuous. 
This follows immediately from prop. 9 (III, p. 32) and 4 (III, p. 31). 

COROLLARY 2. - Suppose S is barrelled. If the sequence (un) tends to u in 2(R; S) 
and the sequence (vn) to v in 2(S, T), then the sequence(vn 0 un) tends to v 0 u in 2(R; T). 

In fact, the sequence (vn), being simply bounded in 2(S; T) is equicontinuous, 
since S is barrelled (III, p. 25, tho 1); the corollary is then a consequence of cor. 1. 
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§ 6. BOREL'S GRAPH THEOREM 

1. Borel's graph theorem 

THEOREM 1. - Let E be a locally convex space which is the inductive limit of Banach 
spaces, Fa Souslin locally convex space, for example a Lusin space (GT, IX, § 6, No.2 
and No.4), and u a linear mapping from E into F. If the graph of u is a Borel subset of 
E x F, then u is continuous. 

Let E j be a family of Banach spaces, and (u) a family of continuous linear mappings 
uj : E j --+ E such that the topology ofE is the finest locally convex topology for which 
the Uj are continuous. It is enough to prove that the composed mappings u 0 uj are 
continuous, or in fact (GT, IX, § 2, No.6, prop. 10) that the restriction of u 0 Uj to every 
closed subspace G of E j satisfying the first axiom of countability is continuous. 
The graph of this restriction is the inverse image of the graph of u under the conti­
nuous mapping Uj x IdF : G x F --+ E x F, hence is a Borel set in G x F. In 
addition, G x F is a Souslin space and every Borel subset of a Souslin space is a 
Souslin space (GT, IX, § 6, No.3, prop. 10). Th. 1 then follows from tho 4, GT, IX, 
§ 6, No.8. 

Remark. - Recall (III, p. 12) that every homological Hausdorff and semi-complete 
space, for example every Frechet space, is the inductive limit of Banach spaces. * This is 
also true for the strong dual of a reflexive Frechet space (IV, p. 23, prop. 4). * 

2. Locally convex Lusin spaces 

PROPOSITION 1. - Let E be a Hausdorff locally convex space. Suppose that there 
exists a sequence (En)neN of Frechet spaces satisfying the first axiom of countability, 
and continuous linear mappings Un: En --+ E such that E = U un (En)' Then E is a 
Lusin space. neN 

Let P n be the kernel of un; then un defines a bijective continuous mapping from 
the quotient space En/Pn onto un(EJ Since En/Pn is a Frechet space satisfying the 
first axiom ofcountability (GT, IX,§ 3, No.1), hence a polish space (GT, IX,§6, No.1, 
def. 1), uiEJ is a Lusin subspace of E (GT, IX, § 6, No.4, prop. 11). Therefore by 
GT, IX, § 6, No.7, cor. ofth. 3, the space E, which is regular (GT, III, § 3, No.1) is a 
Lusin space. 

Example 1. - Every Frechet space satisfying the first axiom of countability is a polish 
space, hence a Lusin space. Consequently, so are the spaces 't&'(X), where X is locally 
compact and has a countable base (the topology of't&'(X) being that of compact con­
vergence, cf GT, X, § 3, No.3, corollary and § 1, No.6, cor. 3) ; * the spaces 't&' "'(V), where 
V is an open subset ofRn (III, p. 9) and Jt"(U), where V is an open subset ofcn (III, p. 10). 

Prop. 1 shows that the spaces 't&'o"'(V), where V is an open set in Rn, ~s(I), where I 
is a compact interval in Rand s ~ 1, and Jt"(K), where K is a compact subset of cn 
are all Lusin spaces (III, p. 10). * 

THEOREM 2. - Let E be a locally convex space, which is the inductive limit of an 
increasing sequence (En)neN of subs paces of E, endowed with the topologies of Frechet 
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spaces satisfying the first axiom of countability. Suppose that every compact subset 
of E is contained in one of the En and is compact in this space. Let F be a Frechet space 
satisfying the first axiom of countability. Then the space .Pc(E; F) is a Lusin space. 

The space E is bomological (III, p. 12), hence the space .PcCE; F) is complete 
(III, p. 23, prop. 12). The linear mapping}: f f---+ UIEn)nEN is an injection from .PcCE; F) 
into the product space n .PcCEn; F); by virtue of the hypothesis on the compact 

nEN 
subsets ofE and the definition of the 6-topologies,} is an isomorphism from .PcCE; F) 
onto its image (endowed with the topology induced by the product topology); 
moreover, since .!.f,,(E; F) is complete, this image is a closed subspace of n .PcCEn; F) 

nEN 
(GT, II, § 3, No.4, prop. 8). By GT, IX, § 6, No.4, it is therefore enough to prove that 
each ofthe spaces .PiE; F) is a Lusin space. For the rest of the proof, we shall assume 
that E is a Frechet space satisfying the first axiom of countability. 

Since F is a Frechet space satisfying the first axiom of countability, it is isomorphic 
to a closed subspace of a countable product of Banach spaces Fn , each of which is 
a quotient of F (II, p. 5), hence satisfies the first axiom of countability. The linear 
mapping j' : f f---+ (prn 0 f)nEN is an injection from .!.f,,(E; F) into the product space 
n .PcCE ; Fn), and by using the definition of the 6-topologies and of the open sets 
nEN 
in a product, j' is an isomorphism from .Pc(E ; F) onto its image; moreover, since 
.PcCE; F) is complete, this image is a closed subspace of n .!.f,,(E; F). Therefore 

nEN 
it is enough to prove that each of the spaces .Pc(E; Fn) is a Lusin space (GT, IX, 
§ 6, No.4), and consequently, we can assume that F is a Banach space satisfying the 
first axiom of countability. 

The space .PiE; F) is the union of a countable family of equicontinuous and 
closed subsets (III, p. 19, cor. 1 and GT, X, § 2, No.3, prop. 6). But every equiconti­
nuous subset H of .PcCE; F) is metrizable and satisfies the first axiom of countability 
(III, p. 18, prop. 6 and GT, X, § 2, No.4, tho 1); if H is closed, then it is a complete 
space for the uniform structure induced by that of .PcCE ; F), since the latter is complete 
In other words, H is a polish space, and a fortiori a Lusin space; consequently the 
regular space .Pc(E; F) is a Lusin space (GT, IX, § 6, No.7, cor. of tho 3). 

COROLLARY. - The hypotheses on E being as in tho 2, assume, in addition that every 
bounded subset of E is relatively compact. Then the strong dual of E is a Lusin space. 
* In particular, the strong dual of a Frechet space satisfying the first axiom of counta­
bility, which is also a M ontel space, is a Lusin space. * 

* Example 2. - Let U be an open subset of Rn. The corollary applies in particular to 
the Frechet space E = CC OO(U); its dual CCo - OO(U) (the space of distributions with compact 
support on U) is then a Lusin space. 

The space CCoOO(U) is a strict inductive limit of a sequence of Frechet spaces CCKOO(U) 
satisfying the first axiom of countability (III, p. 9). We can show that each of the spaces 
CCK~(U) is a Montel space; in addition, every bounded subset of CCo OO(U) is contained 
in one of the spaces CCK~(U) (III, p. 5, prop. 6). We can then apply the corollary of tho 2. 
Then the dual CC - OO(U) of CCo OO(U) (the space of distributions on U) is a Lusin space for 
the strong topology. 
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Similarly we prove that for every open subset U of en, and for every compact subset K 
of en, the strong dual of Yf(U) and the strong dual of Yf(K) are Lusin spaces. * 
Remark. ~ Let E be as in tho 2; let F be a Hausdorlf locally convex space which is the 
union of the images of a sequence of continuous linear mappings Un: Fn -> F, where 
each Fn is a Frechet space satisfying the first axiom of countability; then 2'c(E; F) 
is a Lusin space. As in prop. 1, we first reduce to the case where each un is injective; 
then, as in the proof of tho 2, we can assume that E is a Frechet space satisfying the first 
axiom of countability. Then, by I, p. 20, prop. 1, 2'(E; F) is the union of the 2'(E; Fn); 
moreover, the canonical injection 2'cCE; Fn) -> 2'cCE; F) is continuous (GT, X, § 1, No.4, 
prop. 3). Since each of the spaces 2'cCE; Fn) is a Lusin space by tho 2, 2'(E; Fn) is also 
a Lusin space for the topology induced by that of 2'cCE; F) (GT, IX, § 6, No.4, prop. 11) ; 
consequently 2'c(E; F) is a Lusin space by virtue ofGT. IX, § 6, No.7, corollary ofth. 3. 

* 3. Measurable linear mappings on a Banach space 1 

PROPOSITION 2. - Let E be a Banach space, F a locally convex space and u a linear 
mapping from E into F. Assume that for every closed subset B of F, every compact 
subset X of E and every measure J.l on X, the intersection X n u- l(B) is J.l-measurable. 
Then u is continuous. 

First assume that F is the base field. For every compact subset X of E and every 
measure J.l on X, the restriction of u to X is J.l-measurable (INT, IV). Suppose that 
u is not continuous. Then we can find a sequence of points (xn) in E such that 
I Ilxnll < CfJ and lu(Xn)I ~ n for every integer n. Consider the mapping 
n 

g: (tn) f--> I tnxn from the cube C = (0, 1) N into E; it is clear that g is continuous. 

Hence f = u 0 g is measurable for every measure on C (INT, V); in particular for 
the measure J.l which is the product of Lebesgue measures on the factors of C. Hence 
there exists a compact subset D of C such that J.l(D) > t and such that the restric­
tion of f to D is continuous, hence also bounded. Let M be the upper bound of 
If I on D and let pEN be such that p ~ 4M. Let S = (sn) and t = (tn) be two points 
of D such that sn = tn for all n #- p. Then 

f(s) - f(t) = u(I snxn - I tnxJ = (Sp - tp) U(Xp) . 
n n 

Since If(s) - f(t)1 ~ 2M and lu(Xp) I ~ p ~ 4M, we get 

Isp - tpl ~ t· 
The Lebesgue-Fubini theorem (INT, V, 2nd ed., § 8, No.3, cor. 2 of prop. 7) implies 
that J.l(D) ~ t; this gives a contradiction. Hence u is continuous. 

In the general case, for every v E F', the linear form v 0 u is continuous, by the pre­
ceding argument. Let (xn)nEN be a sequence of points of E tending to 0; then the 
sequence (u(xn»)nEN tends to 0 in F, if F is assigned the topology cr(F, F'); hence this 
sequence is bounded for cr(F, F') and so it is bounded in F (III, p. 27, cor. 3). Since E 
is bomological (III, p. 12, prop. 2); the linear mapping u: E --> F is continuous. * 

1 The results of this section depend on the book of Integration. 



Exercises 

§ I 

1) Let E be a left topological vector space over a non-discrete topological field K. A subset 
B of E is said to be bounded if for every neighbourhood V ofO in E there exists A oF ° in K such 
that AB c V. 
a) Show that if B is bounded in E, then for every neighbourhood V of ° in E, there exists a 
neighbourhood U of ° in K such that U. B c V. 
b) Show that the closure of a bounded set in E is bounded. The union of two bounded sets 
is bounded. Every precompact set in E is bounded. Extend the corollaries of III, p. 4, prop. 4 
to topological vector spaces over K. 
c) Prove that if A is a bounded set in K (considered as a vector space on the left over itself) 
and B is a bounded set in E, then A. B is bounded in E. 
d) Extend prop. 3 of III, p. 4 to the case where K is a metrizable topological division ring. 
e) Extend the notion of a quasi-complete space and its properties to topological vector 
spaces. 

2) a) Let E be a left topological vector space over a non-discrete topological field K. Prove 
that if there exists a neighbourhood V of ° in E which is bounded (exerc. 1), than the sets A V, 
for A E K and A oF 0, form a fundamental system of neighbourhoods ofO in E. IfK is metrizable, 
the Hausdorff topology associated with the topology of E (OT, III, ~ 2, No.6) is metrizable. If 
K = R or K = C, the locally convex topology on E which is the finest of the topologies 
coarser than the given topology on E (II, p. 80, exerc. 23) can be defined by a single semi­
norm. 
b) Prove that the topology of an infinite product of locally convex Hausdorff spaces (of 
which none is just 0) cannot be defined by a single semi-norm. 
c) Let E be a locally convex space whose topology is defined by an increasing sequence (Pn ) 

of semi-norms. In order that the topology of E be defined by a single semi-norm, it is necessary 
and sufficient that there exists an integer no such that for every n ~ no there exists a number 
kll ~ ° such that Pn(x) ~ k,Pno(x) for all x E E. 
d) Let E be the vector space over R consisting of infinitely differentiable numerical functions 
on the internal I = (0, I). For every integer n ~ 0, let PnU) = sup (sup Ipk)(x)1) (with 

O~k:'=:;n xeI 
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PO) = f); show that the Pn are norms on E and that the topology defined by the sequence 
of norms p" cannot be defined by a single norm. 

3) Let E be a metrizable vector space over R, d a translation invariant distance, compatible 
with the topology of E. Let Ixl = d(x, 0) (1, p. 16). Prove that for every integer n > 0, we have 

~ Ixl :( 1::.1. Deduce from this that if B is a bounded subset of E, then sup Ixl < + 00 (in 
n n =B 

other words, B is bounded for the distance d (GT, IX, § 2, No.3»). Give an example of a metri­
zable vector space E and an unbounded set in E which is bounded for the distance d (exerc. 2). 

4) Let E be a topological vector space over a non-discrete metrizable topological field K. 
Show that ifE is a Baire space and if in E there exists a countable base for the bomology formed 
by bounded subsets ofE (III, p. 37, exerc. 1), then there exists a neighbourhood ofO in E which 
is bounded, and consequently the Hausdorff topology associated with the topology of E is 
metrizable (III, p. 37, ex ere. 2) (compare with exerc. 6). 

5) Let E be a metrizable vector space over a non-discrete valuated field K. Prove that if (Bn) 
is an arbitrary sequence of bounded subsets ofE (III, p. 37, exerc. 1), then there exists a sequence 
(A,,) of scalars of 0, such that the union of the sets AnB" is bounded. 

6) Let E be a locally convex space, which is the strict inductive limit of a strictly increasing 
sequence (E,,) of locally convex Hausdorff spaces, each En being closed in En + 1 (II, p. 32, 
prop. 9). 
a) Prove that E is not metrizable (use III, p. 5, prop. 6 and the preceding exerc. 5). 
b) In order that there exist a countable base for the canonical bomology of E, it is necessary 
and sufficient that the canonical bomology of each En has a countable base in En' 

~ 7) a) Let E be an infinite dimensional Banach space and let 6 be the family of compact, 
convex and balanced subsets of E, which is a directed set for the relation c. Show that E is 
the inductive limit of the inductive system of the Banach spaces EA, where A runs through 6. 
(Prove by contradiction that a neighbourhood V of ° for the inductive limit topology of the 
topologies of EA contains a ball with center 0; for this, note that otherwise, there will exist 
a sequence (x,) of points of E such that II x" II :( 1/n2, and which will not belong to V.) Deduce 
from this that there exist bounded subsets in E which are not contained in any EA for A c 6. 

eD 

b) Let E be an infinite dimensional Banach space. On the vector space TI Em' where Em = E 
m=l 

for each m, let Y n denote the topology obtained by taking the product of the Banach space 
topology on each Em for m :( n, and for m > n, the finest locally convex topology on Em; 

oc 

F" denotes the locally convex space TI Em with the topology Y n. Every identity map Fn --> Fn+ 1 

m=l 

is continuous; show that the inductive limit space of the inductive system Fn is the space F 
ro 

obtained by assigning to TI Em the topology which is the product of the Banach space topo-
m=l 

logies on each of the factors. Deduce from this that there are bounded subsets in F which 
are not bounded in any Fn' 

8) Prove that in a space which is an infinite product of topological vector spaces (over R 
or C) none just the point 0, there does not exist a countable base for the canonical bomology 
(first show that it is enough to prove this for the space RN , and then use III, p. 38, exerc. 4). 

9) Let E be the vector space over R consisting of all regulated functions on the interval I = (0, 1) 
(FVR, I, p. 4). For every integer n > 0, let Vn be the set of all functions fEE such that f JT7(t)l dt :( lin. Show that the sets Vn form a fundamental system of neighbourhoods 

of ° for a metrizable topology which is compatible with the vector space structure of E and 
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that for this topology the sets VII are bounded; but the convex envelope of each V n is the entire 
space E. (Observe that every function fEE can be written as f = ~(g + h), where 9 and h 
belong to E, and 

jjg(t)1 dt = v1fi(t)1 dt = ---= v1f(t)l dt.) 11 11 1 11 
o 0 )2 0 

Deduce from this that the only locally convex topology coarser than the topology of E is the 
coarsest topology on E. 

10) Let (E,),EI be an infinite family of Hausdorff topological vector spaces, none just the point 
0, over a non-discrete topological field K. Let E be the direct sum vector space of the E" and 
:Yo the topology on E defined in I, p. 24, exerc. 14. Then a subset B of E is bounded for :Yo 
(III, p. 37, exerc. 1) if and only if B is contained in a product subspace TI E" where H is a finite 

'EH 

subset of I and the projections of B on each E, for 1 E H are bounded. Deduce (for K = R 
or C) that, if each E, is a quasi-complete space, then E with :Yo is quasi-complete. 

11) Let E be a topological vector space over a field K with a non discrete valuation. 
a) For a balanced subset A of E to absorb every bounded subset (III, p. 37, exerc. 1) of E, it is 
sufficient that A absorbs the set of points of every sequence (XII) tending to 0 in E. Then A is 
said to be bornivorous. 
b) Let u be a linear mapping from E into a topological vector space F over K. The image 
of every bounded subset of E under u is bounded in F if and only if for every sequence (x,,) 
of points of E tending to 0, the sequence (u(x,)) is bounded in F 
C) Suppose E is metrizable. Show that every bomivorous subset of E is a neighbourhood 
of 0 in E. Deduce that if u is a linear mapping from E into a topological vector space F over 
K which transforms every sequence converging to 0 in E into a bounded sequence in F, then 
u is continuous on E. 

12) Let E be a Hausdorff topological vector space over a field K with a non-discrete va­
luation, and F a metrizable vector space over K. If u is a continuous linear mapping from E 
into F such that, for every bounded subset B of F, u- 1(B) is bounded in E, show that u is an 
isomorphism from E onto a subspace of F 

13) Let I be an infinite set, and (E)'EI a family of locally convex spaces, none of which is O. 
Let f be a linear mapping from E = TI E, into a Banach space F Show that if the image of 

'EI 
every bounded subset of E under f is a bounded subset of F, then there exists a finite subset 
H of I such that for every 1 1= H, the restriction of f to E, (considered as a subspace of E) is 
null. (Argue by contradiction that if not, we can construct a bounded sequence (xn) in E whose 
image under f is unbounded in F) 

14) Show that if the topology of a metrizable locally convex space E cannot be defined by 
a single norm, then there does not exist a countable base for the canonical bomology of E 
(using III, p. 38, exerc. 5, show that otherwise there will exist a bounded bomivorous set (III, 
p. 39, exerc. 11) in E, and complete the argument using III, p. 39, exerc. 11, c)). 

15) In a Hausdorff topological vector space E over R, let A be a compact convex set and B 
a closed, convex and bounded set. Show that the convex envelope C of the union A u B is 
a closed set. (Consider a point z in the closure ofC, but not in A, and reduce to the case where 
z = o. Observe that there exists a neighbourhood V of 0 and a number ri < 1 such that the 
relations 0 :( A :( 1, x E A, Y E B, AX + (1 - A) Y E V imply that A :( ri. Next, for every 
neighbourhood W of 0 consider the set of triplets (A, x, y) such that AX + (1 - A) YEW, 
o :( A :( 1, X E A, Y E B.) 

16) Let E be a locally c<?nvex metrizable space satisfying the first axiom of countability, 
such that its completion E is a Frechet space which satisfies the first axiom of countability. 
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Show that every bounded subset B of E is contained in the closure of a bounded subset of E. 
(Reduce to the case where B is countable, arranged as a sequence (X");A on the other hand, 
let (p,,) be an increasing sequence of semi-norms defining the topology of E; for each integer n 
consider a sequence (Y"k)D I of points ofE, which converges to x" and is such thatp,,(x,,- Y"k) ~ I 
for all k ~ 1.) 

-r 17) Let A be the set of increasing mappings ~ 1 from N into N; for every CI. E A, let Bo 
denote the set of all points Z = (ZII) E RN such that IZIII ~ CI.(n) for all n E N. 
a) Show that the sets B. form a base for the bomology of all bounded subsets of the space RN. 
b) For every a. E A, the set RBo is a vector subspace ofRN, distinct from RN and dense in RN; 
hence there exists a linear form j~ =ft 0 (not continuous) on RN such that fo(z) = 0 for all 
Z E Bo ' 

c) Let E be the vector space consisting of all mappings g: a. f--> (gll(a.)) E RN from A into RN 
such that for all n EN, the sum PII(g) = I Ig,,(a.)I is finite. Show that the P" are semi-norms 

which define the topology of a Frechet space on E. 
d) Let H be the set of all h E E such that h( a.) E RB. for all a. E A; show that H is an everywhere 
dense vector subspace of E (observe that every hE E such that h(a.) = 0 except for a finite 
number of values of a. E A belongs to H). 
e) Let Eo c E be the vector subspace ofE consisting of all g E E such that I 1f.(g(a.))1 < + CfJ; 

the mapping u: g f--> (fo( g( a.)))oEA is then a linear mapping from Eo into the Banach space 
F = fl(A) (I, p. 4). Prove that u(Eo) is everywhere dense in F (observe that for every finite 
subset J of A, there exists g E Eo such that g(a.) = 0 for all a. E A - J and that the f.(g(a.)) 
for a. E J take arbitrary values in R). Show that u-I(O) is everywhere dense in Eo (use d)). 
Finally, show that for every bounded subset C ofE, there exists a.o E A such that f.o(g(a. o)) = 0 
for all g E C n Eo, and deduce that the closure of u(C n Eo) in F is not a neighbourhood 
of 0 in F. 
f) Let G be the graph of u in Eo x F, a vector subspace of the Frechet space E x F. Show 
that G is everywhere dense in E x F (observe that for every x E Eo, x + u-I(O) is dense 
in E). However, show that for every bounded subset M of G, the closure M of M in E x F 
does not contain the bounded set {O} x U ofE x F, where U is the unit ball in F (ifN = pr I (M), 
observe that because of e), u(N) cannot contain U). 

18) In the Banach space CI(N) (I, p. 4) let em be the sequence (8m,,),,;, 0 such that 8mn = 0 for 
In =ft 11 and 8"" = 1. Define a continuous mapping from fl(N) in R which transforms the 
b ,)unded seq uence of the ell into a non bounded subset ofR (use U rysohn's tho (G T, IX, § 4, No.2, 
th 2)). 

§ 2 

1) Let E be a locally convex space, and :Y its topology. Amongst the locally convex topologies 
on E for which the bounded sets are the same as those for /Y, there is one :Y' finer than all 
the others, and this is the only one amongst these topologies which is bomological. The space 
obtained by assigning E with :Y' is called the bomological space associated with E. A linear 
map u from E into a locally convex space F transforms every bounded subset of E into a 
bounded subset of F if and only if it is continuous for the topology :Y '. 

Show that the topology :Y' is the finest of the locally convex topologies on E for which the 
canonical injections EA --> E, where A runs through the family of convex, bounded and balanced 
subsets of E, are continuous. 

2) Let I be an infinite set and (EJ'EI a family of locally convex spaces, none of which is O. 
a) Suppose that each space E, is bomological. Show that if, in addition, the product space 
RI is bomological, then the product E = n E, is bomological (using III, p. 11, prop. 1 (iii) 

'EI 
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and p. 39, exerc. 15, reduce to proving the following: a linear mapping I from E into a Banach 
space, which transforms every bounded set into a bounded set, and whose restriction to 
each E, is null, is necessarily null on E. For this consider, for every x = (x,) E E, the restriction 
of I to the product of lines RxJ 
b) Deducefrom a) that every product ofa sequence (En) ofbomological spaces is bomological. 

I[ 3) Let E be a locally convex space, L a vector subspace of E of linite co dimension, and S 
a convex balanced bomivorous set (III, p. 39, exerc. 11) in L. We shall prove that there exists 
a convex, balanced and bomivorous set S' in E such that S = S' n L. 
a) We can reduce to the case where L is a hyperplane such that E = L EB Ra for a point 
a ~ L, and such that there exists a bounded sequence (xn) in E such that ifwe put xn = An(Yn +a) 
with An E Rand Yll E L, then IAnl tends to + CIJ ; if Bo is the convex balanced envelope of the 
set consisting of a and the xll ' then we have Yn + a E A,~ 1 Bo for all n. 
b) Let 'B be the set of all bounded, convex, balanced subsets of E which contain Bo ; by hypo­
thesis, for every B E 'B, there exists PB > ° such that 2PBB n L c S. Show that if R is the 
convex balanced envelope of the union of the sets PBB for B E 'B, then we have R n L c S. 

4) Deduce from exerc. 3 that if E is a locally convex bomological space, then every subspace 
of E with finite codimension is bomological (ef IV, p. 64, exerc. 11). 

§ 3 

1) Let X be a Hausdorff topological space, and F a topological vector space (over R or C). 
Show that on the space '&'(X; F) of all continuous maps from X into F, the topology of compact 
convergence is compatible with the vector space structure. 

2) Let E and F be two Hausdorff locally convex spaces, and 6 a family of bounded subsets 
of E. 
a) Show that if F is not just 0, then a necessary (and sufficient) condition for 2- (E; F) to 
be Hausdorff is that the union of the sets of 6 is total in E (use Hahn-Banach th.). C 

b) Suppose that 6 is a cover for E. Show that there exists an isomorphism from F onto a 
closed subspace of 22 (E; F). Deduce that if 22 (E; F) is quasi-complete, then F is necessarily 
quasi-complete. 
e) Suppose that 6 is a bomology adapted to E (III, p. 3, def. 4). In order that 22 (E; F) be 
metrizable, it is necessary and sufficient that F is metrizable and that there exists a countable 
base (III, p. 1) for the bomology 6. In order that the 6-topology on 2(E; F) be defined by 
a single norm it is necessary and sufficient that the topology of F can be defined by a single 
norm and that there exists a set M E 6 which absorbs every set of 6. 

3) Let E be a topological vector space over R (resp. C). Show that for every family 6 of bounded 
subsets of R (resp. C) none of which is the point 0, the space 22 (R; E) (resp. 22 (C; E)) is 
canonically isomorphic to E. Deduce that for every integer n > ° and every covering 6 of 
Rn (resp. C") by bounded subsets, 22 (Rn; E) (resp. 22 (C"; E)) is isomorphic to En. 

4) a) Let El' Ez, F be three topological vector spaces (over R or C). Let I be a continuous 
linear mapping from E1 into Ez , and 6 1 (resp. 6 z) a family of bounded subsets ofE1 (resp. Ez), 
such that 1(61) c 6 z. Show that U f-> U 0 I is a continuous linear mapping from 2 22(Ez ; F) 
into 2 2,(E1 ; F). 
b) Let E, F be two topological vector spaces, and M be a vector subspace of E. Let I be the 
canonical map from E onto ElM, and 6 be a family of bounded subsets of E. Show that the 
mapping U f-> U 0 I is an isomorphism from 2 J 2 )(E/M ; F) onto the subspace of 22 (E; F) 
consisting of those continuous linear mappings from E into F which are null on M. 

5) Let (E.)'EA be a family of locally convex spaces, E a vector space (over the same field of 
scalars as the E,), and for each rJ. E A, let h, be a linear mapping from E, into E. The space E 
is assigned the finest locally convex topology for which the h, are continuous (II, p. 27). For 
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every r:x E A, let 6, be a family of bounded subsets of Eo, and let 6 be the union of the families 
h,(6,) of bounded subsets of E. Under these conditions, show that, for every locally convex 
space F, the 6-topology on 2'(E; F) is the coarsest topology for which the linear mappings 
u f--> u 0 h. from 2'(E; F) into 2'c" (E.; F) are continuous. In particular, if E is the topological 
direct sum (II, p. 29, def. 2) of the family (E')OEA (each E. being identified with a subspace of E), 
then the product space n 2'c" (Eo; F) is canonically isomorphic to the space 2'c (E; F), 

OEA 
where 6 is the union of the 6 0 in Il3(E). 

6) Let (E,)tEI be a family of Hausdorff locally convex spaces, none of which is 0, let E be the 
product space n Et and F be a normed space. Show that there exists a canonical isomorphism 

tEl 
from the space 2'(E; F) with the topology of bounded convergence (resp. of simple conver­
gence, resp. of precompact convergence) onto the topological direct sum space of the spaces 
2' (Et ; F), where each of these spaces is assigned the topology of bounded convergence (resp. 
of simple convergence, resp. of precompact convergence). (Observe that if u is a continuous 
linear mapping from E into F, then there exists a finite subset H of I such that u- 1(0) contains 
the product of the Et for all indices 1 ~ H.) 

7) Let E, F p F 2 be three topological vector spaces, let f be a continuous linear mapping 
from F 1 into F 2' and 6 be a set of bounded subsets of E; show that u f--> f 0 u is a contin uous 
linear mapping from 2'c(E; F 1) into 2'c(E; Fz)· 

8) Let E be a topological vector space, with a set of bounded subsets of 6. Let (GJtEI be a 
family of topological vector spaces, and F be a vector space (over the same field of scalars 
as E and the G,) ; for every 1 E I, let gt be a linear mapping from F into Gt. Suppose F is assigned 
the coarsest topology for which the gt are continuous. Show that the 6-topology on 2'(E; F) 
is the coarsest topology for which the linear mappings u f-4 gt 0 u from 2' (E; F) into 2'c (E; GJ 
are continuous. In particular, if F = n Gt, the product space n 2'c (E ; GJ is canonically 

tEl tEl 
identified with 2'c (E; F). 

9) Let E and F be two Hausdorff topological vector spaces, and H an equicontinuous subset 
of 2'(E; F). Show that if there exists a countable total set in E, and if everv bounded subset 
of F is metrizable, then H is metrizable for the topology of simple convergence-in E. If moreover, 
every bounded subset of F satisfies the first axiom of countability, then so does H. 

10) Let E be a topological vector space, which is a Baire space, and F be a topological vector 
space. 
a) Show that, if a subset H of 2'(E; F) is bounded for the topology of simple convergence, 
then H is equicontinuous (for every closed neighbourhood V of ° in F, consider the sets 
Mn = n u-1(nV)). 

UEH 

b) Show that, if a subset H of 2'(E, F) is not equicontinuous, the set of all x E E such that 
H(x) is not bounded in F is the complement of a first category set. Deduce from this that, 
if (Hn) is a sequence of subsets of 2'(E; F) which are not equicontinuous, then there exists 
an x E E such that none of the sets Hn(x) is bounded in F (<< principle of condensation of singu­
larities »). 

~ 11) Let T be a metrizable topological space, E a topological vector space which is a Baire 
space, and M a family of mappings from ExT into a topological vector space F, satisfying 
the following conditions : 
10 for all to E T, the set of all mappings x f--> f(x, to) where f runs through M, is an equicon­
tinuous set of linear mappings from E into F; 

20 for all Xo E E, the set of all mappings t f--> f(x o, t) from T into F, where f runs through M, 
is equicontinuous. 
Show that M is equicontinuous. (Given to E T and a closed balanced neighbourhood V of ° 
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in F, for every x EO E, let dx be the upper bound of the radii of all open balls with center to in T 
such that, for an arbitrary point t in one of these balls, we have f(x, t) - f(x, to) EO V for all 
f EO M. Show that x f-> dx is upper semi-continuous at every point Xo EO E; for this, show that 
if we had dx > rJ. > dx for points arbitrarily close to x o , then for every neighbourhood W 
of 0 in F, f(x o, t) - !(xo, to) would belong to V + W for d(t, to) :;:; rJ. and f EO M. Finally 
use GT, IX, § 5, No.4, tho 2.) 

12) Let E be a bomologicallocally convex space, and 6 be a family of bounded subsets of E 
containing the image of every sequence converging to O. 
a) Show that for every locally convex space F, every bounded subset of !.f~ (E; F) is equi­
continuous. 
b) Show that if F is a Hausdorff and quasi-complete locally convex space, then the space 
!.f~ (E; F) is quasi-complete. 

13) Show that if E is a Hausdorff and semi-complete locally convex space, then for every 
locally convex space F, every subset of !.f(E; F) bounded for the topology of simple conver­
gence is bounded for every 6-topology. 

§ 4 

I) Show that the completion of a Hausdortr barrelled space is barrelled. 

2) Let E be a vector space over R or C. Show that E, with the finest locally convex topology 
on E (II, p. 25) is barrelled. Deduce from this examples of barrelled spaces which are not 
metrizable and are not Baire spaces. 

3) Let E be a Hausdorff locally convex space with a countably infinite base (all)' 
a) Show that E admits a countable, topologically independent base (ell) (using the fact that 
every line in E has a topological complement, define the ell by induction). 
b) Show that, for E to be barrelled, it is necessary and sufficient that the topology .r of E is 
identical with the finest locally convex topology on E (observe that the convex balancea 
envelope of every sequence (Allell ) is closed in E). In particular, if :Y is metrizable, E is not 
barrelled (el exerc. 2). 

4) Let E be a Banach space in which there exists an infinite algebraically independent sequence 
(an) which is total in E (for example the space e1(N) (I, p. 4»). Let B be a base of E containing 
the an; we know (II, p. 80, exerc. 24) that B is not countable. Let (en) be a sequence of distinct 
elements of B, and distinct from the all' and let C be the complement of the set of the ell in B. 
Let Fn be the vector subspace of E generated by C and the ek for indices k :;:; n; E is the union 
of the Fn' Let S be the unit ball in E; show that there exists an index n such that S n Fn, is 
not a first category set. Deduce that for this value of n, FlI is a metrizable, non-complete Baire 
space. 

5) Give an example of a locally convex space which is a complete, Hausdorff Baire space, 
but is not metrizable (el GT, IX, § 5, exerc. 16). 

6) A locally convex space E is said to be relatively bounded if there exists a bounded barrel 
in E. 
a) In order that E be relatively bounded, it is necessary and sufficient that the topology of E 
is coarser than a topology defined by a semi-norm. Then there exists a base for the canonical 
bomology of E consisting of barrells. 
b) For E to be bomological and relatively bounded, it is necessary and sufficient that the 
topology of E is the lower bound of a family of normed space topologies on E (el III, p. 40, 
exerc. I). Further, in order that there exist also a countable base for the canonical bomology 
of E, it is necessary and sufficient that the topology of E is the lower bound of a sequence of 
normed space topologies. 
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7) A locally convex space E is said to be infra-barrelled if every barrel of E which is bomi­
verous (III, p. 39, exerc. 11) is a neighbourhood of 0 in E. Every bomological space is infra­
barrelled; every barrelled space is infrabarrelled. Show that the completion of a Hausdorff 
infra barrelled space is barrelled (use the fact that in a Hausdorff locally convex space E, each 
barrel absorbs every convex, balanced, bounded and semi-complete subset of E). 

8) Let (EJ'EI be a family of infrabarrelled spaces, and for every lEI, let J; be a linear mapping 
from E, into a vector space E. Show that the space E, with the finest locally convex topology 
for which the J; are continuous, is infra barrelled. In particular, every quotient space of an 
infra barrelled space is infra barrelled ; every topological direct sum of infra barrelled spaces is 
infrabarrelled. 

9) Let I be an uncountably infinite set; on the direct sum vector space E = R(I), consider, 
on the one hand, the finest locally convex topology Y, and on the other hand, the topology Yo 
defined in I, p. 24, exerc. 14, which is locally convex; we know that Y and Yo are distinct 
(II, p. 75, exerc. 11) and that E with Yo is complete (GT, Ill, § 3, exerc. 10). Show that the 
bounded sets in E are the same for;:7- and ,Ufo (III, p. 39, exerc. 10) and that E with Yo is not 
barrelled (observe that the set T of all x = (~,) E E such that I I~,l ~ 1 is a barrel and use 
exerc. 11 of II, p. 75). lEI 

10) Show that an infra barrelled space in which every closed convex balanced and bounded 
subset is semi-complete is a barrelled space. 

11) Let E be an infra barrelled space, F a locally convex space. Show that every subset of 
!f' (E; F) which is bounded for the topology of bounded convergence is equicontinuous. 

-r 12) a) Let E be a locally convex space, (An) an increasing sequence of convex balanced 
sets in E such that A = U All is absorbent. Let (W n) be a decreasing sequence of convex balanced 

n 

neighbourhoods of 0; then the convex balanced envelope V of the Wn n All is absorbent; 
if E is barrelled, V is a neighbourhood of O. 
b) Let ~ be a filter on E; suppose that for every n, there exists a set Mil E ~ such that 
(Mil + W n) n A21l = 0· Let VII be the convex balanced envelope of the W k n Ak for k ~ n - 1 
and ofWn in such a way that Vn is a neighbourhood of 0 and that we have tv C VII for all n. 
Show that (Mil + VII) n An = 0 for all n. 
c) Deduce from a) and b) that ifE is barrelled and if~ is a Cauchy filter on E, then there exists 
an integer N such that, for all M E ~ and every neighbourhood W of 0 in E, M + W meets AN' 
(Argue by contradiction; with the notations of b), consider a set M E ~ with small order tV.) 

~ 13) a) Let E be a barrelled space, (C,) an increasing sequence of convex, balanced sets 
such that E = U CII . Let U be a convex, balanced and absorbent set such that for every n, 

U n Cn is closed in Cn . Show that U is a neighbourhood of 0 in E. (Show that D c 2U, by 
considering a filter ~ on U converging to a point x E E and applying exerc. 12, c)). 
b) Let E be a barrelled space, (En) an increasing sequence of subspaces ofE such that E = U En' 

Show that ifU is a subset ofE such that Un En is a barrel in En for every n, then U is a neigh­
bourhood of 0 in E. In particular, E is the strict inductive limit (II, p. 33) of the sequence (EJ. 

~ 14) a) Let E be a Hausdorfflocally convex space, L a subspace ofE with finite codimension, 
and T a barrel in L. Show that there exists a barrel T' in E such that T' n L = T (show that 
we can take for T' the sum of the closure T ofT in E and of a finite dimensional compact convex 
set). 
b) Let E be a barrelled space, L a subspace of E, which has a complement having a countable 
basis. Show that L is barrelled (use a) and exerc. 13, b)). 
* c) Let E be a Hausdorff locally convex space; its completion E can be identified with a closed 
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subspace of a barrelled space F, which is the product of a family of Frechet spaces (II, p. 5, 
prop. 3 and IV, p. 14, corollary). Let (e")"EA be the basis of a complement in F of the subspace E, 
and let H" be the hyperplane in F generated by E and the e ~ for indices ~ =1= rJ.; by b), H. is a 
barrelled space. For every x E E, let u(x) be the point of the barrelled space G = fl H" (sub-

"EA 
space of FA) all whose coordinates are equal to x; u is an isomorphism from E onto the subspace 
~ n G, where ~ is the diagonal in FA. Show that u(E) = ~ n G is closed in G, and consequently 
that every Hausdorff locally convex space is isomorphic to a closed subspace of a Hausdorff 
barrelled space. * 

15) Let E be a Hausdorff barrelled (resp. infra barrelled) space, and E be its completion. Show 
that every subspace F of E which contains E is barrelled (resp. infrabarrelled) (ef III, p. 24, 
cor. and IV, p. 52, exerc. 1). 

-r * 16) Let (E)'EI be an uncountable family of Hausdorff barrelled spaces, none of which are 
the point 0, and let E = fl E, ; then E is barrelled (IV, p. 14, corollary). Let G be the subspace 

lEI 

of E consisting of all points (x) such that x, = ° except for a countable number of indices. 
Every sequence of points of G which converges in E has a limit belonging to G, but G is dense 
in E. 
a) Show that every subset M of G' = E', which is bounded for cr(E', G) is contained in a 
finite product fl E: (IV, p. 12, prop. 13), where H is a finite subset of I; consequently M is 

lEH 

bounded for cr(E', E). Deduce from this that G is barrelled. 
b) Let F be a subspace of E such that G c FeE and such that G is a hyperplane (everywhere 
dense) in F; F is barrelled (exerc. 15). Show that F is not bomological. (Argue by reductio ad 
absurdum; if there were a convex, balanced and bounded set A in F such that G is an everywhere 
dense hyperplane in the normed space FA (III, p. 7), then there would exist a sequence of 
points of G converging to a point of F not belonging to G) (ef IV, p. 52, exerc. 2). * 

17) a) Let E be a Hausdorff locally convex space, L a vector subspace of E of finite codimen­
sion, and T a bomiverous barrel in L. Show that there exists a bomiverous barrel T' in E 
such that T' n L = T. (Reduce to the case where L is a hyperplane in E. Let Eo be the bomo­
logical space associated with E (III, p. 40, exerc. 1), Lo the hyperplane L with the topology 
induced by that of Eo; observe that T is a neighbourhood ofO in Lo and consider the following 
two cases: that Lo is dense in Eo, or is closed in Eo; show that for T' we can take the closure 
T of T in E or the sum of T and a compact convex set of dimension 1). 
b) Let E be an infra barrelled space, L a vector subspace of E of finite codimension. Deduce 
from a) that L is infra barrelled (el IV, p. 64, exerc. 11). 

-r 18) Let E be a strict inductive limit space of an increasing sequence (En) of locally convex 
metrizable subs paces (II, p. 33), and let F be a vector subspace of E such that every point 
of E is a limit point of a sequence of points of F. 
a) If En is the closure of En in E, then E is the strict inductive limit of the sequence (EJ Let 
F" be the closure of F n E" in E. Show that E is the union of the increasing sequence of sub­
spaces F". 
b) Suppose E is barrelled. Show that F is bomological. (Let u be a linear mapping from F 
into a Banach space G which transforms every bounded subset of F into a bounded subset 
of G. Show that there exists a linear mapping from E into G, whose restriction to F is equal 
to u, and whose restriction to each F" is continuous. Finally use exerc. 13, b) of Ill, p. 44.) 

19) A Hausdorff locally convex space E is said to be ultrabornologieal if every convex subset 
of E which absorbs all the convex, balanced, bounded and semi-complete subsets of E, is a 
neighbourhood of ° in E. 
a) Show that every ultrabomological space is both bomological and barrelled. 
b) Let E be a Hausdorff locally convex space such that the closed, convex, balanced envelope 
of the set of points of every sequence tending to ° is semi-complete. Show that if E is bomo-
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logical then it is uitrabornological. In particular every bornological and quasi-complete 
space is ultrabornological; every Frechet space is ultrabornological. 
c) Let (E,) be a directed increasing family of vector subspaces of a vector space E such that, 
E is the union of the E". Let Y" be a locally convex topology on E, for every Ct., and let Y be 
the finest locally convex topology for which the canonical injections from E. into E are conti­
nuous. Suppose that Y is Hausdorff and that, for every Ct., the topology on E. induced by Y 
is Y". Show that if each ofthe spaces E" is uitrabornological, then E with Y is ultrabornological. 
d) Show that every finite product of ultrabornological spaces is uitrabornological; deduce 
that every topological direct sum of ultrabornological spaces is ultrabornological. 

rye 

e) Show that the product space E = I Ell of an infinite sequence of ultrabornological 
11=0 

spaces is ultrabornological. (Let A be a convex subset of E which absorbs every convex, 
balanced, bounded and semi-complete subset of E. Show that if A were not a neighbourhood 
of 0 in E, then there would have existed a sequence (XII) in C A such that x" has its first n - 1 
coordinates zero, but is =1= 0. Next observe that the closed convex balanced envelope of the set of 

7 oc 

points of such a sequence is identical to the set of points I A"X", where I 1\,1 :s; I, and 
//= 0 11=0 

that this envelope is a semi-complete set.) 

20) Show that, for a Hausdorff locally convex space E to be ultrabomological it is necessary 
and sufficient that it is the inductive limit ofa family of Banach spaces. (To see that the condition 
is necessary, consider the convex, balanced, bounded and semi-complete sets B in E, and the 
spaces EB . To see that it is sufficient, observe that ifE is the inductive limit of a family of Banach 
spaces E., we can assume that the E, are (algebraically) subspaces of E; if V is a convex set 
in E which absorbs the convex, balanced, bounded and semi-complete subsets of E, show 
that V absorbs each ball B" of E" (argue by reductio ad absurdum); if V does not absorb B", 
then it does not absorb a sequence (x,,) of points of B., tending to 0 in E; then use the fact 
that in a Banach space, the closed, convex envelope of a compact set is compact.) 

21) Show that if E is a Hausdorff locally convex semi-complete space, then the bomological 
space associated with E (III, p. 40,exerc. I) is uitrabomological. 

~ 22) Let E be an infinite dimensional Banach space satisfying the first axiom of counta­
bility. 
a) Show that the set oX of all compact, convex and balanced subsets A of E such that EA 
is infinite dimensional, is infinite and has a cardinality :s; 2Card (N) (GT, IX, § 5, exerc. 17). 
For every Xo E E and every A E oX, the set Xo + A contains a free subset of cardinality 2Card (N) 

(II, p. 80, exerc. 24, c». 
b) Let Xo =1= 0 be in E. Show that there exists a family (YA)Ad' such that Xo and the YA form a 
free family and that we have YA E Xo + A for all A E x· (well order oX and argue by transfinite 
induction, using a». 
c) Let f E E* be a linear form such that f(x o) = 1 and f(YA) = 0 for all A E oX, and let 
H = f - 1 (0). Show that a subset M of H which is convex, balanced and semi-complete is neces­
sarily finite dimensional (observe that if not, M will contain an infinite dimensional compact 
convex and balanced set A; hence YA will belong to H n (xo + M»). 
d) Show that H with the topology induced by that of E is not ultrabornological, in spite of 
being bomological and barrelled (III, p. 44, exerc. 14). (By using c), show that if H were ultra­
bomological, its topology would have been the finest locally convex topology, and deduce 
a contradiction.) 

§ 5 

I) Let E, F and G be three locally convex spaces, 6 a cover of E consisting of bounded sets. 
Show that if u is a separately continuous bilinear mapping from E x F into G such that for 
every set M E 6 the restriction of u to M x F is continuous, then u is 6-hypocontinuous. 
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2) Let E be the direct sum space R(N), with the topology induced by the product topology 
w 

on RN. Show that the bilinear form ((x,,), (y,)) I-> L x"Yn on E x E, is separately continuous, 
n= 0 

but that for every set 6 of bounded subsets of E containing at least one infinite dimensional 
bounded set, this bilinear form is not 6-hypocontinuous. 

3) Let E be the space R(N) with the finest locally convex topology (II, p. 26); let F be the space 
RN; the space E is ultrabornological (Ill, p. 45, exerc. 19) and complete, whilst F is metrizable 
and complete. Let 6 (resp. ::t) be the set of all bounded subsets of E (resp. F). Show that the 

Yc 

bilinear form ((xn), (y,,)) I-> L x"y" on E x F is (6,::t)-hypocontinuous, but is not continuous 
11= 0 

(ef IV, p. 48, exerc. 11). 

4) Let E be a locally convex space, Fan infra barrelled space (III, p. 44, exerc. 7) and ::t the set 
of all bounded subsets of F. Show that, if a bilinear mapping from E x F into a locally convex 
space G is ::t-hypocontinuous, it is (6, ::t)-hypocontinuous for every set 6 of bounded subsets 
of E (c1 III, p. 44, exerc. II). 

5) a) Let E, F and G be three Hausdorff locally convex spaces, and u a bilinear mapping from 
E x F into G. In order that there exist a balanced neighbourhood U of 0 in E such that the 
set of all mappings u(x, .), where x runs through U, is equicontinuous in Sf(F; G), it is neces­
sary and sufficient that u is continuous when we replace the topology of E by the coarsest 
topology for which the sets AU (A oF 0) form a fundamental system of neighbourhoods of O. 
Show that if G is normed, this condition is satisfied by every continuous bilinear mapping 
from E x F into G. 
b) Take for E, F and G the product space RN , and for u the continuous bilinear mapping 
((x,'), (y,,)) I-> (xnyJ Show that there does not exist any neighbourhood U of 0 in E such that 
the set of maps u(x, .), where x runs through U, is equicontinuous in Sf(F; G). 

6) Let E, F and G be three topological vector spaces. A set H of bilinear mappings from E x F 
into G is said to be separately equieontinuous iffor alf x EO E, the set of linear mappings u(x, .), 
where u runs through H, is equicontinuous in Sf(F; G) and if for all yEO F, the set of linear 
mappings u(., y), where u runs through H, is equicontinuous in Sf(E: G). 

Suppose that F is metrizable, and that E is a Baire space (el III, p. 43, exerc. 5 and V, p. 79, 
exerc. IS). Show that every separately equicontinuous set of bilinear mappings from E x F 
into G is equicontinuous (ef III, p. 42, exerc. II). 

7) Let E, F and G be three topological vector spaces, 6 a set of bounded subsets of E, and 
H a set of separately continuous bilinear mappings from E x F into G. The following pro­
perties are equivalent: 

ex) For every neighbourhood W of 0 in G and every set M EO 6, there exists a neighbourhood 
V of 0 in F such that u(M x V) c W for all u EO H. 

~) For every set M EO 6, the image of H x M under the mapping (u, x) I-> u(x, .) is an equi­
continuous subset of Sf(F; G). 

y) As u runs through H, the set of mappings y I-> u(., y) from F into Sf3 (E; G) is equicon­
tinuous. 
We then say that H is a 6-equihypoeontinuous set of bilinear mappings (separately continuous) 
from E x F into G. Similarly for a set 'J: of bounded subsets of F, we define the notions of a 
'J:-equihypoeontinuous set and a (6, 'J:)-equihypoeontinuous set. 

8) Let H be a 6-equihypocontinuous set of bilinear mappings from E x F into G (exerc. 7). 
For every subset M EO 6, show that H is equicontinuous in M x F; moreover, for every 
bounded subset Q of F, the union of the sets u(M x Q), where 11 runs through H, is bounded 
in G. 

9) Let H be a (6, 'J:)-equihypocontinuous set of bilinear mappings from E x F into G 
(exerc. 7); show that for every pair of sets M EO 6, N EO ::t, H is uniformly equicontinuous in 
M x N. 
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10) Let El' Ez and F be three topological vector spaces, G 1 (resp. G 2 ) an everywhere densc 
subspace of El (resp. Ez), and 6 1 (resp. 6 z) a family of bounded subsets of G 1 (resp. G z). 
Let H be a set of separately continuous bilinear mappings from El x Ez into F: if the set of 
restrictions to G 1 x Gz of the mappings u E H is (61' 6 z)-equihypocontinuous. then so 
is H. 

11) If F is a barrelled space, every separately equicontinuous set of bilinear mappings from 
E x F into a locally convex space G is 6-equihypocontinuous for every set 6 of bounded 
subsets of E. 

12) Let E, F be two topological vector spaces, and let f be the bilinear mapping (x, u) I---> u(x) 
from E x ~(E; F) into F; let .r be a topology compatible with the vector space structure 
of ~(E; F) and finer than the topology of simple convergence. Let 2: be a family of bounded 
subsets of E, U a family of bounded subsets of ~(E; F) (for the topology .r). Show that f is 
2:-hypocontinuous if and only if :Y is finer than the G-topology; f is U-hypocontinuous if 
and only if the sets of U are equicontinuous subsets of ~(E; F). 

13) Let E, F, G be three topological vector spaces, and 2: (resp. 2) a family of bounded subsets 
of E (resp. F). Let H be the vector space of 2-hypocontinuous bilinear mappings from E x F 
into G. 
a) Show that on H the topology of uniform convergence on sets of the form M x N, where 
M E 6 and N E 2 is compatible with the vector space structure; this topology is called the 
(6, 2)-topology on H. For every mapping U E H, let it be the continuous mapping x I---> u(x, .) 
from E into P,! (F: G). Show that U I---> it is an isomorphism from the space H. endowed with 
the (6, 'l:)-topology, onto the space ~~ (E; ~,!(F; G»). 
b) Let L be a subset of H such that, for every pair (x, Y) E E x F, the set of all u(x, y), where U 

runs through L, is bounded in G (simply bounded subset of H). Show that, ifE, F, G are locally 
convex, and ifE and F are Hausdorff and quasi-complete, then L is bounded in H for the(6, 'l:)­
topology. 
c) Let E, F, G be three Hausdorff locally convex spaces. IfE is barrelled and F quasi-complete 
or barrelled, then every simply bounded subset L of H is 'l:-equihypocontinuous (III. p. 47. 
exerc. 7). 
d) If E and F are barrelled, and G quasi-complete, and if 6 and 'l: are coverings of E and F 
respectively, then H is Hausdorff and quasi-complete for the (6, 'l:)-topology. 

14) Extend the definitions and rcsults of § 5 to arbitrary multilinear mappings. Let E, F, G 
be three topological vector spaces, 6 (resp. 'l:) a family of bounded subsets of E (resp. F), 
and U a family of bounded subsets of the space ~~ 'l (E. F; G) of bilinear (6. 'l:)-hypoconti­
nuous mappings from E x F into G, endowed with the (6, 'I)-topology (exerc. 13). Show 
that the trilinear map (x, y, u) I---> u(x, .1') from E x F X 2'~.'l (E, F; G) into G is (6, 'l:)­
hypocontinuous; in order that it is (6, U)-hypocontinuous, it is necessary and sufficient 
that every set LEU is 6-equihypocontinuous (III. p. 47, exerc. 7). 

~ 15) Let E be the space of all sequences x = (~"),,;,,o of real numbers such that the series 
" with the general term ~n is convergent. Put II x II = sup I I ~k I· 

II k=O 

a) Show that II x II is a norm on E, and that E is complete for this norm. 
b) Show that the vector space r1 eN) (I, p. 4), considered as a subspace of E, is everywhere 

dense (for the topology of E); the topology on e1 (N) defined by the norm II xiiI = I I ~n I 
11=0 

is strictly finer than the topology induced by that of E. 
c) Let (P,,) be an increasing sequence of finite subsets of N x N forming a cover of N x N. 
For every x = (~,,) E E and every .1' = (11,,) E e1(N), let j,,(x. y) = I ~illj' Then the sequence 

(i,jEPn 

U~(x, ,F») tends to a limit for every pair (x, y) E E x e1(N) if and only if for each of these pairs 
en 00 

(x, y), the sequence (f.,(x, y») is bounded; the limit of f,,(x, y) is then equal to (I ~,,) ( Ill,,). 
n=O 11=0 
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(Using exerc. 13, c) of III, p. 48, show that the sequence of bilinear forms (f,,) is equicontinuous, 
and observe that it converges in the subspace fl(N) x fl(N); conclude the argument using b).) 
d) For every j E l\;, let Pi" be the smallest number of closed intervals of N whose union is 
the projection ofPn n (N x {j}) onto N; let p" = sup Pj". Show that the condition obtained 

jeN 

in c) is equivalent to sup p" < + CfJ. (If q,,, is the characteristic function of P n' show that 
" 00 

the norm of thc bilinear form 1;, is sup (I I p"Ci, j) - q,,,(i + I, j) I).) 
jeN i= 0 

§ 6 

~ 1) An exhaustion of a Hausdorff locally convex space is given by a sieve C = (C", P,,),,~o 
(GT. IX. § 6, No.5, def. 8) and, for every n ? 0, a mappmg P" from C" into the set of all convex 
and balanced subsets of E having the following properties: 
EI) E is the union of the cPo(c) where c ranges over Co; 
E2) for every n and every C E c,,' cP,,(c) is the union of the cP,,+ I (c') where c' ranges over Pn-I(c); 
E3) for every sequence (Ck)k ~ 0 such that ck E Ck and ck = Pk( Ck + 1) for all k ? 0, there exists 
a sequence (cPk) of numbers> ° such that, for every sequence (xkJ of points of E such that 
xk E cPk(Ck ) and every sequence (/'k) of real numbers satisfying ° ,s; j'k ,s; Pk for all k, the series 

7J 

I AkXk is convergent in E. 
k~O 

a) Under the above hypotheses, show that if in addition the q,..(c) are closed for C E Cn' then 
00 

we can assume that the Pk have been so chosen that we have I AkXk E q,m(cm) for all m ? 

(take the Pk such that f pk,s; 1). 
k~O 

k=m 

b) Suppose that we are given a sieve C and sequence (q,,,) of mappings into the set of convex 
and balanced subsets of E satisfying El), E2) and the following condition: 
E3') for every sequence (ckJUO such that ck = Pk(Ck+ l ) for al1 k ? 0, there exists a sequence 
(~k) of numbers> ° such that, for every sequence (xk) of points of E with Xk E <h(ck) for all k, 
the sequence of points (flkXk) is contained in a convex, bounded balanced and semi-complete 
set in E. 

Show that then the condition E3) is also verified (take Pk = 2- kflk)' 

A locally convex Hausdorff space is said to be exhaustible if there exists an exhaustion 
of E. 

~ 2) Let E be a locally convex space which is a Haire space, F a locally convex exhaustible 
space (exerc. 1), and (C", P", q,,,) an exhaustion of F. 
a) Let u be a linear mapping from E into F and let W be a convex, balanced and absorbent 
set in F. Show that there exists a sequence (ck ) such that ck E C k , ck = p/Ck+ 1) for all k ? 0, 
and a sequence (mk) of integers > 0, such that each of the sets U- 1(q,k(Ck) n mk W) (which 
is denoted by M k ) is not a thin set in E. Show that for every E > 0, there exists a sequence 
(vk) of numbers > 0 such that if the sequence (xk)u I of points of E is such that xk E vkMk 

00 

for all k ? 1. the serie I U(Xk) converges in F and that its sum belongs to EW. 
k ~ 1 

b) Suppose, in addition, that E is metrizable and that the graph of u in E x F is closed. Show 
that for every <: > 0, we have U- leW) c (1 + E) U-I(W). (Observe that if (Uk) is a countable 
fundamental system of neighbourhoods of 0 in E, then for every k there exists a convex balanced 
neighbourhood Vk of 0 in E such that Vk C Uk n vkMk. For every point aE II-I(W), find 

k 

a sequence (Xk)k~O such that Xo E u-I(W), xk E vkMk for k;;, 1 and a - I Xj E Vk for all 

k ? 1, then apply a).) 
j~O 
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c) Deduce from b) that if E is a metrizable Baire space, then every linear mapping from E 
into F whose graph is closed is continuous. 

3) Show that a Frechet space E is exhaustible (if (Uk) is a decreasing sequence forming a 
fundamental system of closed, convex and balanced neighbourhoods of 0 in E, consider 
the finite intersections of the sets (m + 1) Uk' where m, and Ie run through N). 

4) a) Every closed subspace of an exhaustible locally convex space is exhaustible. 
b) Let E be an exhaustible locally convex space, and u:E --> F a continuous linear surjective 
mapping from E into F. Show that F is exhaustible. In particular, every quotient space of E 
by a closed subspace of E is exhaustible. Every space obtained by assigning to E a Haus­
dorff locally convex topology coarser than that of E is exhaustible. 

5) Let (c(m))m;'O be a sequence of sieves c(m) = (c~m), p~m))n;'O' For every n ;;:. 0, put 

00 

Dn = qO) X C~l~l x ... x cg') x Il {am}, 
m--:-:/I + 1 

where am = 0 for all 111 ;;:. 0: the mapping Pn : Dn+ 1 --> Dn is taken to be equal to 

fi~,O) x p;/~ 1 x ... x pg') x q(n+l) x Il id", 
m=1l + 2 

where q(n+l) is the unique mapping from C~+l) onto {O}, and idm is the identity map of {am}' 
Then (D ,fin) is a sieve. 

Let (E(m))m;,o be a sequence of Hausdorff locally convex spaces; we assume that for each 
In there exists an exhaustion (c~m), p~n), cp~m))n? ° of E(m) Consider the Hausdorff locally convex 
space E = Il E(m), and for every n, put 

00 

cp" = cp~O) X cp~l~ 1 X ... X cpg') X Il o/m 
m=n+ 1 

where o/m is the mapping from {am} into the set of convex and balanced subsets of E(m) such 
that o/"(am) = E(m) Show that (Dn, Pn' CPn) is an exhaustion on the product space E. 

6) Show that an inductive limit (II, p. 31) of an increasing sequence of subspaces En of a 
vector space E, with topologies I". such that E" endowed with .'7" is exhaustible, is an exhaus­
tible locally convex space, if it is Hausdorff. 



CHAPTER IV 

Duality in 
topological vector spaces 

Throughout this chapter, all the vector spaces under consideration are vector spaces 

over a .field K which is either R or C. 

§ 1. DUALITY 

1. Topologies compatible with a duality 

In this section, E and F denote two vector spaces put into duality by a bilinear 
form B (II, p. 40). We recall (II, p. 41) that we defined two linear mappings 

characterized by the relation 

(1) B(x, y) = (x, dB(y) = (y, SB(X) 

for x E E, y E F. 

DEFINITION 1. - A locally convex topology :!I on E is said to be compatible with 
the duality between E and F !f dB is a bijection from F onto the dual of the locally convex 
space obtained by assigning the topology :!I to E. 

If there exists one such topology :!I, the mapping dB is injective, that is to say, 
the duality between E and F is separating in F (II, p. 41). 

PROPOSITION 1. - (i) The closed convex subsets in E are the same for all the locally 
convex topologies on E which are compatible with the duality between E and F. 

(ii) The bounded subsets of E are the same for all the locally convex topologies 
on E which are compatible with the duality between E and F. 
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Let :Y be a topology on E compatible with the duality between E and F, hence 
finer than cr(E, F). If a convex subset of E is closed for :Y, it is the intersection of 
closed, real half-spaces (II, p. 38, cor. 1), hence it is closed for cr(E, F). This proves (i). 
Assertion (ii) was proved in cor. 3 of III, p.27. 

Let F cr denote the vector space F endowed with the weak topology cr(F, E). Then 
the linear mapping SB maps E onto the dual (F cr)' of F cr (II, p. 43, prop. 3). Let 6 
be a family of bounded subsets of F cr' By abuse of language, the inverse image under 
SB of the 6-topology on (F cr)' is called the 6-topology on E. It is defined by the family 
of semi-norms 

(2) PA(X) = sup IB(x, y)l, 
YEA 

where A runs through 6. In particular, when 6 is the family of finite subsets of F, 
the 6-topology is precisely the weak topology cr(E, F). 

DEFINITION 2. - Let E and F be two spaces in duality. The Mackey topology on E, 
denoted by T(E, F) is defined as the 6-topology on E, where 6 is the family of all sub­
sets of F whose image in E* (under dB) is convex, balanced and compactfor cr(E*, E). 

When the duality between E and F is separating in F, dB is injective and the topo­
logy cr(F, E) on F is the inverse image under dB of the topology cr(E*, E) on E*. 
In this case, 6 consists of all those subsets of F which are convex, balanced and 
compact for cr(F, E). 

In general, if F 1 = dB(F) c E*, and if we denote by (x, Y1) f---+ B1 (x, Y1) the res­
triction of the canonical bilinear form (x, x*) f---+ < x, x* > to E x F l' then E and 
F 1 are put in duality by B1, and this duality is separating in F l' since by definition 
we have B(x, y) = B1 (x, dB(y)), def 2 shows that T(E, F) = T(E, F 1)' 

Remark 1. - Let A be a compact convex subset of a Hausdorff locally convex 
space G, and let A be the closed convex balanced envelope of A. When the field K 
is R, the set A is the closed convex envelope of A u (- A); when K is C, the set A 
is contained in the closed convex envelope of 2A u ( - 2A) u (2iA) u ( - 2iA). 
Consequently (II, p. 14, prop. 15), A is compact. 

We deduce, in particular, that when the duality between E and F is separating 
in F, the Mackey topology T(E, F) is also the 6'-topology, where 6' is the set of all 
convex subsets of F which are compact for cr(F, E). In an analogous way we define 
the Mackey topology T(F, E) on F. 

THEOREM 1 (Mackey). - Let E and F be two spaces in duality; suppose that the dua­
lity is separating in F. In order that a locally convex topology :Y on E be compatible 
with the duality between E and F, it is necessary and sufficient that :Y be .finer than 
the topology cr(E, F) and coarser than the Mackey topology T(E, F). 

Identify F with its image in E* under dB' Let 6 0 denote the set of all subsets of F 
which are convex, balanced and compact for cr(F, E). By definition, T(E, F) is the 
6 0-topology on E, hence is finer than cr(E, F). 
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Lemma 1. - The subspace F ofE* consists of all linear Iorms on E which are conti­
nuous lor ,(E, F). 

Every element of F is a continuous mapping for cr(E, F), hence for ,(E, F). 
Conversely, let IE E* be continuous for ,(E, F). There exists a neighbourhood U 

of 0 in E (for ,(E, F)), such that iIi :( 1 on U; we can assume that there exists a 
set A E 6 0 such that U = A 0. In other words, I belongs to the bipolar A 00 of A 
for the duality between E* and E. But the topology cr(F, E) on F is induced by 
cr(E*, E); consequently A is convex, balanced and compact for cr(E*, E), and the 
theorem of bipolars (II, p. 44, tho 1) implies the equality A = AOo. Therefore we 
have that IE F, from which the lemma follows. 

Lemma 2. - Let :Y be a locally convex topology on E such that every linear Iorm 
on E which is continuous lor :Y belongs to F. Then:Y is coarser than ,(E, F). 

Let U be the set of convex, balanced neighbourhoods of 0 for :Y. Let 6 be the 
set of polars in F of elements of U. By cor. 2 of III, p. 17, we have 6 c 6 0 , and by 
cor. 1 of prop. 7 of III, p. 19, :Y is identical with the 6'-topology, where 6' is the 
set of po lars of sets of U in the dual E' of E. But E' c F, by hypothesis, hence every 
set of 6' is contained in a set of 6; and the lemma follows. 

Let :Y be a topology on E compatible with the duality between E and F. Then :Y 
is coarser than ,(E, F) by lemma 2, and evidently :Y is finer than cr(E, F). Conver­
sely, F is the dual ofE for the topology ,(E, F) (lemma 1) and for the topology cr(E, F) 
(II, p. 43, prop. 3), hence also for every topology intermediate between ,(E, F) and 
cr(E, F). 

COROLLARY. - Let p be a semi-norm on E. Thefollowing conditions are equivalent: 
(i) p is continuous lor the topology ,(E, F); 
(ii) every linearform I on E, such that iIi :( p, comes lrom an element of F. 
(i) = (ii) : if p is continuous for ,(E, F), every linear form I on E such that iIi :( p 

is continuous for ,(E, F), hence comes from an element of F by lemma 1. 
(ii) = (i) : let:Y be the topology on E defined by the semi-norm p. If condition (ii) 

is satisfied, the linear forms on E which are continuous for :Y belong to F. By lemma 2 
:Y is coarser than ,(E, F), hence p is continuous for ,(E, F). 

Remark 2. - * Let K be a convex subset of F which is compact for the weak topo­
logy cr(F, E) and ~ a positive measure on K. Put 

p(x) = L IB(x, y)1 d~(y) 

for all x E E. It is immediate that p is a semi-norm. Moreover, for every x E E, the 
relation « IB(x, y)1 :( 1 for all y E K» implies that p(x) :( ~(K). This proves that 
the semi-norm p on E is continuous for the Mackey topology ,(E, F). * 

Example. - Let G be a locally convex space and G' its dual. On G', the weak topo­
logy cr(G', G) and the topology of convex compact convergence (III, p. 14) are 
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compatible with the duality between G' and G. In general, the strong topology 
and the topology of compact convergence on G' are not compatible with the duality 
between G' and G. Recall however that when G is Hausdorff and quasi-complete, 
the topology of compact convergence on G' coincides with that of convex compact 
convergence (III, p. 8), hence is compatible with the duality between G' and G. 

DEFINITION 3. - Let E and F be two vector spaces in duality, and:Y the family of 
subsets ofF which are boundedfor cr(F, E). Then the :Y-topology on F is denoted by 
~(E, F). 

Similarly, we define the topology ~(F, E) on F. It can be seen easily that the topo­
logy ~(E, F) is identical with ~(E, F lEO), and we can reduce to the case when the 
duality between E and F is separating in F. 

Remarks. - 3) Let E" denote the space E endowed with the topology cr(E, F). The 
barrels (III, p. 24) in E" are the subsets of E which are convex, balanced closed and 
absorbent for cr(E, F). These are none other than the polars of the subsets of F 
which are convex, balanced and bounded for cr(F, E). Consequently, the family of all 
barrels in E" is a fundamental system of neighbourhoods of 0 for the topology peE, F) 
in E. In other words, a semi-norm on E is continuous for peE, F) if and only if it is 
lower semi-continuous for cr(E, F) (ef III, p. 24, prop. l). 

4) Let Y be a topology on E compatible with the duality between E and F. By 
prop. I, (ii) ofIV, p. I, the topology P(F, E) on F is none other than the strong topology 
on F, when F is identified with the dual of E (with the topology Y). 

5) The topology peE, F) on E is finer than ,(E, F). It is not, in general compatible 
with the duality between E and F (ef however § 2). In particular, a subset of E which 
is bounded for cr(E, F) is not necessarily bounded for peE, F). 

2. Mackey topology and weakened topology on a locally convex space 

Let E be a locally convex space and E' its dual. We put E and E' in duality by 
means of the canonical bilinear form (x, x') f---+ < x, x') on E x E'. This duality is 
separating in E'. We shall consider three topologies on E compatible with the duality 
between E and E' : 

a) the given topology on E, which we shall call the initial topology, whenever 
any confusion is likely to arise; 

b) the topology cr(E, E'), called the weakened topology on E; 
c) the topology T(E, E'), called the Mackey topology on E. 
The initial topology is finer than the weakened topology and coarser than the 

Mackey topology; moreover, these three topologies can be distinct (IV, p. 49, 
exerc. 8). 

By prop. 1 of IV, p. 1, these three topologies have the same closed convex sets, 
the same barrels, the same bounded sets and the same adapted bomologies. In 
particular : 

PROPOSITION 2. - Let E be a locally convex space, and let A be a convex subset ofE 
(for example, a vector subspace of E). The closure of A is the same for the initial topo­
logy and for the weakened topology of E. 
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Remarks. ~ 1) For a family (X)iEI of elements of E to be total (resp. topologically 
independent) for the initial topology, it is necessary and sufficient that it is so for 
the weakened topology; this follows from prop. 2. Hence we can apply the criteria 
of II, p. 43. 

2) Let 51 and 52 be two locally convex topologies on E, compatible with the 
duality between E and E', 51 being finer than 52' Then every neighbourhood of 0 
for 51' which is convex and closed for .Y'1 is closed for 52 by prop. 1 of IV, p. l. 
Consequently (GT, II, § 3, No.3, corollary) every subset ofE which is complete for 52 
is so for 51 also. 

In particular, every subset of E which is complete for the weakened topology is 
complete for the initial topology, and every subset of E complete for the initial 
topology is so for the Mackey topology. If E is quasi-complete for the weakened 
topology, it is so for every topology compatible with the duality between E and E'. 
If it is quasi-complete for the initial topology, it is so for the Mackey topology. 

3) Suppose E is Hausdorff (for the initial topology). Let A be a subset of E which 
is closed and bounded for o{E, E'), hence also for every topology compatible with 
the duality between E and E'. Since A is precompact for cr(E, E') (III, p. 3, Remark 5), 
assuming that A is compact for cr(E, E') is equivalent to A being complete for cr(E, E'). 

Therefore, on account of remark 2, we see that: 

PROPOSITION 3. ~ Suppose E is Hausdorff; and E' its dual. Every subset of E which 
is precompact for the initial topology and compact for cr(E, E'), is compact for the 
initial topology. 

4) The topology ~(E, E') (IV, p. 4, def 3) is finer than the Mackey topology. If 
~(E, E') is distinct from ,(E, E'), it is not compatible with the duality between E 
and E'. The space E is barrelled if and only if the initial topology is equal to ~(E, E') 
(III, p. 24). 

PROPOSITION 4. ~ Let E be a locally convex ~pace. The Mackey topology on E is 
identical with the initial topology in each of the following cases : 

a) E is barrelled; 
b) E is bomological; 
c) E is metrizable. 
We note first that the Mackey topology on E is identical with the initial topology 

if and only if every convex subset of E' which is compact for cr(E', E), is equi-conti­
nuous. This is certainly the case if E is barrelled (III, p. 24, corollary). 

Suppose E is bomological; let V be a convex and balanced neighbourhood of 0 
in E for the topology ,(E, E'). Let B be a subset ofE, boundedfor the initial topology. 
Since B is bounded for the Mackey topology, V absorbs B, and since E is bomolo­
gical, V is a neighbourhood of 0 for the initial topology. 

In case c), the space E is bomological (III, p. 12, prop. 2). 
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3. Transpose of a continuous linear mapping 

In this section, E j and Ez denote two locally convex spaces, with respective 
duals E~ and E~. 

Let u be a linear mapping from El into Ez. For u to be continuous when E j and 
Ez are assigned the weakened topologies, it is necessary and sufficient that f 0 u 
belongs to E~ for all f E E~ ; this is the case if u is continuous. Then the linear mapping 
f f---+ f 0 u from E~ into E~ is called the transpose of u and is denoted by tu. 

PROPOSITION 5. - Let u be a continuous linear mapping from E j into E z. 
(i) If E j and Ez are Hausdorff then u is injective if and only if the image of tu is 

dense in E~ for the weak topology cr(E~ : Ej)' 
(ii) For tu to be injective it is necessary and sufficient that the image of u is dense 

in Ez. 
A vector subspace of E2 is dense for the initial topology if and only if it is dense 

for the weakened topology (IV, p. 4, prop. 2). Prop. 5 then follows from II, p. 47, 
cor. 2. 

PROPOSITION 6. - Let u be a linear mapping from E j into E2 which is continuous 
for the weakened topologies. For i = 1, 2, let 6; be afamily of bounded subsets ofE;. 
In order that tu is a continuous mapping from (E~) 62 into (E~)6' it is necessary and 
sufficient thatJor every set A E 6 1 , there exist sets A j , ... , An in 6 2 and a real number 
A > 0 such that A. u(A) is contained in the closed convex balanced envelope of 
Al U ... U An 1. 

This is an immediate consequence of prop. 2 of III, p. 15. 

COROLLARY. - Let u be a continuous linear mapping from El into E2. Then tu is 
continuous when the duals E; are assigned the following topologies : 

a) the weak topologies cr(E;, E;); 
b) the strong topologies ~(E;, E); 
c) the Mackey topologies ,(E;, E); 
d) the topologies of precompact convergence. 
Moreover, ifE2 is Hausdorff, tu is continuous when the duals E; are assigned: 
e) the topologies of compact convergence (resp. compact convex). 
The only point which requires a proof is the case c), when the topologies of E j 

and E2 are not necessarily Hausdorff. Then for every linear form f E E~*, f 0 tu is 
a linear form on E~ ; hence there is a linear mapping v: E~* ---+ E~* which is continuous 
for the topologies o{E~*, E~) and cr(E~*, E~) and is such that dB2 0 u = v 0 dB" 
where dB; is the canonical mapping from E; into E;* (i = 1, 2). Consequently, if A 
is a subset of E j such that dB,(A) is convex, balanced and compact for cr(E~*, E~) 
then dB2(u(A)) = v(dB,(A)) is convex, balanced and compact for cr(E~*, E~) since 
the topologies cr(E~*, E~) and cr(E~*, E~) are Hausdorff. 

1 In other words, u(6 j ) is contained in the smallest adapted bomology containing 6 2 

(III, p. 3). 
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PROPOSITION 7. - Let u: El -+ E2 be a linear mapping. We assume that u is conti­
nuous for the weakened topologies of El and E 2. 

(i) The mapping u is continuous ifEl and E2 are assigned their Mackey topologies. 
(ii) IfEl is bornological or barrelled, then u is continuousfor the initial topologies 

of El and E 2· 
(iii) In order that u be continuousfor the initial topologies ofEl andE2 , it is necessary 

and sufficient that the image under tu of every equicontinuous subset of E~ be equi­

continuous in E~. 
The hypothesis implies that tu is continuous for the weak topologies o{E~, E2) 

and o{E~, E l ) (II, p. 46, corollary) hence the image under tu of a convex, balanced 
and compact subset for (J(E~, E 2) is convex, balanced and compact for a(E~, E l ), 

the topologies a(E~, E z) and (J(E~, E l ) being Hausdorlf. Therefore, assertion (i) 
follows from GT, X, § 1, No.4, prop. 3, b). Assertion (ii) is a consequence of (i) : for, if El 

is bomological or barrelled, its initial topology is the Mackey topology, and the 
Mackey topology of E2 is finer than the initial topology of E 2. Finally, the initial 
topology of Ei is that of uniform convergence on equicontinuous subsets of E; 
(III, p. 19, cor. 1 of prop. 7). This proves (iii). 

COROLLARY. - Suppose El is a normed space. Let u be a linear mapping from El 

into E2 • The following properties are equivalent : 
a) u is continuous; 
b) u is continuous for the weakened topologies; 
c) the image of the unit ball in El under u is bounded in E2 ; 

d) for every sequence (xn) of points of El tending to 0 for the initial topology, the 
sequence (u(xn)) is bounded for the weakened topology of Ez. 

Since El is bomological the equivalence of a) and b) follows from prop. 7; that 
of a) and c) is immediate. The equivalence of a) and d) follows from prop. 1 of IV, 
p. 1, and from prop. 1 of III, p. 11. 

PROPOSITION 8. - (i) Let E be a normed space, with dual E'. For every x E E, we 
have 

(3) Ilxll sup I<x, x')I· 
x'EE', II x' II '" 1 

(ii) Let El and E2 be two normed spaces and u a continuous linear mapping from 

El into E2 . We have 

(4) 

Let x E E. For every x' E E' such that Ilx'll .;:; 1, we have 

I<x, x')1 .;:; Ilxll·llx'll .;:; Ilxll· 

By Hahn-Banach theorem (II, p. 23, cor. 2), there exists an element x' in E' such 
that Ilx'll .;:; 1 and <x, x') = Ilxll. This proves (i). 
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Let us now prove (ii). By formula (3) and the definition of the transpose, we have 

II lull sup Illu(y')11 = sup I<X,IU(y')1 
Ily'll U Ily'll u,llxll U 

sup l<u(x),y')1 = sup Ilu(x)11 = Ilull· 
Ilxll~l,IIY'IIU IlxilU 

Remarks, - 1) Formula (3) is a particular case of (4), corresponding to the linear 
mapping A f-+ AX from K into E. 

2) Put B(x, y') = < u(x), y' > = < X, 'U(y') > for x EEl' y' E E~. The above proof 
shows that B is a continuous bilinear form on El x E~, with norm (GT, X, ~ 3, No.2) 
equal to II u II. 

COROLLARY. - Let E be a normed space satisfying the first axiom of countability. 
There exists a countable subset 0 of E' - {O} such that we have 

(5) Ilxll = sup I<x, ol/II~II 
~ED 

for all x E E. 
Let B' be the unit ball of the dual E' of E with the weak topology a(E', E) assigned 

to it. Then B' is a compact metrizable space (III, p. 19, cor. 2); hence there exists 
a countable dense subset 0' in B'. Put 0 = 0' n (E' - {O}). Let x E E; the mapping 
x' f--+ < x, x') from B' into K is continuous, therefore 

sup I<x, x')1 = sup I<x, 01 ~ sup I<x, ol/II~II ~ Ilxll· 
x'EB' ~ED' ~ED 

Formula (5) now follows from (3). 

4. Dual of a quotient space and of a subspace 

Throughout this section, E denotes a locally convex space, M a vector subspace 
of E, and MO the orthogonal of M in the dual E' of E. Let p be the canonical mapping 
from E onto E/M; then lp is injective, with image MO, hence defines a vector space 
isomorphism (not topological) 

n : (E/M)' -> M O 
• 

Similarly, let i be the canonical injection from Minto E. Then Ii is surjective (II, 
p. 24, prop. 2); its kernel is equal to M O

, and we get a vector space isomorphism (not 
topological) 

l:E'/MO -> M' . 

PROPOSITION 9. - (i) For a subset A of'(E/M)' to be equicontinuous, it is necessary 
and sufficient that n(A) is an equicontinuous subset of E'. 
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(ii) Let 6 be a set of bounded subsets ofE, and 6 1 the set of the images of subsets 
A E 6 in ElM. Then TC is an isomorphism from (E/M)~, onto MO , where MO is assigned 
the topology induced by that ofE~. 

(iii) Suppose E is a normed space then TC is an isometry from the normed space (ElM), 
onto the normed subspace MO ofE'. 

Let A be a subset of (ElM), and B = tp(A) c E'. Put 

q(~) = sup I<~, ~') I 
~'EA 

for all ~ E ElM. In order that A be ~uicontinuous, it is necessary and sufficient 
that the mapping q from ElM into R+ is a continuous semi-norm. This implies 
that q 0 p is a continuous semi-norm on E (II, p. 27, prop. 5, (ii)). Since we have 

(qop)(x) = sup l<x,x')1 
x'EB 

for all x E E, this in turn implies that B is equicontinuous in E', and (i) follows. 
Let A E 6 and let f be a continuous linear form on ElM. For every A E R+, we 

have If I :( A on peA) if and only if Itpcnl :( A on A; hence (ii). 
Finally we prove (iii). Let y' be in (ElM)'. An element in ElM has norm < 1 if 

and only if it is the image under p of an element of norm < 1 in E. Hence 

Ily'll sup I<y, y')1 = sup I<p(x), y')1 
YEEfM,IIYII<1 XEE,llxll<1 

sup I<x, tp(y') I = Iltp(y')11 ' 
xEE,llxll <1 

and tp induces an isometry from (ElM), onto MO. 

PROPOSITION 10. - (i) For a subset A of M' to be equicontinuous, It IS necessary 
and sufficient that it is the image under ti of an equicontinuous subset ofE'. 

(ii) Suppose M is closed in E. Let 6 be a covering ofE consisting of bounded subsets 
and let 6 1 be the set of subsets ofM of theform M n Afor A in 6. The bijective linear 
mapping I from E~ IMo onto M~ I is continuous. It is a homeomorphism if6 is a directed 
set for the relation c and consists of closed convex and compact sets for cr(E, E'). 

(iii) IfE is assumed to be normed, then t is an isometry from E'/Mo onto M'. 
The image under ti of an equicontinuous subset of E' is an equicontinuous subset 

of M' (IV, p. 7, prop. 7). Conversely, let A be an equicontinuous subset of M'. The 
topology of M is defined by the set of restrictions to M of the continuous semi­
norms on E. Hence there exists a continuous semi-normp on E such that I f(x) I :( p(x) 
for all IE A and for all x EM. Let B be the set of all linear forms g on E such that 
Igl :( p and whose restriction to M belongs to A. The set B is equicontinuous in E'; 
by Hahn-Banach theorem (II, p. 23, cor. 1), we have ti(B) = A, hence (i) follows. 

We now prove (ii). By prop. 6 of IV, p. 6, the linear mapping ti from E~ into M~l 
is continuous, and defines, by passing to the quotient, a continuous linear mapping 
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t from E~/Mo onto M'ZI' Let :Y be the topology on M' obtained by transferring 
that of E~/Mo by t; this is finer than the 6 1-topology. 

Suppose now that 6 is a directed set for c and consists of closed, convex, balanced 
and compact sets for G(E, E'). To show that t is a homeomorphism, i.e. that :Y is 
coarser than the 6 1 -topology on M', it is enough to prove that :Y is compatible 
with the duality between M' and M and that every equicontinuous set in M (consi­
dered as the dual of M with .'1") is contained in the homothetic of a set belonging 
to 6 1 , Since :Y is finer than the 6 1-topology and 6 1 is a covering of M, the linear 
form y' f---* (y, y') on M' is continuous for :Y for every y EM. Let f be a linear 
form on M' which is continuous for:Y; then f 0 ti is a continuous linear form on Es' 
The 6-topology on E' is coarser than the Mackey topology ,(E', E); for, the mapping 
dB: E -* E'* is continuous for the topologies G(E, E') and G(E'*, E'), and since the 
latter is Hausdorff, the image under dB of a set which is compact for G(E, E') is 
compact for G(E'*, E'). By lemma 1 of IV, p. 3, there exists X o E E such that 
fCi(x')) = (xo,x') for all x'EE'. In particular, (xo,x') = 0 for all x'EMo, and 
since M is closed in E, we have X o E M (II, p. 45, cor. 2) ; and finally, fey') = (xo, y') 
for all y' EM'. This proves that :Y is compatible with the duality between M and M'. 

Now let A be a subset of M equicontinuous for the topology :Y on M'. By the 
definition of .'1", and in view of the hypothesis that 6 is directed, this means that 
there exists a set B E 6 containing 0 and such that the upper bound 'A of the numbers 
I (y, x') I for YEA and x' E W, is finite (III, p. 19, prop. 7). Since B is closed in E, 
the theorem of bipolars (II, p. 44, tho 1) shows that we have A c 'A(B n M); this 
completes the proof of (ii). 

We shall now prove (iii). Let y' EM'. We shall prove the formula 

(6) II y' II = inf II x' II . 
t;(x') = y' 

By prop. 8, (ii) oflV, p. 7, we have II ti II = II i II, and so II ti II ,;:; 1, and 

(7) II y' II,;:; inf II x' II . 
'i(x')= y' 

By Hahn-Banach theorem (II, p. 23, cor. 3), there exists a linear form x~ on E which 
extends y' and is of the same norm; hence we get the inequality opposite to (7), 
since ti(x~) = y'. 

Remark. - We know (II, p. 48, prop. 7, (ii)) that 1 is a topological vector space isomor­
phism from E~ I MO onto M~ (weak duals). For the topology of compact convex conver­
gence, prop. 10 shows that 1 is an isomorphism from E;c/Mo onto M;c when E is Haus­
dorff and M closed in E. For the strong topologies, 1 is a continuous mapping from 
E~/Mo onto M~; it is an isomorphism if E is a Banach space * or if E is semi-reflexive 
and M is closed in E (IV, p. 15) *' but this is not always so if E is a Frechet space (rv, 
p. 58, exerc. 5, c)). 

PROPOSITION 11. - (i) The weakened topology on ElM is the quotient of that on E; 
the weakened topology on M is induced by that of E. 
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(ii) The Mackey topology on ElM is the quotient of that on E; the Mackey topo­
logy on M is finer than the topology induced by ,(E, E'). 

Assertion (i) follows from prop. 7 of II, p.48. 
The canonical injection i: M -+ E is continuous for the weakened topologies, 

hence for the Mackey topologies ,(M, M') and ,(E, E') (IV, p. 7, prop. 7). Similarly, 
the canonical projection p: E -+ ElM is continuous for the Mackey topologies. We 
see immediately that the quotient topology on ElM obtained from ,(E, E') is com­
patible with the duality between ElM and (ElM)" hence is coarser than the Mackey 
topology on ElM, by Mackey's theorem (IV, p. 2, tho 1). This proves (ii). 

5. Dual of a direct sum and of a product 

For every i E I, let (Ei, F) be a pair of vector spaces, set in duality by a bilinear 
form Bi. We put E = TI Ei and F = EB F i, and we identify each Fi with a subspace 

iE] iEI 

of F. We put E and F in duality by means of the bilinear form 

(8) B(x, y) = L B;CXi' y) for x = (x) and y = (y) 
iEI 

(the family (Bi(Xi, y))iEI has finite support). 
We recall (II, p. 50, prop. 8) that the weak topology cr(E, F) is the product of the 

weak topologies cr(Ei, FJ 

Lemma 3. - (i) For every i E I, let 6 i be afamily of subsets of F i , which is bounded 
for cr(Fi, E); put 6 = U 6 i. Then the 6-topology on E is the product of the 6 i-

iEI 

topologies on the E i . 

(ii) For every i E I, let ~i be an adapted bornology on the space Ei endowed with 
the weak topology cr(Ei' F), none equal to {0}. Let :3 be the family of subsets A 
of E = TI Ei such that pri(A) E:3i for all i E I. Then the :3-topology on F is the direct 

iEI 

sum of the :3i-topologies on the Fi . 

Let .'!I be the product of the 6 i-topologies. The sets of the form 

A = TI A~ x TI Ei 
iEl iEI - J 

where J c I is finite and Ai E 6 i for all i E J, form a fundamental system of neigh­
bourhoods of 0 for :Y. We have A = (U A;)O, hence :Y is identical with the 6-topo-

iEJ 

logy. This proves (i). 
We assign the :3-topology to F and the :3i-topology to each Fi. For every subset 

A ofE, we have Fi n AO = pri(A)O, hence the injection from Fi into F is continuous. 
Let q be a semi-norm on F; we assume that the restriction qi of q to Fi is continuous 
for all i E I. Then we can find non-empty subsets Ai E:3i such that we have 

(9) qi(y) ~ sup IBi(xp y)1 (Yi E F). 
XiEAi 
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Put A = n Ai; then A E 3· For y = (Y;)iEI in F, we have 
i.eI 

q(y) :'( I CJly) :'( I sup IBi(xi, y)1 = sup IB(x, y)I, 
iEI iEI XiEAi XEA 

where the last equality follows from (8) since the family (Y)iEI has finite support 
and the Ai are non-empty and can be assumed balanced (GT, IV, § 5, No.7, cor. 2 
to prop. 12). This inequality proves that q is continuous Oil F, and hence (ii). 

PROPOSITION 12. - The topology ~(F, E) is the direct sum of the topologies ~(Fi' EJ 
The topology ~(E, F) is the product of the topologies ~(Ei' FJ 

We shall apply lemma 3 taking for 6 i the family of all subsets of Fi which are 
bounded for a{Fi, E) and for :3i the family of all subsets of Ei which are bounded 
for a(Ei, FJ 

By cor. 2 of III, p. 4, :3 is the family of all subsets of E; which are bounded for the 
product topology of the aCE;, F), which is identical with aCE, F). Hence our asser­
tion on ~(F, E) follows. 

We endow F = ttl Fi with the topology :Y which is the direct sum of the topo-
iEI 

logies a(F i , EJ Then the dual of F consists of the linear forms r f-> B(x, y) where 
x runs through E (II, p. 30, prop. 6). By prop. 1 of IV, p. 1, the topologies :Y and 
a(F, E) have the same bounded sets. Assume first that that the topologies a(F;, E) 
are Hausdorff. By prop. 5 of III, p. 5, these sets are contained in a subset of the form 
I Bi with J c I finite and B; bounded in F j (for a(F;, E)) for all i E J. Since I Bi 
~ ~ 

is contained in the convex envelope of U nB;, where n = Card(J), we can apply 
iEJ 

lemma 3, to prove the assertion on ~(E, F) in this case. 
For the general case, let Ni be the intersection of all neighbourhoods of 0 for 

a(Fi, E), and let N = I Ni ; then FIN is the topological direct sum of the F;/Ni 
iEI 

(II, p. 31, prop. 8); we deduce from this that every subset of F which is bounded 
for :Y is contained in a set of the form N + I Bi with J c I finite and Bi bounded 

ieJ 

in Fi for all i E J (III, p. 2, Remark 3); since the polar of this set in E is the same as 
that of I Bi' the result follows as above. 

iEJ 

PROPOSITION 13. - The Mackey topology -reF, E) is the direct sum of the Mackey 
topologies -r(F;, E) . The topology -r(E, F) is the product of the topologies -r(Ei' FJ 

The assertion on -reF, E) follows from lemma 3 (ii) and the following property: 
for a closed, convex and balanced subset of F* = n F; to be compact for a(F*, F), 

ieI 

it is necessary and sufficient that its projection on each F; is compact for a(F;, FJ 
To prove the assertion on -r(E, F), assume first that the topologies a(Fi' E) are 

Hausdorff, it is enough (lemma 3 (i») to prove that every subset A of F which is convex, 
balanced and compact for a(F, E) is contained in a set of the form I Ai where 

iEJ 

J c I is finite and where Ai is convex, balanced and compact for a(Fi' EJ But 
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such a subset is bounded for a(F, E). By the proof of prop. 12, there exists a finite 
subset J of! such that A c I Fi, and it is enough to take for Ai the projection of A 

iEJ 

on F i . 

In the general case, with the same notations as in the proof of prop. 12, we have 
T(Ei, F) = T(Ei, F;/N) and T(E, F) = T(E, FIN) (IV, p. 2) and since FIN is the 
topological direct sum of the F;/Ni' we have reduced to the preceding case. 

Q.E.D. 

For the remainder of this paragraph, we assume that (E)iEI is a family of locally 
convex spaces. Let S denote the topological direct sum of the Ei and P, their product. 
We define a linear mapping S: S' --+ n E;, said to be canonical, by 

iEI 

(10) S(x') = (x'IEJiEI (x' E S') 

(where S' denotes the dual of S, and E; that of EJ 

PROPOSITION 14. - (i) The mapping S is an isomorphism from the strong (resp. weak) 
dual of S = EB Ei onto the product of the strong (resp. weak) duals of the Ei : 

iEI 

(ii) For a subset A of s' to be equicontinuous, it is necessary and sufficient that 
the projection of SeA) onto E; be equicontinuous for all i E I. 

(iii) The Mackey topology T(S, S') is the direct sum of the Mackey topologies 
T(Ei, E;). 

(iv) The topology ~(S, S') is the direct sum of the topologies ~(Ei' E;). 
That S is bijective follows immediately from the definition of a topological direct 

sum (II, p. 30, prop. 6). Assertion (i) then follows from prop. 12 of IV, p. 12, for the 
strong topologies, and from prop. 8 of II, p. 50, for the weak topologies. Similarly 
(iii) follows from prop. 13 (IV, p. 12) and (iv) from prop. 12 (IV, p.12). 

To prove (ii), let A be a subset of S'. Put 

(11) q(x) = sup I<x, x') I for XES; 
x'EA 

let qi denote the restriction of q to Ei, whence 

(12) qlx) = sup l<xi,x;)1 for XiEEi , 
x;EAi 

where Ai denotes the projection of SeA) on E;. For A to be equicontinuous, it is 
necessary and sufficient that q is finite (that is, that each qi is finite) and continuous. 
In view of the characterization of continuous semi-norms on a topological direct 
sum (II, p. 27, prop. 5), this is the same as assuming that each qi is continuous, or 
in fact, that each set Ai is equicontinuous. Q.E.D. 

Let <I> be the linear mapping, said to be canonical, from EB E; into the dual P' 
iEI 
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of P = TI Ei, defined by the formula 
iEi 

(13) < x, <!lex') > = L < Xi' x;> 
iEI 

for X = (x) in P and x' = ex:;) in EEl E;. 
iEI 

PROPOSITION 15. - (i) The map <!l is an isomorphism ji-om the topological direct 
sum of the strong duals of the Ei onto the strong dual of P = TI Ei · 

iEi 

(ii) For a subset A of P' to be equicontinuous, it is necessary and sufficient that 
it is contained in a finite sum L <!leA), where J c I isfinite and where Ai is equicon-

iEJ 

tinuous in E; for all i E J. 
(iii) The Mackey topology rep, P') is the product of the topologies ,(Ei, EJ 
(iv) The topology ~(P. P') is the product of the topologies ~(Ei' EJ 
It is immediate that <!l is injective. A fundamental system of neighbourhoods of 0 

in P consists of sets of the fonn V = TI Vi X TI Ep where J c I is finite and Vi 
iEJ iEi-J 

is a neighbourhood of 0 in Ei for i in 1. The polar of V in P' is equal to L <!leV?). 

This proves the surjectivity of <!l and also assertion (ii). 
Assertions (i) and (iv) follow from prop. 12 (IV, p. 12) and (iii) from prop. 13 

(IV, p. 12). 

COROLLARY. - Every product of barrelled spaces is barrelled. 
A locally convex space E is barrelled if and only if the initial topology is identical 

with ~(E, E') (TV, p. 4. Remark 3). Hence it is enough to apply prop. 15 (iv). 

~ 2. BIDUAL. REFLEXIVE SPACES 

1. Bidual 

DEFINITION 1. - Let E be a locally convex space and E~ its strong dual. The dual 
of the locally convex space E~ is called the bidual of E and is denoted by E". 

F or every x E E, let x be the linear form x' f---+ < x, x' > on E'; it is contin liOUS 

for the weak topology cr(E', E), hence a fortiori, for the strong topology on E' ; 
therefore x E E" for all x E E. The map cE : x f---+ X from E into E" is a linear mapping, 
said to be canonical. 

PROPOSITION 1. - The kernel of cE:E --+ E" is the closure of 0 in E. If E is Haus­
dorff, CE is injective. 

By construction, the kernel of cE is the intersection orthe kernels orthe continuous 
linear fonns on E, i.e. the closure of {O} in E (II, p. 24, cor. 1). 

When E is Hausdorff, we identify E with a subspace of E", by means of the mapping 

CEo 
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The strong topology on E" is the G-topology, where G is the family of all strongly 
bounded subsets of E'. Since every equicontinuous subset of E' is strongly bounded 
(III, p. 22, prop. 9), the initial topology on E is coarser than the topology obtained 
by taking the inverse image under cE of the strong topology on E"; it can be strictly 
coarser (IV, p. 52, exerc. 1). However: 

PROPOSITION 2. - Suppose that the space E is bornological or barrelled. The initial 
topological on E is the inverse image under CE of the strong topology on E". 

For, every subset of E' which is strongly bounded is equicontinuous (III, p. 22, 
prop. 10 and III, p. 24). 

PROPOSITION 3. - Let E be a locally convex Hausdorff space. In order that the strong 
dual E~ of E be barrelled, it is necessary and sufficient that every subset of E" which 
is bounded for cr(E", E'), is contained in the closure, for cr(E", E'), of a bounded subset 
of E. 

The equicontinuous subsets of E" are the subsets contained in the bipolar (for the 
duality between E" and E') of a bounded subset of the subspace E of E". It is now 
enough to apply the theorem of bipolars (II, p. 45, cor. 3) and the definition of a 
barrelled space (III, p. 24). 

Remark. - Let E be a locally convex Hausdorff space, E' its dual and E" its bidual. 
We have E c E" c E'*, where E'* is the algebraic dual of E'. If B is a bounded 
subset of E, its closure B in E'* endowed with cr(E'*, E') is containe~ in E" : for, 
the polar U = BO of B in E' is a neighbourhood of 0 in E~, and we have B c U O c E". 

2. Semi-reflexive spaces 

DEFINITION 2. - Let E be a locally convex space. We say that E is semi-reflexive 
if the canonical mapping CE from E into E" is bijective. 

This implies that E is Hausdorff, and that every linear form on E', which is conti­
nuous for the strong topology ~(E', E), is of the form x' f-+ < x, x' > with x E E, i.e. 
continuous for the weak topology cr(E', E). 

THEOREM 1. - A locally convex Hausdorff space is semi-reflexive if and only if every 
bounded subset of E is relatively compact for the weakened topology cr(E, E'). If E 
is semi-reflexive, the strong dual E~ of E is barrelled. 

The second assertion follows from prop. 3 (IV, p. 15), and the identity between 
bounded subsets for the initial topology and for the weakened topology of E (III, 
p. 27, cor. 3). 

To say that E is semi-reflexive means that the topology on E; is compatible with 
the duality between E and E', in other words, by Mackey's theorem (IV, p. 2, tho 1) 
that the topology on E~ is coarser than T(E', E) (and in fact is identical with it); 
by definition (IV, p. 2), this means that every closed, convex and bounded subset of 
E is compact for cr(E, E'), and this is equivalent to saying that every bounded subset 
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of E is relatively compact for aCE, E'), because the closed convex envelope of a 
bounded subset of E is bounded (III, p. 3, prop. 1). 

COROLLARY. ~ Let E be a locally convex semi-reflexive space. Every closed vector 
subspace M of E is semi-reflexive; moreover, the strong topology on E'/Mo (considered 
as the dual of M) is the quotient of the strong topology on E'. 

Let B be a bounded subset of M. Since B is bounded in E, and the weakened 
topology a(M, M') on M is induced by aCE, E') (IV, p. 10, prop. 11), the closure 
of Bin M endowed with a(M, M') is compact. Hence, by tho 1, M is semi-reflexive. 
The last assertion of the corollary follows from prop. 10 ofIV, p. 9, applied to 
the set G of all closed, convex and bounded subsets of E. 

Remarks. ~ 1) Suppose E is semi-reflexive. Every subset of E which is convex, 
closed and bounded for the initial topology is compact for the topology aCE, E') 
(IV, p. 1, prop. 1). * On the other hand, the unit sphere (with the equation Ilxll = 1) 
of an infinite dimensional hilbertian space E is closed and bounded for the initial 
topology, but is not closed for the weakened topology, even if E is semi-reflexive. * 

2) By remark 3 of IV, p. 5, we can reformulate tho 1 as follows : the Hausdorff 
space E is semi-reflexive if and only if it is quasi-complete for its weakened topology. 
If it is semi-reflexive, then it is quasi-completefor its initial topology (IV, p. 5, Remark 2). 

3) Under the hypotheses of the above corollary, the space ElM is not necessarily 
semi-reflexive (IV, p. 63, exerc. 10). 

3. Reflexive spaces 

DEFINITION 3. ~ A local(v convex space E is said to be reflexive !f the canonical 
mapping cE Fom E into E" is a topological vector space isomorphism from E onto 
the strong dual of E~. 

In particular, a reflexive space is semi-reflexive, hence Hausdorff. 

PROPOSITION 4. - The strong dual of a reflexive space is reflexive. 
This follows immediately from def 3. 

THEOREM 2. - In order that a locally convex Hausdorff space E be reflexive, it is 
necessary and sufficient that it is barrelled and that every bounded subset ofE is rela­
tively compact for the weakened topology aCE, E'). 

By tho 1 (IV, p. 15), this is the same as saying that E is reflexive if and only if it 
is semi-reflexive and barrelled 

If E is reflexive, E~ is reflexive (prop. 4) and consequently E is barrelled (IV, p. 15, 
tho 1). Conversely, if E is semi-reflexive and barrelled, cE is a bijection and is biconti­
nuous by IV, p. 15. prop. 2, hence E is reflexive. 

Remarks. - * 1) Let E be an infinite dimensional real hilbertian space. Let F denote 
the space E endowed with the weakened topology. The spaces E and F have the same 
dual E', and E is a reflexive Banach space (V, p. 17). Consequently, F is semi-reflexive. 
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However, the strong topology and the weakened topology on E are distinct, hence 
F is not reflexive. * 

2) Let E be a reflexive space and M a closed vector subspace of E. It may happen 
that neither M nor ElM are reflexive spaces (IV, p. 63, exerc. 10). * For the case of 
normed spaces, see prop. 7 of IV, p. 17. * 

4. The case of normed spaces 

Let E be a nonned space. The strong topology on the dual E' of E is defined by 
the norm 

(1) Ilx'll = sup I<x, x')I, 
xEE.llxll ";1 

and the strong dual of E is a Banach space (III, p. 24, cor. 2). Then the bidual E" 
of E is also a Banach space, for the norm defined by 

(2) Ilx"11 = sup I<x', x") I. 
x'EE' .11 x' II ,,; 1 

By prop. 8, (i) of IV, p. 7, the canonical linear mapping cE : E -+ E" is an isometry. 
Henceforth, we shall identify E with a normed subspace of its bidual E". 

PROPOSITION 5. - Let E be a normed space, E' its dual and E" its bidual. The (closed) 
unit ball in E" is the closure of the unit ball B in E for the weak topology cr(E", E'). 

By formulas (1) and (2), the unit ball in E" is the bipolar BOO of B. Prop. 5 then 
follows from the theorem of bipolars (II, p. 45, cor. 3). 

Remark. - A Banach space E is closed in its bidual E" for the strong topology, but 
is dense for the weak topology (prop. 5). 

In order that a nonned space be reflexive, it is necessary and sufficient that it is 
semi-reflexive; for, the initial topology of E is always induced by the strong topology 
of E". Th. 1 (IV, p. 15) then implies the following result: 

PROPOSITION 6. - In order that a normed space E be reflexive, it is necessary and 
sufficient that the unit ball in E be compact for the weakened topology cr(E, E'). 

We observe that a reflexive nonned space is complete hence a Banach space, 
and that its dual is a reflexive Banach space by prop. 4 of IV, p. 16. 

PROPOSITION 7. - Let E be a reflexive Banach space and M a closed vector subspace 
of E. Then M and ElM are reflexive Banach spaces. 

Let E' be the dual of E and MO the orthogonal of M in E'. As a normed space, 
we can identify the space E'/Mo with the dual M' of M (IV, p. 9, prop. 10). Since 
M is semi-reflexive (IV, p. 16, corollary), it is reflexive, hence so is E'/Mo; similarly 
MO is reflexive, as also its dual E/M oO = ElM. 

Examples. - 1) Lete<Xl(N) denote the Banach space of bounded sequences x = (xn)nEN 
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of scalars, with the norm 

(3) Ilxll = sup IXnl (I, p. 4). 
nEN 

Let co(N) be the closed vector subspace of 1'X!(N) consisting of sequences tending 
to o. Finally, let ('I (N) be the vector space of summable sequences, endowed with 
the norm 

(4) Ilxlll = L Ixnl· 
l1EN 

We can show (IV, p. 47, exerc. 1) that the dual ofco(N) can be identified with el(N) 
in such a way that we have 

(5) (x, x') = L xnx~ 
llEN 

for all x E co(N) and x' E ('1(N). Similarly the dual of ('I(N) can be identified with 
e'D(N) in such a way that we have the relation (5) for all x E ('1(N) and all x' E ('XJ(N). 
Hence f'X;(N) is the bidual of co(N), and this latter space is not reflexive. 

* 2) Every hilbertian space is a reflexive Banach space (V, p. 17). * 

* 3) Let X be a Hausdorff topological space and fl a complex measure on X. 
For every real number p > 1, the Banach space LP(X, fl) is reflexive, and its dual 
can be identified with U(X, fl) with p-I + q-I = I (INT, V, 2nd edition, § 5, No.8 

and IX, § 1, No. 10). * 

5. Montel spaces 

DEFINITION 4. - A locally convex Hausdorff and barrelled space in which every 
bounded subset is relatively compact is called a Montel space. 

Examples. - 1) Every finite dimensional Hausdorff space is a Montel space. A normed 
space which is a Montel space is locally compact, hence is finite dimensional (1, p. 15, 
tho 3). 

2) With the notations and hypothesis of prop. 7 of III, p. 6, the space E, being the 
inductive limit of Banach spaces, is barrelled (III, p. 25); moreover, every bounded 
subset of E is relatively compact (III, p. 6, prop. 7). In other words, E is a Montel space. 

In particular, Gevrey spaces (Ill, p. 10) are Montel spaces. * This is true for the space 
ff(K) consisting of germs of functions analytic in a neighbourhood of a compact 
subset K of C" (III, p. 10).* 

3) Every strict inductive limit E of a sequence (En) of Montel spaces (II, p. 33) such 
that En is closed in En + 1 for all n, is a Montel space; in fact, E is Hausdorff (II, p. 32, 
prop. 9 (i»), barrelled (III, p. 25, cor. 3) and every bounded subset of E is contained 
in one of the En (III, p. 5, prop. 6) hence is relatively compact in En' and consequently 
also in E. 

* 4) Let U be an open set in Rn and let 'tI OJ(U) be the Frt::chet space of infinitely" 
differentiable functions on U (III, p. 9). We shall prove that this is a Montel space. 
Since 'tI W(U) is a Frechet space, it is barrelled (III, p. 25, corollary). Let B be a bounded 
subset of 'tI ctJ(U) and let K be a compact subset of U. For every a E Nn let H. K be the 
set of restrictions to K of the functions a'f, as f runs through B. Let a E Nn ; for every 
~ENn such that I~I = lal + 1, the set H'.K is bounded in 'tI(K) since B is bounded 
in 'tI OJ(U); by VAR, R., No.2. 2.3, the set H'.K is equicontinuous, hence (GT, X,§ 2, No.5) 
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relatively compact in C6'(K). But the topology of C6' ""(V) is the coarsest among the 
topologies for which all the maps fl-> a~flK from (6' ""(V) into 'is'(K) arc continuous. 
therefore B is relatively compact in C6' OO(V) (GT, 1. § 4. No.1. prop. 3 and § 9, No.5, 
corolJ arv). 

Simil,;r1y. the space 'too' (U) of all infinitely dij/crentiahle ./imctiol1s \\ith compact 
support in U (III, p. 9) is a Montel space. For, C6'o" (V) is the strict inductive limit of 
a sequence ((;~I~,(U) of Frechet spaces (III, p. 9), and it is enough to see that each of 
the spaces ({;,(JV) is a Montel space (Example 3). But a bounded and closed subset 
ofC6'H~JV) is closed and bounded in C6' OO(V), hence compact in <ti. '(V). and consequently 
in C6'1~(V), * 

PROPOSITION 8. - Let E be a Montel space and ~ a filter on E, which converges to 
a point Xo in Efor the weakened topology. If~ is a countable base, or contains a bounded 
set, then ~, converges to Xo for the initial topology also. 

Assume first that there exists a bounded sety in ~. The closure B of B for the 
initial topology of E is b~unded; in addition, B is compact because E is a Montel 
space. The topology on B induced by cr(E, E') is Hausdorff and coarser than the 
topology induced by the initial topology; they therefore coincide (GT. I, § 9, No.4). 
This prove the proposition for this case. 

Next assume that ~ has a countable base. It is enough (GT. L § 6. No. 8, prop. 11) to 
consider the case of a sequence (Xn)n;d tending to Xo for cr(E, E'). Let B be the set 
of all Xn for n ;;:: O. This set is bounded for cr(E, E'), hence also for the initial 
topology (III, p. 27, cor. 3). Thus we have reduced to the first case of the proof. 

Every Montel space is reflexive : this follows from def. 4 and from tho 2 of IV, 
p. 16. Further : 

PROPOSITION 9. - The strong dual of a Montel space is {/ Montel 5pace. 

Let E be a Montel space and E~ its strong dual. Since E is reflexive. E~ is barrelled 
(IV, p. 15, tho 1). Since every bounded subset of E is relatively compact the strong 
topology on E' coincides with the topology of compact convergence. Let B be a 
bounded subset of E~; it is bounded for the weak topology cr(E', E), hence is equi­
continuous because E is barrelled. Then Ascoli's theorem (GT, X, § 2, No.4, cor. 
and § 2, No.5, cor. 1) implies that the closure ofB for cr(E', E) is compact for the topo­
logy of compact convergence; therefore B is relatively compact in E~. 

PROPOSITION 10. - Every metrizable Montel space satisfies the first axiom of coun­
tability. 

Let E be a metrizable Montel space. We know (II, p. 5) that E can be identified 
with a subspace of the product F = TI Fn of a sequence of normed spaces, and 

nEN 

we can even assume that we have pr/E) = Fn for all n EN. If each of the metrizable 
spaces Fn satisfies the first axiom of countability, then so does F (GT, IX, § 2, No.8), 
hence also E. 

We argue by reductio ad absurdum. Assume for example that Fo does not satisfy 
the first axiom of countability. Let Bo be the unit ball (closed) in F 0; this is a metric 
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space which does not satisfy the first axiom of countability. We shall use the following 
lemma: 

Lemma 1. - Suppose the metric space X does not satisfy the first axiom of counta­
bility. Then there exists a real number E > ° and an uncountable subset A in X such 
that d(x, y) ~ E for all distinct x, y in A. 

For every integer n ~ 1, let ~n be the set (ordered by inclusion) of subsets D 

of X such that d(x, r) ~ l for distinct x, y in D. The set ~" is of finite character, . n 

hence possesses a maximal element Dn (S, III, § 4, No.5). Then for all y E X, there exists 

a point x in Dn such that d(x, y) < l, by virtue of the maximal character of Dn' 
n 

Put 0 = U D,,; the set D is then dense in X, and since X does not satisfy the first 
" 

axiom of countability, D is not countable, and so one of the Dn is not countable. 
Q.E.D. 

By lemma 1, applied to Bo' there exists an uncountable subset Ao of F 0 and a 
number E > ° such that Ilxll :S 1 and Ilx - yll ~ E for distinct x, y in Ao. We have 
pro(E) = F 0 and hence there exists a subset A in E such that pro induces a bijection 
from A onto Ao. 

Lemma 2. - There exists a sequence (xm)m;.O consisting of distinct elements of A, 
which is bounded in E. 

We shall construct a sequence (xm )",;. 0 of points of A by induction; and a decreasing 
sequence (Cm)m;' 0 of subsets of A satisfying the following conditions: 

a) None of the sets Cm is countable. 
b) For every n ~ 0, the set prk(Cm ) is bounded in Fk for 0 :S k :S m. 
c) For every I1J ~ 0, we have xm E Cm - Cm+ l' 

We put Co = A. Suppose the sets Cm for ° :S m :S n have been defined, so as 
to satisfy a) and b) for 0 :S In :S n, and also the points xm in Cm - Cm + 1 for ° :S m < n. 
For every integer r ~ 1, let Cn,r be the set of all x E Cn such that 

Since Cn is not countable, there exists an integer r ~ I such that Cn,r is not countable. 
We choose a point Xn in C",r and put Cn + 1 = Cn,r - {xn}· Evidently Cn + 1 C Cn 
and xn E Cn - C,,+1' the set Cn + 1 is not countable and prk(Cn +,) is bounded in Fn 
for 0 :S k :S n + 1. 

We have xm E Cm' and so xm E Cn where m ~ n. The projection of the sequence 
(xm)m;' a on Fn is therefore bounded for all n ~ 0; in other words, the sequence 
(xm)m", 0 is bounded in E, and this establishes lemma 2. 

Q.E.D. 
With the notations of lemma 2, the bounded sequence (xm)m", a has a limit point y 

in E. Therefore the sequence (pra(xm))m;.ohas a limit point pro(y) in Fa, but this 
contradicts the construction of Aa. 
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COROLLARY. - Let E be a metrizable Montel space. Then there exists a countable 

dense set in the strong dual of E. 
On the dual E' of E, the strong topology is identical with that of compact conver­

gence, since E is a Montel space. It is now enough to apply cor. 1 of prop. 6 of III, 
p. 18. 

Z We can show that the strong dual of a metrizable Mantel space E is not metrizable 
if E is infinite dimensional (IV, p. 57, exerc. I). 

§ 3 DUAL OF A FRECHET SPACE 

1. Semi-barrelled spaces 

PROPOSITION 1. - Let E be a locally convex space. The following conditions are 
equivalent : 

(i) Let U be a subset of E which absorbs every bounded subset of E, and which is 
the intersection ofa sequence of convex, balanced and closed neighbourhoods of 0 in E. 
Then U is a neighbourhood of 0 in E. 

(ii) For every locally convex space F, every bounded subset of 'pb(E ; F) which is the 

union of a countable family of equicontinuous subsets, is equicontinuous. 
(iii) In the strong dual E~ of E, every bounded subse t which is the union of a coun­

table family of equicontinuous subsets, is equicontinuous. 
It is clear that (iii) is a particular case of (ii). 
(i) => (ii) : let H be a bounded subset of ,Pb(E; F), and let (Hn) be a sequence of 

equicontinuous subsets of ,P b(E; F) such that H = U Hn' Let V be a convex, balanced 

and closed neighbourhood of 0 in F. For every n, the set Wn = n u-l(V) is a 
uEHn 

convex, balanced and closed neighbourhood of 0 in E since Hn is equicontinuous. 
The set W = n u- leV) absorbs every bounded subset of E, since H is bounded 

UEH 

in ,P b(E; F) (III, p. 22), and we have W = n W n . If E satisfies (i), then the set W 
n 

is a neighbourhood of 0 in E, hence H is equicontinuous. 
(iii) => (i) : let (Un) be a sequence of convex, balanced and closed neighbourhoods 

of 0 in E. We assume that the set U = n Un absorbs every bounded subset of E, 
n 

hence that its polar UO is bounded in E~. Then the set B = U U~ is contained in UO, 
n 

hence is bounded in E~. If E satisfies (iii), the set B is equicontinuous in E'; conse-
quently, the polar BO = n (U~)O = n Un = U of B in E is a neighbourhood of 0 

n n 

in E. 

DEFINITION 1. - A locally convex space E is said to be semi-barrelled if it satisfies 

the equivalent conditions of prop. 1. 

Every barrelled space is semi-barrelled. This is also true for every bomological 
space (III, p. 22, prop. 10). 
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2. Dual of a locally convex metrizable space 

PROPOSITION 2. - Let E be a locally convex metrizable space and F its strong dual. 
The ~pace F is complete, semi-barrelled and satisfies the following condition : 

(DB) There exists a sequence (An)nEN of bounded subsets ofF such that every bounded 

subset of F is contained in one of the An' 
The space E is bomological (III, p. 12, prop. 2), hence its strong dual is complete 

(III, p. 23, cor. 1). 
Let (Vn)"EN be a decreasing sequence of neighbourhoods of 0 in E, such that every 

neighbourhood of 0 in E contains one of the Vn. Let An be the polar of Vn in F. 
Since E is bomological, every bounded subset of F is equicontinuous (III, p. 22, 
prop. 10), therefore contained in one of the An' In other words, the space F satisfies 
the condition (DB). 

We now show that F is semi-barrelled. Let (U,,)nEN be a sequence of convex, balanced 
and closed neighbourhoods of 0 in F. We assume that the set U = n Un absorbs 

n 

every bounded subset of F. We shall prove that U is a neighbourhood of 0 in F. 
For this, we shall construct, by induction on the integer n ;::: 0, real numbers An > 0 
and convex balanced neighbourhoods W" of 0 in F, whose which are closed for a(F, E), 
and satisfy the following relations 

(1) AnA" c tu n (n W;) 
O:::;i <n 

(2) U AAi C Wn C Un . 
O~i~n 

Suppose that the numbers Ai and the sets Wi have been constructed for 0 :( i < n. 

By the hypothesis, the set U absorbs the bounded subsets of F; moreover, for 
o :( i < n, Wi is a neighbourhood of 0 in F, hence absorbs the bounded subsets 
of F. We can therefore find a number An > 0 satisfying (1). Let C denote the closed 
convex balanced envelope, for a(F, E), of U AiAi; the set C is equicontinuous, 

O~i~n 

hence compact for a(F, E) (Ill, p. 17, cor. 2). Since Un is a neighbourhood of 0 in F, 
there exists a bounded subset B ofE such that Be C tUn' Put Wn = C + BO. Since 
BO is a neighbourhood of 0 in F, we see that Wn is a convex and balanced neighbour­
hood of 0 in F. In addition, C is compact and BC closed for a(F, E); by cor. 1 of 
GT, III, § 4, No.1, Wn is closed for a(F, E). Finally, we have C c tu c tUn and 
BO c tUn' hence Wn C Un since Un is convex. We have thus established (2). 

Put W = n W n , then W c U. By (1) and (2), we have AAi c Wj for all i and j 
n 

in N, and so Ai Ai c W for all i E N. In particular, W is absorbent, hence is a barrel 
for a(F, E). By remark 3 ofIV, p. 4, W is a neighbourhood of 0 in F. Afortiori, U is 
a neighbourhood of 0 in F, and F is semi-barrelled. 

The following corollary extends the Banach-Steinhaus theorem to the dual of 
a Frechet space (cl III, p. 25, cor. 2). 
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COROLLARY. - Let G be a Hausdorff locally convex space, and let (un) be a sequence 
oflinear mappingsfi'om F into G, converging simply to a mapping ufrom F into G. 
Then u is continuous, and the sequence (u,.) converges to u uniformly on every pre­
compact subset of F. 

Since F is complete, the set of all un' which is bounded for the topology of simple 
convergence, is bounded in £\(F; G) (III, p. 27, cor. 1). Since the space F is semi­
barrelled (prop. 2), every countable and bounded subset of Sf b(F; G) is equiconti­
nuous by prop. I of IV, p. 21. Therefore the set of the un is equicontinuous, and the 
corollary follows from III, p. 18, corollary. 

3. Bidual of a locally convex metrizable space 

PROPOSITION 3. - Let E be a locally convex metrizable space, E~ its strong dual 
and G a Frechet space. The space Sfb(E~; G) is a Frechet space. 

By prop. 2 (IV, p. 22), there exists a sequence (A,) of bounded subsets of E~ such 
that every bounded subset ofE~ is contained in one of the An' Let (Vn) be a countable 
fundamental system of neighbourhoods of 0 in G. Let Hmn be the set of linear map­
pings u from E~ into G such that u(Am) c Vn' Then (HmJ is a fundamental system 
of neighbourhoods of 0 in Sf b(E~ ; G), and the latter space is then metrizable. 

To show that Sfb(E~; G) is complete, it is enough to prove that every Cauchy 
sequence (un) in this space is convergent; since G is complete, there exists a linear 
mapping u: E~ -> G such that (un) converges simply to u. By IV, p. 23, corollary, 
we have u E SfJE~; G). It then follows from prop. 5 ofGT, X, § 1, No.5, that (un) con­
verges to u in Sf b(E~ ; G). 

COROLLARY. - The bidual of a locally convex metrizable space is a Frechet space. 

4. Dual of a reflexive Frechet space 

PROPOSITION 4. - Let E be a reflexive Frechet space. The strong dual E~ ofE is the 
inductive limit of a sequence of Banach spaces. 

Let (Vn)nEN be a decreasing sequence of convex, balanced and closed neighbour­
hoods of 0 in E, such that every neighbourhood of 0 in E contains one of the Vn • 

Let An be the polar ofVn in E'. Then An is convex, balanced and compact for cr(E', E); 
by III, p. 8, corollary the space EAn is a Banach space. We shall prove that E~ is the 
inductive limit of the spaces EA"; in other words, that every convex and balanced 
subset U ofE' which absorbs each of the An is a neighbourhood of 0 in E~. For every 
n EN, choose a real number An > 0 such that AnAn c U. Let Bn be the convex 
envelope of the set U A;A;; put V = U Bn , then V c U. For every n E N, the 

O::s'i~n n 

set Bn is convex, balanced and compact for cr(E', E) (II, p. 14, prop. 15). 
Now we shall show that tvoo c V. Let x E E~ - V; for every n E N, we have 

x r/= Bn, and since Bn is closed for cr(E', E) there exists an element Yn in B~ such that 
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< Yn' x) = 1 (II, p. 38, prop. 4). Since E is reflexive, every bounded subset of E is 
relatively compact for aCE, E') (IY, p. 16, tho 2). By the definition of Bn , we have 

(3) 

hence the sequence (Yn) is bounded. Let y be a limit point of (Yn) for the topology 
aCE, E'). We have Y E yo = n B~ and <y, x) = 1. Hence x rt tYoo, and so we 

n 

have the inclusion tYoo c Y and a fortiori, tyoo c U. 
Since every bounded subset ofE~ is contained in one of the sets All' the set Y =U Bn 

n 

absorbs every bounded subset of E~. Consequently, yo is bounded in E, hence 
tyoo is a neighbourhood of 0 in E~. Afortiori, U is a neighbourhood of in E~. 

COROLLARY. - The strong dual of a reflexive Frechet space is bornological and 
barrelled. 

An inductive limit of Banach spaces is bomological by definition. Further, a 
Banach space is barrelled (III, p. 25, corollary) and every inductive limit of barrelled 
spaces is a barrelled space (III, p. 25, cor. 3). 

5. The topology of compact convergence on the dual of a Frechet space 

THEOREM 1 (Banach-Dieudonne). - Let E be a locally convex metrizable space. 
The following topologies coincide on the dual E' of E : 

a) the topology 3W of lJl-convergence, where IJl is the family of subsets of E each 
consisting of points of a sequence converging to 0; 

b) the topology :?Ie of uniform convergence on compact subsets of E; 
c) the topology :?Ipe of uniform convergence on precompact subsets of E ; 
d) the topology :?If which is the finest topology inducing the same topology as 

aCE', E) on every equicontinuous subset of E'. 
First observe that a subset A ofE' is closedfor :?If if and only if An H is closed 

for aCE', E) for every subset H of E' which is equicontinuous and closedfor aCE', E). 
The weak topology aCE', E) and :?Ipe induce the same topology on every equiconti­
nuous subset of E' (III, p. 17, prop. 5). Consequently each of the topologies :?I91 , 
:?Ie' :?Ipe ' :?If is coarser than the one following it. It is therefore enough to prove that 
:?I91 is finer than .Ojf. Moreover, every translation in E' is a homeomorphism for :?If. 
Hence it is enough to prove that, if F is a subset of E' which is closed for :?If' and 
does not contain 0, then there exists a set S E IJl such that So n F = 0. 

Let (Un)n?O be a decreasing sequence of neighbourhoods of 0 in E forming a 
fundamental system of neighbourhoods of o. We shall construct, by induction on 
n ~ 0, finite sets Xn such that we have 

(4) 

(5) 

Xn C Un 

( U Xp)O n U~+ 1 n F = 0 
O~p~n 
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for every integer n ;::: O. Let m ;::: 0 be an integer such that Xn has been constructed 
for 0 ~ n < m and satisfies (4) and (S) for 0 ~ n < m. For every x E Urn' put 

Fx={ U Xp)On{x}OnU~+lnF. 
O~p<m 

Formula (S) with n = m - 1 implies that n Fx = 0. Further, the set U~+ 1 
XEUm 

is equicontinuous, and compact for a(E', E). In view of the definition of flf' each 
of the sets F x is compact for a(E', E); therefore there exists a finite subset Xm of 
Urn such that n Fx = 0, i.e. relation (S) is satisfied for n = m. 

XEXm 

Put S = U Xn. We have Xn C Up for n ;::: p, therefore S is the set of points of 
n~ 0 

a sequence which converges toOinE. From(S) we deduce that So n U~+l n F = 0, 
and since E' is the union of the sequence of sets U~ + l' we get So n F = 0. 

COROLLARY 1. - Let E be a locally convex metrizable space. Every pre compact subset 
ofE is contained in the closed convex balanced envelope of the set ofpoints of a sequence 
conve.'ging to O. 

This follows from the fact that the topologies flpe and ~ are identical, on account 
of prop. 2 of III, p. IS. 

COROLLARY 2. - Let E be a Fn?chet space. In order that a convex subset A of the 
dual E' ofE be closedfor a(E', E), it is necessary and sufficient that A n U O is closed 
for cr(E', E) for every neighbourhood U of 0 in E. 

Since E is complete, the topology fie on E' is compatible with the duality between 
E' and E (IV, p. 3, Example); consequently the closed convex subsets in E' are the 
same for fie and cr(E', E) (IV, p. 1, prop. 1). The corollary then follows from the 
identity of the topologies Yc and flf' 

Recall (I, p. 13) that the hyperplanes of E' which are closed for cr(E', E) are the kernels 
of linear forms on E' associated with elements of E. Cor. 2 therefore gives another proof 
(for Frechet spaces) of cor. I of III, p. 21. 

COROLLARY 3. - Let E be a Banach space and M a vector subspace of the dual E' 
of E. In order that M be closed for the weak topology cr(E', E), it is necessary and 
sufficient that its intersection with the unit ball (closed) in E' be closed for cr(E', E). 

Example. - * Let H be a hilbertian space satisfying the first axiom of countability; 
let Hcr denote the space H with the weakened topology assigned to it. Let if l(H) be 
the Banach space of nuclear endomorphisms of H (V, p. 51, and TS, V); the norm 
in if !(H) is defined by Ilull! = Tr((u*u)!/2). We can identify if (H) with the dual of 
the Banach space if !(H) by associating the linear form <Pu : v 1-+ Tr(uv) on if !(H) 
with every u E if (H). Let A be a sub-algebra of if (H), containing 1 and stable under 
u 1-+ u* ; this is a von Neumann algebra if and only if it is closed in if (H) for the weak 
topology cr(if(H), if l(H». From cor. 3, we deduce the following criterion : for A 
to be a von Neumann algebra, it is necessary and sufficient that if (u ll ) is any sequence of 
elements of A with norm ~ I having a limit u in the space ifsCH ; Hcr), then u belongs 
to A. * 
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6. Separately continuous bilinear mappings 

Lemma 1. - Let E and F be two locally convex metrizable .ljJaces, and u be a conti­

nuous linear mapping from E~ il/"o F. Then there exiS1S a neighbourhood U orO in E~ 
whose image under u is hounded in F. 

Let (U')lIEN (resp. (V,)lIEN) be a fundamental system of neighbourhoods of 0 in E 
(resp. F). We assume that the sets Un are balanced and form a decreasing sequence. 
Since u is continuous, for every 11 E N. there exists a bounded set Bn in E such that 
u(B~) c V". Since Bn is bounded, there exists a real number An > 0 such that 

A"B" c U". Put B = U AnBn' 
nEN 

We shall prove that the set B is bounded in E, in other words that for every integer 
m ~ 0, there exists a real number fl > 0 such that flB c Urn' Since the sets B" 
are bounded, there exists a real number ~l such that 0 < 11 :::;; 1 and such that 
1l.(AnB,,) c Urn for 0 :::;; 11 :::;; In; we have also A"B" c U" c Um if n > In; hence 
IlB c Urn since Urn is balanced. 

Let U be the polar of B in E~. This is a neighbourhood of 0 in E;, and we have 
AnBo c B~. hence I'nl/(U) c V" for all n E N. Consequently u(U) is bounded in F. 

THEOREM 2. - Lei E1 and E2 be two reflexive Frechel spaces, and G a locally convex 

Hausdorff space. For i = 1,2, let Fi be the strong dual or Ei . Then every separately 
continuous bilinear mapping u: F] x F 2 -+ G is continuous. 

The space G is isomorphic to a subspace of a product of Banach spaces (II, p. 5. 
prop. 3). Therefore it is enough to prove the theorem under the additional hypo.thesis 
that G is a Banach space. But F 1 is barrelled and F2 bomological (IV, p. 24, corollary), 
and Sf' b(F 2 ; G) is a Fn!chet space (IV, p. 23, prop. 3). Let v denote the linear mapping 
from F 1 into 2 J b(F 2' G) associated with u by the relation 

u(x1 • x 2 ) = v(xJ(xz) (Xl E F 1 , x 2 E Fz). 

Since F 1 is barrelled and u separately continuous, v is continuous (III, p. 31, prop. 6). 
Since v is continuous, lemma I implies the existence of a neighbourhood U 1 

of 0 in F 1 whose image under v is bounded in Sf' bCF 2; G). In other words, for every 
bounded subset B2 in F 2' the set u(U 1 x B2) is bounded in the Banach space G. 
Let U 2 be the set of all x 2 E F 2 such that Ilu(x1 , x2 )11 :::;; I for all Xl E U l' The set 
U 2 then absorbs every bounded subset; since F 2 is bomological, U 2 is a neigh­
bourhood of 0 in F 2 , and this proves that u is continuous. 

§ 4. STRICT MORPHISMS OF FRECHET SPACES 

For every locally convex space E, let SeE) denote the set of all continuous semi­
norms on E. For every p E SeE), let Hp denote the set of all linear forms f on E 
such that If I :::;; p. The family (Hp)PES(E) is a base for the bomology consisting of 
equicontinuous subsets of E'. 
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1. Characterizations of strict morphisms 

PROPOSITION 1. - Let E and F be two locally convex spaces and u a continuous 
linear mapping from E into F. In order that u be a strict morphism, it is necessary 
and sufficient that the following condition be satisfied: 

(MS) For every semi-norm p E SeE), which is null on the kernel of u, there exists q 
in S(F) such that p :::; q 0 u. 

Let N be the kernel and M the image of u; we introduce the canonical decomposi­
tion of u, let 

E ~ E/N .fl.. M -4 F . 

The continuous semi-norms on E which are null on N, are the semi-norms Pl 0 TC 

where Pl ranges over S(E/N); similarly SCM) consists of the semi-norms ql for 
which there exists q E S(F) with ql :::; q/F. Finally, u is a strict morphism if and only 
if the bijective continuous linear mapping fl has a continuous inverse; this also 
means that every semi-norm in S(E/N) is of the form ql 0 fl with ql in SCM). Prop. 1 
follows immediately from these remarks. 

PROPOSITION 2. - Let E and F be two Hausdorff locally convex spaces and u a conti­

nuous linear mapping/rom E into F. In order that u be a strict morphism, it is necessary 
and sufficient that its transpose tu: F -+ EI satisfy the following conditions : 

a) The image of tu is closed in E' for a(EI, E). 
b) Every equicontinuous subset ofE I , contained in the image oftu is the image under 

tu of an equicontinuous subset of F. 
If this is so, we have Ker tu = (1m u)O and 1m tu = (Ker u)O and there exist cano­

nical isomorphisms from Coker 'u onto the dual ()f Ker u and from Ker tu onto the dual 
of Coker u. 

Let N be the kernel and I the image of u. By cor. 2 of II, p. 47, the kernel of tu 
is the orthogonal ofl, and the closure of the image oftu for a(EI, E) is the orthogonal 
N° of N. The conjunction of a) and b) is then equivalent to the following condition: 

bl
) Every equicontinuous subset of EI contained in N C is the image under tu of an 

equicontinuous subset of F. 
Since N° can be identified with the dual of E/N, prop. 9, (i) of IV, p. 8, shows that 

the equicontinuous subsets of EI contained in N° are the sets which are contained 
in a set of the form H p ' where p is a continuous semi-norm on E, vanishing on N. 
The condition b') then says that, for every semi-norm p E SeE) which is null on N, 
there exists q E S(F) such that Hp c 'u(Hq). By Hahn-Banach theorem (II, p. 23, 
cor. 1 and 2, p. 63, tho 1 and cor. 1), we havetu(Hq) = Hqou' and the relations Hp c Hp' 
and p :::; pi are equivalent for all semi-norms p and pi in SeE). Consequently, the 
relation Hp c 'u(Hq) is equivalent to the relation p :::; q 0 u. By prop. 1, property 
bl ) implies that u is a strict morphism. 

Suppose that u is a strict morphism. We have already seen that the kernel of 
'u is the orthogonal of I and the image of tu is the orthogonal of N. The cokernel 
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of u is the space FjI and its dual can be identified with 1° = Ker tu. Similarly, the 
dual of N = Kcr u can be identified with E'jN° (IV, p. 8), i.e. with the cokemel 
of tu since N is the image of I II. 

Remark.- With the notations of prop. 2, properly b') also implies that u is a strict 
morphism for the weakened topologies (II, p. 49, cor. 3). 

PROPOSITION 3. - Let E and F be two locally convex .lj)(7("es. and II a continuous linear 
mappingf;'om E into F. We assume that E is Hausdorff and that F is metrizable. For 
u to be a strict morphism, it is necessary and sufficient that the image of 'u be closed 
in E' for the weak topology cr(E', E). 

The necessity follows from prop. 2. 
Conversely, suppose that the image of 'u is closed for cr(E', E) and introduce the 

canonical decomposition of u as in the proof of prop. 1. By the above remarks, the 
inverse mapping 17 - 1 of fi is continuous for the weakened topologies. But the subspace 
M = u(E) of F is metrizable. hence bomological (lIf, p. 12. prop. 2); consequently 
(IV, p. 7, prop. 7. (ii)), 17- 1 is continuous, hence u is a strict morphism. 

2. Strict morphisms of Frechct spaces 

THEOREM 1. - Let E and F be two Frechet ,Ipaces and u a continuous linear mapping 
from E into F. The following conditions are equivalent: 

a) u is a strict morphism. 
b) u is a strict morphism for the weakened topologies. 
c) The image of u is closed in F. 
d) tu is a strict morphism from F' into E' for the l\"eak topologies. 
e) The image of ' II is closed in E' for the weak topology cr(E', E). 

f) The image of' u is closed in E' for the strong topology ~(E', E). 

g) 'u is ([ strict morphism ji-om F~ into E~ (the duals endowed with the topology 
of compact convergence). 

The equivalence of a), h) and e) follows from prop. 3 of IV, p. 28 and the remark 
preceding it. That of a) and c) is precisely cor. 3 of I, p. 19. The remark of IV, p. 28, 
also shows that d) is equivalent to the fact that, the image of u is closed for the weak­
ened topology cr(F, F') of F; the equivalence of c) and d) then follows from prop. 2 
of IV, p. 4. 

We now prove the equivalence of e) and f). It is enough to prove that f) implies 
e). Suppose that the image oPu is closed for ~(E', E) in E'. On account ofthe Banach­
Dieudonne theorem (IV, p. 25, cor. 2), it is enough to prove that for every convex 
balanced neigh bourhood U of 0 in E, the intersection B = 'u(F') n U is compact 
for cr(E', E). The strong dual E~ of the Frechet space E is complete (IV, p. 22, prop. 2), 
hence the closed subset B of E~ is complete, and so the normed space E~ is complete 
(III, p. 8, corollary). Let (Vn) be a decreasing sequence forming a fundamental sys­
tem of neighbourhoods of 0 in F. Then F' is the union of sets C = V~ which are 
compact for cr(F', F), hence E~ = U Bn , with BI1 = E~ n tu(Cn). Since E~ is a Baire 

n 
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space, and each of the sets Bn is convex balanced and closed, there exists a real 
number r > 0 and an integer n such that B cr. Bn' Then we have B = UO n tu(r. Cn) ; 
since the sets UO and r,Cn are compact and tu is continuous for the weak topolo­
gies, B is compact for cr(E', E). This completes the proof of the equivalence of e) 
and j). 

Finally the equivalence of g) and the preceding conditions follows from prop. 18 

of GT, X, § 2, No. 10 and the following lemma. 

Lemma 1. - Let E and F be two Hausdorff locally convex and quasi-complete spaces 

and u a continuous linear mapping from E into F. For tu to be a strict morphism Fom 

F~ into E~, it is necessary and sufficient that the image u(E) of u be closed, and that 

every compact subset of u(E) be the image under u of a compact subset of E. 
By Mackey's tho (IV, p. 2, tho 1) and the fact that on E' (resp. F) the topology of 

compact convergence coincides with that of convex compact convergence (IV, 
p. 4), we can identity E (resp. F) with the dual E~ (resp. F~). Then u is the transpose 
of tu, and the equicontinuous subsets of E (resp. F) are the relatively compact sets. 
Lemma I then follows from prop. 2 (IV, p. 27), since u(E) is closed in F if and only 
if it is closed for the weakened topology cr(F, F') (IV, p. 4, prop. 2). 

COROLLARY 1. - Under the hypothesis of th. 1, the following conditions are equiva­

lent: 

(i) u is a strict injective morphism; 

(ii) tu is a strict surjective morphism for the weak topologies. 
(iii) tu is sU/jective. 

The implication (i) => (ii) follows immediately from the equivalence of conditions 
a), d) and e) of tho 1 and from IV, p. 6, prop. 5. It is clear that (ii) implies (iii). Finally, 
we prove that (iii) implies (i) : if tu is surjective u is a strict morphism by the equi­
valence of a) and e) in tho 1 ; that u is injective follows from prop. 5 of IV, p. 6. 

COROLLARY 2. - Under the hypothesis of th. I, the following conditions ute equiva­

lent: 

(i) u is surjective; 

(ii) u is a strict surjective morphism; 

(iii) tu is a strict injective morphism for the weak topologies. 

The equivalence of (i) and (ii) follows from Banach's tho (I, p. 17, tho 1). 
In view of the equivalence of a) and c) in tho 1, condition (ii) says that u is a strict 

morphism and that its image is dense in F for cr(F, F'). The equivalence of (ii) and 
(iii) then follows from the equivalence of a) and d) in tho 1 and from prop. 5 of IV, 
p.6. 

If u : E ---> F is a strict morphism of Frechet spaces, the transpose 'u is not necessarily 
a strict morphism from F~ into E~ (IV, p. 62, exerc. 3). However, we have the following 
partial result: 
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COROLLARY 3. - Under the hypotheses of tho 1, the following property implies the 

properties 0) /0 g) : 
h) tu is a strict morphismfrom F~ into E~. 
When E and F are both Banach spaces, or both Montel spaces. property h) is 

equivalent to the properties a) to g) of tho l. 
Suppose that'll is a strict morphism from F~ into E;. We shall prove that the 

image H of tu is closed in E~. from which the first assertion of cor. 3 will follow. 
Let G be the closure of the image of u in F; the space G, with the topology induced 

by that of F assigned to it, is a Frechet space. The mapping u: E --* F factorizes as 
u = j 0 v where j is the canonical injection from G into F and where v E 2'(E; G). 
Then we have tu = tv 0 tj, where tj is surjective, by Hahn-Banach tho (II, p. 24, prop. 2); 
also, tv is injective since veE) is dense in G (IV, p. 6, prop. 5). By hypothesis, the 
mapping tu from F~ onto H is open; since:j is surjective and continuous, the mapping 
tv induces a homeomorphism from G~ onto H. But the dual G~ of the Frechet space 
G is complete (IV, p. 22, prop. 2); consequently H is complete, hence closed in E~. 

If E and Fare Montel spaces, the strong topology on E' (resp. F') coincides with 
the topology of compact convergence, and h) is just a reformulation of g). 

If E and F are Banach spaces, so are E~ and F~, and condition h) is equivalent 
to f) by the equivalence of 0) and c) applied to tu: F~ --* E~. 

COROLLARY 4. - Suppose E and F are Banach spaces. For tu to be sUijective, it 

is necessary and sufficient that there exist a real number r > 0 such that II x II :( r.l, u(x) II 
for at! x E E. 

This is simply a reformulation of the equivalence of the conditions (i) and (iii) 
of cor. l. 

COROLLARY S. - Let E and F he two Frechet !>paces and u a continuous linear mapping 
from E into F. The jiJllowing conditions are equivalent: 

a) u is an isomorphism /rom E onto F. 
b) u is an isomorphism ji-om E onto F for the weakened topologies. 
c) 'u is an isomorphism from F' onto E' for the weak topologies. 
d) tu is an isomorphism from F' onto E' for the strong topologies. 

e) 'u is an isomorphism from F; onto E~. 
Since an isomorphism is none other than a strict bijective morphism, the equi­

valence of a) and b) follows from the equivalence of conditions a) and b) of tho l. 
It is clear that a) implies each of the conditions c), d) and e). 

Conversely, suppose that one of the conditions c), d) or c) is satisfied. It follows 
from tho I and its cor. 3 that II is a strict morphism from E into F. and tu is evidently 
bijective. Let N (resp. l) be the kernel (resp. the image) of u. Since tu is bijective, 
we have Imtu = E' and Kertu = {O}, and so N° = E' and r = {O} by prop. 2 
ofIV, p. 27. But N (resp. l) is a closed vector subspace ofE (resp. F), and the theorem 
of bipolars (11, p. 44) implies that N = {O} and I = F, hence u is bijective. We have 
therefore proved that u is an isomorphism. 
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3. Criteria for surjectivity 

PROPOSITION 4. - Let E and F be two Frechet spaces, and u a continuous linear 

mapping ji-om E into F. The following conditions are equivalent : 

(i) u is surjective. 

(ii) For every semi-norm p E SeE), there exists q E S(F) such that we have If I :( q 

for every linear form f E F' satisfying If 0 ul :( p. 
(iii) For every semi-norm p E SeE), there exists q E S(F) satisfying the following 

property : if a linear form f E F' satisfies If 0 ul :( p, then f is null on points where q 

is null andfor all y E F, r E S(F), there exists x E E with r(u(x) - y) = O. 
(iv) For every semi-norm p E SeE), we have 

(1) sup If(y) I < + (JJ for all y E F . 
fEF 

1fo u1 ~p 

We shall prove the proposition according to the following logical scheme 

(i) 

( .. )~~~( ... ) 
11 ~ II 111 (iV)~ 

If u is surjective, it is a strict morphism (IV, p. 28, tho 1) then for every semi-norm 
p E SeE), there exists a semi-norm q E S(F) such that, for all y E F satisfying q(y) :( 1, 
there exists x E E satisfying p(x) :( 1 and u(x) = y. We deduce immediately that (i) 
implies (ii) and (iii). It is clear that (ii) implies (iv). 

To prove that (iii) implies (iv), let p and q be as in (iii). Let y E F, by (iii), there 
exists x in E such that q(u(x) - y) = O. If f E F' satisfies If 0 ul :( p, then we have 
f(u(x) - y) = 0, hence 

If(y)1 = If(u(x» I :( p(x) 

and the relation (1) is satisfied. 
Finally we prove that (iv) implies (i). Let p E SeE) and let q be the superior envelope 

of the functions If I for f E F' satisfying If 0 ul :( p. By (iv), q is finite on F, and is 
evidently a lower semi-continuous semi-norm on F; since F is barrelled (III, p. 25, 
corollary), we have q E S(F). Let Bp (resp. Bq) denote the set of all x E E (resp. y E F) 
such that p(x) :( 1 (resp. q(y) :( 1). We have q 0 u :( p, and so u(Bp) c Bq . The polar 
of u(Bp) in F' consists of linear forms f E F' such that If 0 ul :( p, hence If I :( q; 

in other words, we get u(Bp)O c B;, and finally that u(Bp) = Bq follows from the 
theorem of bipolars (II, p. 45, cor. 3). If U is a neighbourhood of 0 in E, there exists 
p E SeE) such that Bp c U, hence u(U) contains the neighbourhood Bq of 0 in F. 
This implies that u is surjective (I, p. 17, tho 1). 
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COROLLARY. - Suppose E and F are Banach spaces. The following conditions are 
equivalent : 

(i) u is surjectil'e. 
(ii) There exists a real number r> 0, such that II.n,,;; r.II'u(f)I! j()r all fEFf. 
(iii) For aU I' E F, \1'1' have sup If(y) I < + 00. 

JEF' 
irouii '" 1 

The conditions (ii) and (iii) are in fact reformulations of conditions (ii) and (iv) 
of prop. 4 for Banach spaces. 

§ 5. COMPACTNESS CRITERIA 

1. General remarks 

Let A be a subset of a topological space E, For a sequence (xlI)nEN of points of A 
to have a point .\ of E as a limit point, it is necessary and sufficient that the following 
condition is satisfied (GT. I. ~ 7, No.3) : 

(A) For every integer m ~ 0 and every neighbourhood U oj' x, there exists an 
integer n ~ m such that XII E U. 

A sequence of the form (Yk)kEN with Yk = x llk for a strictly increasing sequence 
(nk)kcN of positive integers is called an extracted sequence of the sequence (xn)nEN' 
If there exists an extracted sequence of the sequence (xlI)ncN which converges to x, 
then x is a limit point of (xn); conversely, if x has a countable fundamental system 
of neighbourhoods, and x is the limit point of the sequence (XII)' then there exists 
an extracted sequence of (XII) converging to x. 

On account ofGT, IX. ~ 2, No.9, corollary, we conclude that when E is metrizable, 
the following conditions are equivalent : 

a) the set A is relatively compact in E; 
b) every infinite sequence of points of A has a limit point in E; 
c) from erery infinite sequence of points of A, we can extract a sequence which 

converges to a point of E, 
In this section, we shall extend this criterion to certain non metrizable topological 

vector spaces. The following proposition enables us to reduce the study of compact 
sets to that of weakly compact sets in a number of cases. 

PROPOSITION 1. - Let E be a HausdO/jJ locally convex space, and A a subset of E. 
Let E" denote the space E with the weakened topologv. 

a) If every infinite sequence of points of A has a limit point in E, then A is pre­
compact in E. 

b) In order Ihat A he relatively compact in E, it is necessary and s~dJicient that 
it is preeompact in E and relatively compact in E". 

We shall prove a) by reductio ad absurdum. If A is not precompact, then by 
tho 3 ofGT, II, § 3, No, 7, it follows that there exists a symmetric convex neighbourhood 
V of 0 in E such that A cannot be covered by a finite number of translates of V. 
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In other words, if x o, Xl' ... , X,,-l are points of A, then A cj: U (Xi + V) and so 
O~i<1I 

there exists a point Xli of A such that Xli - Xi ¢: V for 0 :( i < n. Then, by induction 
on the integer n, we can construct an infinite sequence (X,)IiEN of points of A such 
that Xli - xm ¢: V whenever n > m; since V is symmetric, we also have xm - Xli ¢: V 
for m # n and the sets Xn + t V are disjoint. For every point X in E, there exists 
at most one integer n ~ 0 such that XII EO X + t V, hence the sequence (Xn)IIEN does 
not have any limit point. This proves a). 

Now suppose that A is pre compact in E and is contained in a compact subset B 
of E(J' Then B is complete in E(J' hence also in E (IV, p. 5, Remark 2). We have A c B, 
hence A is relatively compact in E. The converse is evident and b) follows. 

2. Simple compactness of sets of continuous functions 

In this section, X denotes a compact space and ~/X) the space of continuous 
functions on X, with values in the field K (equal to R or C). The space ~/X) is assigned 
the topology of simple convergence on X. 

PROPOSITION 2. - Let D be a dense subset of X and A a subset of the space ~,(X). 
The following conditions are equivalent: 

(i) A is relatively compact in ~s(X). 
(ii) From every infinite sequence of elements of A, we can extract a sequence con­

verging in ~s(X). 
(iii) Every infinite sequence of elements of A has a limit point in ~,(X). 
(iv) Let U;,)nEN be a sequence of functions belonging to A and (Xm)mEN a sequence 

of points of D. If the iterated limits 

y = lim lim f.lxm ) , 8 = lim lim f.,(xm ) 
m--+oo II--+OC' n--+c{) m--+CXJ 

exist, then they are equal. In addition, we have sup If(x) I < + CD for all X EO X. 
_ fEA 

(i) => (ii) : let A be the closure of A in ~s(X). Assume that A is compact, and con­
sider a sequence of functions f., EO A (for nEON). Let cp be the continuous mapping 
X f---+ (f.lx))nEN from X into the metrizable space KN. The image X' of X under cp 
is a compact metrizable space, since X is compact. Let E be the closed subspace 
of~/X) consisting of continuous functions f on X such that the relation cp(x) = cp(y) 
implies f(x) = fey) for every pair of points x, yin X. By cor. 2 ofGT, I, § 9, No.4 and 
prop. 3 of GT, I, § 5, No.2, the mapping f' f---+ f' 0 cp is a homeomorphism cp* from 
~,(X') onto E. Hence the set A' = (cp*)-l(A) is compact in ~s(X'), and it is clear 
that there exist elements f: in A' such that CP*(f.;) = .r,; 0 cp is equal to f.,. 

Since X' is a compact metrizable space, there exists a countable dense subset 
D' in X' (GT, IX, § 2, No.8, prop. 12 and § 2, No.9, prop. 16). Let ,cTl (resp. 3 2) be the 
topology on A' induced by the topology of simple convergence on D' (resp. X'). Then 
3 1 is metrizable, 3 2 is compact and finer than 3 1 , hence 3 1 and .'12 coincide; 
in other words, A' is a compact metrizable subspace ofeg/X'). Therefore, there exists 
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a sequence U:J extracted from U:) and converging to an element f' of ~JX'). 
Therefore, the sequence (1"J converges to f = l' 0 <p in ~JX). 

(ii) =:> (iii) : this is clear. 
(iii) =:> (iv) : suppose that every infinite sequence of elements of A has a limit 

point in ~s(X). Let x E X. The mapping <Px:f~ f(x) from A into K is continuous. 
Consequently, every infinite sequence in <Px(A) has a limit point; since the field K 
(equal to R or C) is metrizable, the set <p)A) is relatively compact in K, hence bounded. 
In other words, we have sup If(x) I < co. 

fEA 

Let 1", xm ' y and 8 be as in (iv). Let f be a limit point of the sequence Cr.,) in ~,(X), 
and let x be a limit point of the sequence (xm ) in the compact space X. For every 
m, the mapping h ~ h(xm ) from ~s(X) into K is continuous. In view of the hypo­
theses, we have f(xm) = lim J,.(xm), and hence y = lim f(xm); since f: X ---+ K is 

continuous and x is a limit point of the sequence (xm), we get y = f(x). In an ana­
logous way, we prove the equality 8 = f(x), whence y = 8. 

(iv) =:> (i) : suppose that the set of numbers f(x), as f ranges over A, is bounded 
in K for all x E X. This is equivalent to assuming that the closure A of A in the pro­
duct space KX is compact (GT, I, § 9, No.5). Suppose Q1at A is not relatively compact 

in ~s(X). This means that there exists a function u E A and a point a E X such that 
u is not continuous at a. Hence there exists a real number E > 0 such that in every 
neighbourhood U of a, there exists a point x with I u(x) - u(a) I ~ E. 

We shall construct by induction a sequence (X")"EN of points in D and a sequence 
U',)"EN of elements of A, satisfying the following relations 

for m ~ I ; 

I I 1 for 0::::; i ::::; m - I ; 
u(x) - fm(x) ::::; --I m+ 

I I 1 for 0::::; m ::::; i. 
fm(x) - fm(a) ::::; i + I 

We take Xo = a with fa arbitrary in A (the set A is not empty, otherwise it will 
be relatively compact in ~s(X)). Let n ~ 1 and x o' xl' ... , X,,-l' fa, j~, ... ,1,'-1 
sati~y relations (1)m' (2)m for I ::::; m < nand (3)m,i for 0 ::::; m ::::; i < n. Since u belongs 
to A, there exists J,. E A satisfying (2)". Let V" be the set of all x E X such that 

Ifrn(x) - fm(a) I ::::; n ! I for 0 ::::; m ::::; n. Since 1" is continuous, V" is a neighbourhood 

of a; choose a point x" in D n Vn such that lu(x,,) - u(a) I ~ E, hence (1)" and (3)m,n 
are satisfied. Therefore, the construction can be continued. 

Since u(X) is a compact subset of K, there exists a sequence (h) extracted from 
ex-m) and such that the limit y = lim U(Yk) exists. By (2)m' we have u(x) = lim j~ (Xi) 

k-+oc n--+rx; 

for all i EN, hence 

(4) y = lim lim .f,,(Yk) . 
k --+ 'lJ Tl--+ (.(; 
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On the other hand we have !;,(a) = lim .f,,(x) by (3)m.i hencef"Ca) = lim !;.(h). 
i--+ oc-, k--+ .::r;. 

Since Xo = a, we deduce from (2)m that lim .f,,(a) = u(a). Consequently, 
n--+'X) 

(5) uta) = lim lim !;,(Yk) . 
II-X k-x 

Finally, from (l)m' we get IY ~ uta) I ~ E, and so y =f. u(a). This contradicts asser­
tion (iv); we have thus proved that (iv) implies (i). 

3. The Eberlein and Smulian theorems 

THEOREM 1 (Eberlein). - Let E be a Hausdorff and quasi-complete locally convex 
space, :Y a topology on E which is compatible with the duality between E and E' and 
A a subset of E. For A to be relativezv compact for :Y, it is necessary and sufficient 
that every infinite sequence of points of A has a limit point in E for 21. 

The condition stated is obviously necessary. 
Suppose now that every infinite sequence of points of A has a limit point for :Y, 

hence also for the coarser topology cr(E, E'). Then A is precompact for .'!/ (IV, p. 32, 
prop. 1); in order that A be relatively compact for :Y, it is necessary and sufficient 
that it be so for cr(E, E') (lac. cit.). Therefore it is enough to prove the theorem when:Y 
is the weakened topology cr(E, E'). 

Let E denote the completion ofE, which we shall identify as usual with a subspace 
of the algebraic dual E'* of E' (III, p. 21, tho 2). Let E", E" and E~* denote the spaces 
E, E and E'* endowed with the topologies cr(E, E'), cr(E, E') and cr(E'*, E') respec­
tively. 

Let (X;)iEI be a basis of the vector space E' over the field K. The mapping 
fl-+ (f(X;»)iEI is a homeomorphism <P from E~* onto KI; for every i E I, the image 
of A under the mapping x; from E into K is relatively compact: for, K is metrizable 
and every infinite sequence of elements of x;(A) has a limit point. If follows that 
<p(A) is relatively compact in K1, hence that the closure A of A in E~* is compact. 

Next we shall prove that A is contained in E. Let H be an equicontinuous subset 
of E'; let X be its closure for cr(E', E); X is compact (III, p. 17, cor. 2). For every 
x E E'*, let <Px be the restriction of x' 1-+ < x, x' > to X; let A c ~s(X) be the set of 
functions <Px as x ranges over A.In view of the hypothesis on A, every infinite sequence 
of elements of A has a limit point in ~,(X) ; by prop. 2 (IV, p]3), the set A is therefore 
relatively compact in ~s(X). It follows that for every a E A, the function <Po on X 
is continuous. The inclusion AcE then follows from tho 2 of III, p. 2l. 

N ow we shall show that A is contained in E. Since A is pre compact in E" (IV, p. 32, 
prop. 1), it is bounded in E" (III, p. 3, prop. 2), hence also in E (IV, p. 1, prop. 1). 
Let C be the closed convex balanced envelope of A in E. Then C is bounded since 
A is bounded, hence complete since E is quasi-complete. In other words, C is a 
convex and closed subset of E, so also of E" (IV, p. 1, prop. 1). Since A c C and 
the topology of E" is induced by that of E~*, we have A c C, and hence AcE. 



TVS IV.36 DUALITY IN TOPOLOGICAL VECTOR SPACES § 5 

Since the topology of Eo is induced by that of E~*, the subset A of Eo is compact, 
and tho 1 follows. 

THEOREM 2 (Smulian). - Let E be a FYI!chet space and A a subset of E. Let Eo denote 
the space E endowed with the weakened topology. The following conditions are equi­

valent: 
(i) A is relatively compact in Eo; 
(ii) every infinite sequence of points of A has a limit point in Eo; 
(iii) from every infinite sequence of points of A, we can extract a sequence which 

converges in Eo' 
The equivalence of (i) and (ii) follows from Eberlein's theorem and (iii) obviously 

implies (ii). 
We shall prove that (i) implies (iii). Suppose that the closure B of A in Eo is com­

pact and that (X")"EN is a sequence of points of A. Let F denote the smallest closed 
vector subspace of E containing the xn ' this is a Frechet space satisfying the first 
axiom of countability. Since F is closed in Eo and the topology a(F, F') on F is 
induced by aCE, E'), the set B n F is compact for a(F, F'). On account of the remarks 
in IV, p. 32, the existence of a sequence extracted from (X")"EN converging for aCE, E') 
(or, which is the same, for a(F, F')) is a consequence of the following lemma: 

Lemma 1. - Let F be a Frechet space satisfying the first axiom of countability. Every 
subset C of F which is compact for the topology :Y induced by a(F, F') is metrizable 

for this topology. 
Since the topology of precompact convergence on F' is finer than the topology 

a(F', F), there exists an everywhere dense countable subset in F~ (III, p. 18, cor. 1). 
Hence the set C can be identified with a subset of K D, and the topology induced 
on C by that of KD , which is metrizable (GT, IX, § 2, No.8) is coarser than the topo­
logy induced by a(F, F'), for which C is compact. Hence these two topologies are 
identical (GT, I, § 9, No.4, cor. 3). 

Smulian's theorem can be extended to the case where E is the strict inductive limit 
of a sequence of Frechet spaces (IV, p. 67, exerc. 2). 

*4. The case of spaces of bounded continuous functions 

For every topological space X, let yjb(X) denote the Banach space of all conti­
nuous and bounded mappings from X into K, with the norm defined by 

(6) Ilfll = sup If(x) I 
XEX 

(GT, X, § 3, No.2). When X is compact, every continuous function on X is bounded 
(GT, IV, § 6, No.1), and we write yj(X) for yjb(X). 

In this and the following section, we shall use the following lemma, which is a 
particular case of Lebesgue's theorem (INT, IV, 2nd ed. § 4, No.3, tho 2) on account 
of the interpretation of the elements of yj(X)' as measures on X. 
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Lemma 2. - Let X be a compact space. If a sequence U;,)1JEN is bounded in C(j (X) 

and converges simply on X to a continuous function 1, then fl(f) = lim fl(f.,) for every 
1/- ~fJ 

fl in C(j (X)'. 

PROPOSITION 3. - Let X be a compact space, and let A be a bounded subset of C(j (X). 
For A to be relatively compact for the topology of simple convergence, it is necessary 
and sufficient that it is relatively compact for cr(C(j(X), (&'(XY). 

The topology of simple convergence is Hausdorff and coarser than cr((&,(X), C(j(X)'), 

hence the condition stated is sufficient (GT, I, § 9, No.4, cor. 3). 
Now suppose that A is relatively compact for the topology of simple convergence. 

Let U;,)nEN be a sequence of elements of A. By prop. 2 (IV, p. 33), there exists a sequence 
(f.,) extracted from UJ and converging simply to a continuous function f By 
lemma 2, the bounded sequence U;,) tends to f for cr(C(j(X), C(j(XY). Then Smulian's 
theorem (IV, p. 36, tho 2) shows that A is relatively compact for cr(cg(X), C(j(XY). 

COROLLARY. - Let S be a topological space and A a bounded subset ofC(jb(S). The 

following conditions are equivalent : 
(i) A is relatively compact for cr(C(jb(S), C(jb(S')); 

(ii) if (J;,)nEN is a sequence of elements of A and (Xm),1JEN is a sequence of points 
of S such that the iterated limits 

exist, then y = 8. 
Let X be the Stone-Cech compactification ofS (GT, IX, § 1, No.6) and:x the canoni­

cal mapping from S into X. Put D = :xeS). The mapping <p :f f---+ f 0 :x is an isomor­
phism from the normed space C(j(X) onto the normed space C(jb(S) ; put A = <p -leA). 
Since X is compact and D is dense in X, the prop. 2 (IV, p. 33) shows that condition (ii) 
is equivalent to the compactness of A for the topology of simple convergence. The 
equivalence of (i) and (ii) then follows from prop. 3. * 

*5. Convex envelope of a weakly compact set 

THEOREM 3 (Krein). - Let E be a Hausdorff and quasi-complete locally convex 

space, and let :Y be a topology on E compatible with the duality between E and E'. Let 

A be a subset of E which is compact for /Y. Then the closed convex balanced envelope 
C of A is compact for :Y. 

We shall first make several reductions. 
A) The set C is precompact for :Y (II, p. 25, prop. 3), and A is compact for cr(E, E'). 

On account of prop. 1 (IV, p. 32), it is enough to prove that C is compact for cr(E, E'). 
and so we have reduced to the case where :Y = cr(E, E'). 

B) Since C is pre compact and closed for cr(E, E'), it is bounded and closed for 
the initial topology of E (III, p. 3, prop. 2 and IV, p. 1, prop. 1); hence it is complete 
since E is quasi-complete. In other words, C is the closed convex balanced envelope 
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of A in the completion E of E. Since the topology crCE, E') induces cr(E E') on E, 
we have reduced to the case when E is complete. 

C) Let r be the convex balanced envelope of A. Then C is the closure of r for 
cr(E E'). By Eberlein's theorem (IV, p. 35, tho 1), it is enough to prove that evcry 
scquence (X"\EN of points of r has a limit point for cr(E, E') in E. But xn belongs 
to the convex balanced envelope of a finite subset Bn of A. Let F be the closed vector 
subspace of E generated by the countable set B = U B". Then F is complete, the 

" 
topology cr(F, F) on F is induced by cr(E, E') and we have x" E F for all n E N. Hence 
it is enough to prove that (xn)nEN has a limit point for cr(F, F), which gives the reduc­
tion to the case when there exists a countable dense set in E. 

Let A be assigned the topology induced by cr(E, E'), which makes it a compact 
space. We define a linear mapping u: E' -> ,(;(A) by 

(7) u(x') (a) = (a, x') (a E A, x' E E'). 

Let (x;.)nEN be an equicontinuous sequence in E', converging to 0 for cr(E', E). Then 
the sequence of functions u(x;,l is bounded in '6'(A) and converges simply to O. For 
every fl E (6'(A)" we have lim ~L(U(X~») = 0 by lemma 2 (IV, p. 37). By the criterion 

given in the remark in ilL p. 21, the linear form fl 0 1I on E' is then continuous for 
cr(E', E) for every fl E ~(A)'. Hence there exists a linear mapping v :~(A)' -> E 
satisfying the relation 

(8) (u(x'), fl) = (r(~l), x') (x' E E', fl E (fiCA),) . 
\ 

It is clear that v is continuous if ~(A)' is assigned the topology cr(~(A)'. "&(A)) and E 
the topology cr(E, E'). 

The unit ball (closed) B of the Banach space <'6(A) is compact for the topology 
cr((g(A)', ~(A») (III. p. 17, cor. 3). Consequently, t{B) is a convex balanced and compact 
subset of E for cr(E. E'). For every a E A, the continuous linear form Ea:fl---> f(a) 
on (fi(A) belongs to B, and we have V(Ea) = a by formulas (7) and (8). Hence, A c v(B), 

and so C c vCB). This proves that C is compact for cr(E, E'). 
Q.E.D. 



APPENDIX 

Fixed points of groups 
of affine transformations 

1. The case of solvable groups 

Let E be a real vector space, and K a convex subset of E. A mapping u: K -> K 
such that for x, y in K and for every real number tin (0, I), we have 

(1) u(tx + (I - t) y) = tu(x) + (1 - t) u(y) 

is said to be an affine transformation. From relation (1) we deduce that 

(2) u(I tixJ = I tiu(x) 
iEI iEI 

for every finite set I, points Xi in K and positive real numbers ti such that I ti = l. 
iEI 

Let u and v be two affine transformations on K, then the mapping u 0 v is an 
affine transformation on K. If v : E -> E is a linear mapping such that v(K) c K, 
the mapping u: K -> K which coincides with v on K is an affine transformation. 

THEOREM 1 (Markoff-Kakutani). - Let E be a Hausdorff locally convex vector space 

over thefield R, and K a non-empty compact convex subset ofE. Let r be a set of conti­
nuous affine transformations on K, pairwise permutable. Then there exists a point a 

in K such that u(a) = a for all u E r. 
For every u E r, let Ku be the set of all x E K such that u(x) = x. We shall show 

that Ku is non-empty. Let x be a point of K; for every integer n ;;:: 1, let xn be the 
1 11-1 . 

element - I u'(x) of E. Since K is convex and stable under u, the points Xn belong 
n ;=0 

to K and since K is compact, there exists a limit point a of the sequence (Xn),,;o, l' 
The mapping y f---+ u(y) - y from K into E is continuous, hence u(a) - a is a limit 

point of the sequence (u(x,) - x,,)n;o, l' But we have u(xn) - xn = ~ (u"(x) - x). 
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Since K is compact, hence also bounded (III, p. 3, prop. 2), the sequence (un(x) - X)n> 1 

is bounded; consequently, the sequence (! (u"(x) - X)) tends to 0 (III, p. 4, 
n ">1 

prop. 3), and since E is Hausdorff, we have u(a) - a = 0. Therefore a E Ku' 
Each of the sets Ku is a closed and convex subset of the compact space K, and 

we shall prove that the intersection n Ku is non-empty. For this it is enough to 
UEf 

prove that, for n ;?: 1, and Up ... , u" in r, the set KUl n ... n KUn is non-empty. 
The case n = 1 having been considered, we argue by induction on n. Suppose 
n ;?: 2 and put L = Ku In ... n KUn _ l' By the hypothesis of induction, L is a non­
empty compact convex subset of E. Since Un commutes with u1 ' ... , un -1' we have 
u,,(L) c L. Applying the first part of the proof to the affine transformation induced 
by Un on L, we conclude that there exists a point a in L such that un(a) = a; then 
a belongs to KUl n ... n K un ' which is then non-empty. 

COROLLARY. - Let G be a solvable group of continuous affine transformations on K. 
Then there exists a point in K which is invariant under G. 

By the definition of a solvable group (A, I, § 6, No.4) there exists a finite decreasing 
sequence (G)o",j"," of distinct subgroups ofG, such that Go = G, G n = {e} and 
such that the group G j_ dGj is commutative for 1 ~ i ~ n. Let K j denote the set 
of fixed points of G j in K. Then Kn = K. Moreover, for 1 ~ i ~ n, every element 
of G j induces the identity transformation on Kj; we thus deduce an action of the 
abelian group G j_ dGj on K if K j is non-empty; it follows from tho 1 that the set 
K j- 1 of fixed points of G j_ dGj in K j is non-empty. By descending induction on i, 
we conclude that K o is non-empty, hence the corollary. 

2. Invariant means 

Let X be a topological space. Let 2B(X; R) denote the real vector space consisting 
of continuous bounded mappings from X into R. Endowed with the norm 
II f II = sup If(x) I, this is a Banach space (GT, X, § 3, No.1); it is also an ordered 

XEX 

vector space, where the relation f ;?: 9 means «f(x) ;?: g(x) for all x EX». 

DEFINITION l. - A positive linear form J.! on the space 2B(X; R), where X is a topo­
logical space, for which IIJ.!II = 1, is called a mean on X. 

* When X is compact, a mean on X is a positive measure on X such that ~(X) = 1. * 

Lemma l. - The set K of means on X is the subset of the unit ball of the dual of the 
Banach !>pace E = 2B(X; R) whose elements are the linear forms J.! such that J.!(l) = 1. 
It is a subset ofE' which is convex and compact for cr(E', E). 

Let J.! be a linear form on E, such that J.!(l) = 1. For every function fEE, we define 
the function f' E E by f'(x) = II f II - f(x) (x E X). First assume that J.! is a mean; 
foreveryfEE,wehavef';?: O,henceJ.!(f');?: O,i.e.J.!CD ~ Ilfll;thereforellJ.!11 ~ l. 
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Conversely, suppose J.l belongs to E', and that 11J.l11 ::;; I; for every positive function 
fEE, we have J.l(f') ::;; II f' II, hence 

II fll - J.l(f) = J.l(f') ::;; II f'11 ::;; II fll , 

and finally J.l(f) ~ 0; consequently, J.l is a mean. 
It is clear that K is convex; that it is compact for cr(E', E) follows from cor. 3 

of III, p. 17. 
Q.E.D. 

Let r be a set of continuous mappings from X into X which commute pairwise. 
Let Y E r. For every function fEE, we have f 0 Y E E; hence we can define an affine 
transformation uy on the set K of means on X, by 

UyJ.l(f) = J.l(fo y) (J.l E K, fE E). 

If K is assigned the topology induced by cr(E', E), the mapping uy is continuous. 
If y is a homeomorphism, UyJ.l can be deduced from J.l by transport of structure. 
Finally, we have UyUy' = Uy,Uy for all y, y' in r. By the Markoff-Kakutani tho (IV, 
p. 39, tho 1), there exists a mean J.l on X, such that uyu = J.lfor all y E r; in other words, 
J.l satisfies the relation J.l(f) = J.l(f 0 y) for fEE and y E r. 

In an analogous way, the corollary ofth. 1 (IV, p. 40) implies the following result : 

PROPOSITION 1. - Let X be a topological space and G a solvable group. We assume 
that G operates on X on the left, in such a way that for all g E G, the mapping x ~ g.x 
from X into X is continuous. Then there exists a mean on X which is invariant under G. 

COROLLARY. - Let G be a solvable topological group. Then there exists a mean on 
G which is invariant under the left and the right translations. 

It is enough to apply prop. 1 to the solvable group G x G acting on G by 
(g.g').x = gxg,-l. 

3. Ryll-Nardzewski theorem 

In this section, E denotes a normed space over the field Rand :Y a Hausdorff 
locally convex topology on E for which the norm of E is lower semi-continuous. 
These hypotheses are in particular satisfied in the following cases : 

a) :Y is the topology induced by the norm of the normed space E. 
b) :Y is the weakened topology cr(E, E') of the normed space E. 
c) E is the dual of a normed space F and :Y = cr(F', F). 
d) There exist two normed spaces F 1 and F 2 such that E = £,(F 1 ; F 2) and :Y 

is the topology of simple convergence. 
Unless otherwise expressely stated, the topological notions refer to the topology :Y. 
Let K be a convex subset of E. Suppose that K is compact (for the topology :Y), 

and that K satisfies the first axiom of countability for the distance defined by the 
norm ofE. 
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Lemma 2. - Suppose K contains at least two points. For every E > 0, there exists 
a partition of K into two non-empty subsets KI and K 2 , having the following proper­

ties: 
a) KI is convex and compact; 
b) we have Ilxl - x2 11 < E for every Xl and X2 in K 2 • 

Let L be the closure of the set of all extremal points of K. By the Krein-Milman 
tho (II, p. 55, tho 1), K is the closed convex envelope of L. Since K contains at least 
two points, so does L. For every x E L, let Ax be the set of all Y E L such that 
Ilx - yll < E/4. By the hypothesis, on K, there exists a countable subset D of L 
such that L = U Ax' Since the norm is lower semi-continuous, each of the sets 

XED 

Ax is closed. Applying Baire's tho (GT, IX, § 5, No.3, tho 1) to the compact space L, we 
see that there exists a point a in D and an open subset U in E such that L Ii U is 
non-empty and is contained in Aa' Since L contains at least two points, and since E 
is Hausdorff, we can choose U in such a way that L ¢ U. 

Let M be the closed convex envelope of L Ii C U. For every real number t such 
that 0 < t < 1, let M t be the set of all vectors of the form tX I + (1 - t) x 2 with 
Xl EM and x 2 E K; this is a non-empty, compact convex subset of K. We shall 
prove that M t i= K by reductio ad absurdum. Suppose that M t = K; then every 
extremal point X in K belongs to Mp hence can be written in the form 
x = tX I + (1 - t) x2 with Xl EM and x2 E K. This implies that X = Xl = x 2 ' 

and so x EM. By Krein-Milman tho (II, p. 55, tho 1), we have K = M, and K is the 
closed convex envelope of L Ii C U. By II, p. 56, corollary, this implies that 
L c L Ii C U, which contradicts the relation L Ii U i= 0. 

Put d = sup Ilx - yll and choose a real number t such that 0 < t < I and 
XEK,YEK 

t < E/4d. Put KI = M t and K2 = K - M t . By the preceding argument, the sets 
KI and K2 are non-empty, and KI is convex and compact. Let M' be the closed 
convex envelope of L Ii U. Since K is the closed convex envelope of the set 
L = (L Ii C U) u (L Ii U), it is also the closed convex envelope of MuM'; Let 
Xl and x 2 be two points in K 2 ; for i = 1,2, there exist Yi E M, Zi E M' and a real 
number cri such that 0 < cri < 1 and Xi = criYi + (1 - cr) Zi' If cri ): t, then 

Xi = tYi + (l - t) { ~i ~ : Yi + ~ =- ~i Zi } ; this contradicts the assumption that 

Xi $ Mi' Hence cri < t, for i = 1, 2, and so 

For every point Z in M', we have liz - all < E/4, since L Ii U c Aa , and so, in 
particular Ilzi - all < E/4. Thus 

2 

IIXI - x2 11 < L (1lx i - z;II + IIZi - all) < E. 
i~ 1 

This completes the proof. 
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Lemma 3. - Let G be a group of continuous (for Y) affine transformations on K. 
Suppose that K is non-empty and that Ilgx - gyll = Ilx - yll for all x, y in K and 
all 9 in G. Then there exists a point in K which is invariant under G. 

Let J be the family of non-empty subsets of K which are closed convex and stable 
for G. If (LJael is a family of elements of J which is totally ordered by inclusion, 
then the set L = n La belongs to J. Consequently (S, III, § 3, No.4, tho 2), there exists 

an element L in J which is minimal for the relation of inclusion. We shall prove 
that L reduces to a point. 

We argue by reductio ad ahsurdum, assuming that L contains at least two distinct 

points Xl and x2 ' put x = (Xl + x2)/2 and £ = Ilxl - xzl!/2. The convex and 
compact set L satisfies the first axiom of countability for the distance defined by the 
norm (GT, IX, § 2, No.8). Hence we can apply lemma 2 and find a compact and 
convex subset Ll of L, distinct from 0 and from L, having the following property: 
perty : 

(A) For every J'I and yz in L - L 1 , we have IIY1 - hil < £. 

We shall prove by reductio ad absurdum that gx E L1 for all 9 E G. Let g E G 
be such that gx E L - L1 then we have 

Ilgxi - gxll = Ilxi - xii = Ilxl - x211/2 = £ , 

for i = 1,2. By property (A), we have gXi ELl. Since Ll is convex, we conclude 
that gx = (gx1 + gXz)/2 belongs to L 1, which contradicts the assumption. 

Let L' be the closed convex envelope of the orbit Gx of x. The set L' belongs to 3. 
By the preceding argument, we have L' c L 1, hence L' c L, L' 0;6 L. This contra­
dicts the minimal character of L and the proof is complete. 

THEOREM 2 (Ryll-Nardzewski). - Let E be a normed space and K a non-empty 
convex subset of E, which is compact for the weakened topology a(E, E'). Let G be 
a group of isometric affine transformations ofK. Then there exiSTS a point in K which 
is invariant under G. 

For every 9 E G, let Kg denote the set of all points x in K such that gx = x; let K 
be assigned the weakened topology: each set Ky is convex and closed in the compact 
space K. We shall prove that the intersection n Kg is non-empty; for this, it is 

geG 

enough to prove that the set K91 n ... n Kg» is non-empty for every 91' ... , gn in G. 
Fix 91' ... , gn and let H be the subgroup of G generated by {gl' ... , gn }. Choose 
a point a in K and let L denote the closed convex envelope of the orbit Ha of a. 

Let D be the countable set of elements of the form lel hi a + ... + Amh",a, where 
A1 , ... , Am are positive rational numbers such that A1 + ... + Am = 1, and h1' ... , hm 

are elements in H. The closure D of D for the strong topology, is convex, hence 
it is closed for crCE, E') (IV, p. 4, prop. 2); therefore D = L and this proves that L 
is a metric space satisfying the first axiom of countability for the distance 
(x, y) I--> II x - y II. We can now apply lemma 2. There exists a point b in L which 
is invariant under H, hence bE KYI n ... n Kg». 
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COROLLARY. - Let E be a reflexive Banach space, G a group of automorphisms of 
the normed space E, andK a subset ofE. Suppose that K is non-empty, convex, closed, 
bounded and stable under G. Then there exists a point in K which is invariant under G. 

Since E is reflexive, K is compact for cr(E, E') (IV, p. 15, tho 1). Moreover, every' 
element of G belongs to 2(E). 

4. Applications. 

* A) Unitary representations of groups 
Let E be a complex hilbertian space, G a group and n a unitary representation 

of G on E, i.e. a homomorphism from G into the group of automorphisms of E. 
Let EG be the hilbertian subspace of E consisting of all vectors invariant under 
neG). For every x E E, let Kx be the closed convex envelope of the orbit of x. Fix 
a point x in E. 

We shall show that there exists a unique point in Kx which is invariant under neG), 
namely the projection of x on EG. By IV, p. 44, corollary (applied to the underlying 
real vector space to E), there exists a point in Kx which is invariant under n(G); 
let a be such a point; then a E EG. Let P be the set of all y E E such that y - x is 
orthogonal to EG; we see immediately that P is closed, convex and invariant under 
n(G); therefore x E P, hence Kx c P and finally a E P. In other words, a - x is 
orthogonal to EG; consequently a is the projection of x onto EG. * 

* B) Trace o/' an operator in a hilbertian space: 
Suppose that the representation n is irreducible, that is, that there exists no hil­

bertian subspace of E, distinct from {O} and from E, which is invariant under neG). 
Let F = 22(E) be the hilbertian space of all Hilbert-Schmidt endomorphisms 
of E, with the scalar product < ulv > = Tr(u*v). We define a unitary representation 
A from G into F by the formula 

(3) A(g). u = neg) un(g)-l (u E F, g E G) . 

The space FG of all elements of E invariant under A(G) consists of the Hilbert­
Schmidt endomorphisms u of E which commute with neg) for all g E G. By Schur's 
lemma, such a u is a homothety. Hence we must consider two cases 

1) if E is infinite dimensional, then FG = {O}; 
2) if E is finite dimensional, then F = 2(E) and FG = C.l E . 

Applying the result of A) to the unitary representation A, we obtain the following 
theorem: 

Let u E 2 2(E), and let Au be the closed convex envelope in 22(E) of the set of 
endomorph isms neg) un(g)-l ofE, where g runs through G. IfE is infinite dimensional, 
we have 0 E Au. IfE is finite dimensional with dimension d, there exists a unique homo-

thety in Au' namely the projection ~ Tr(u).IE of u onto the subspace C.lE of 2 2(E). * 
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C) Haar measure of a compact group : 

Let G be a compact group and let E = rc(G, R) be the Banach space of all real 
valued continuous functions on G, endowed with the norm 

(4) II f II = sup If(x)l· 
XEG 

For all x E G, we define the automorphisms Yx and Ox of E by the formulas 

(5) yJ(y) = f(x- 1y) , oJ(y) = f(yx) 

(for y E G, fE E). 
Let fE E, let rJ (resp. LlJ ) denote the closed convex envelope t. E, of the set of 

all functions y xf (resp. oxf) as x ranges over G. We shall prove Ii, at there exists a 
unique constantfunction Il(f) belonging to r J , a unique constantfunction Il'(f) belong­

ing to LlJ' and that these constants are equal. 
It is clear that a continuous function on G is invariant under the automorphisms 

y x (resp. ox) ofE if and only if it is constant. Now the set of all functions y J(resp. oxf) 
for x in G, is compact in E, since the mapping x f---+ y xf (resp. x f---+ oxf) from G into E 
is continuous (GT, X, § 3, No.4, tho 3). It follows (II, p. 25, prop. 3) that r J (resp. LlJ) 

is a compact set in E for the topology defined by the norm, hence for cr(E, E'). By 
the Ryll-Nardzewski tho (IV, p. 43, tho 2), there exist constant functions in r J and LlJ . 

lt remains to prove that if C1 E r J and Cz E LlJ are constants, then c1 = cz . 

Let £ > O. By the hypothesis there exist points Xl' ... , x n' Y1' ... , Yn in G and 
positive real numbers A1 , ... , An' Ill' ... , 11m such that 

(6) 

(7) 

(8) 

Al + ... + An = III + ... + 11m = 1 . 
n 

sup I L AJ(XiX) - C1 1 ~ £, 
XEG i= 1 

m 

sup I L IlJ(xy) - Czl ~ £. 
XEG j= 1 

m n 

Put r = L AiIlJ(XiY). Then r - c1 L Ilpj with aj = L AJ(XiY) - c1 ; by 
i.j j=l ;=1 

(7), we have lajl ~ £ for 1 ~ j ~ m, hence Ir - c1 1 ~ £. Similarly, we prove the 
inequality Ir - czl ~ £, hence IC 1 - czl ~ 2£. Since £ is arbitrary, we get c1 = cZ ' 

as asserted. 
By the definition of Il(f), for every £ > 0 we can find positive numbers A1 , ... , An 

n 

with sum 1 and elements Xl' ... , xn in G such that I L AJ(XiX) - 1l(f)1 ~ £ for all 
;= 1 

XEG. 

It is immediate that for 1, 9 in E and for every scalar A, we have r J+g c r J + rg 
and ryJ=ArJ, hence we have the relations 1l(f+g)=Il(f)+Il(g) and Il(Af)= AIl(f)· 
Therefore, the mapping 11 :f f---+ Il(f) from E into R is a mean on the compact space G 
(IV, p. 40); * in other words 11 is a positive measure on G such that Il(G) = I *. 
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It is immediate that ~ is invariant under the left translations of G, and the equality 
~(j) = ~'(j) implies that ~ is also invariant under right translations. * In other 
words, ~ is a left and a right measure on G (INT, VII, § 1, No.2, def 2). * 

* D) Existence of invariant measures: 
Let X be a Hausdotif topological space, ~ a positive bounded measure on X, 

and G a group of homeomorphisms of X. Suppose that for all 9 E G, the measure 
g.~, the image of ~L under the mapping g: X ---+ X is of base ~. Let ug be a positive 
~-integrable function on X such that g.p. = Ug'~' Suppose also that there exist 
two positive ~L integrable functions <p and \j! on X, which are not ~l-null and are 
such that <p ~ ug ~ \j! ~-almost everywhere for all 9 E G. We shall prove that there 
exists a positive lnmded measure v oF 0 on X. with base ~, and invariant under G. 

Let P be the subset of the Banach space E = L leX, p) consisting of classes of 
functions f such that <p ~ f ~ \j! ~-almost everywhere. Then P is compact for the 
weakened topology aCE, E'). The mapping h f---> h. ~ from P into the Banach space 
F = .'ib(X) of bounded real measures on X, is a bijection from P onto a subset 
PI of E which is convex and compact for the topology a(F, F'). By hypothesis, 
g. ~ E PI for all 9 E G. Let K be the closed convex envelope of the set of all measures 
g.~. For all 9 E G, the mapping v f---> g. v is an isometric affine transformation of K. 
By the Ryll-Nardzewski tho (TV, p. 43, tho 2), there exists a measure v E K which is 
invariant under G. We have <p.~ ~ v, hence v oF O. * 



Exercises 

§ I 

1) Let A be an infinite set. 
a) Let E be the Banach space Jf"(A) over R, consisting of all families x = (X')'EA of real num­
bers such that rt f---> x. tends to 0 with respect to the filter of complements of finite subsets 
of A, and endowed with the norm Ilxll = sup Ix,l (when A = N, this space is denoted by 

,EA 
Co or co(N). Show that every continuous linear form on E can be written in a unique way as 
x f---> I u.x., where (U.).EA is a family such that I IUal < + CIJ; then the dual E' of E can 

~EA ~A 

be identified (as a non topological vector space) with the space £1(A) (I, p. 4, Example). 
h) Let F be the Banach space fl(A) (1, p. 4, Example) (when A = N, also denoted by £1). Show 
that every continuous linear form on F can be written in a unique way as x f---> I UaXa' where 

,EA 
(U.)aEA is a bounded family of real numbers; then the dual F' of F can be identified (as a non 
topological vector space) with the space .%'(A) = f'x (A). 
c) Let B be an arbitrary set, (ca~)( •. ~)EA x B an arbitrary family of numbers> O. Let 0 be the 
vector space of all families x = (Xa)'EA of real numbers such that, for every ~ E B, we have 
p~(x) = I c,~lxal < + CIJ; the p~ are semi-norms on O. In order that 0, with the topology 

aEA 
defined by this family of semi-norms, be Hausdorff, it is necessary and sufficient that, for 
every rt E A, there exists at least one ~ E B such that c,~ > O. Show that then 0 is complete, 
and that every continuous linear form on 0 can be written uniquely as x f---> I u,xa ' where 

'EA 
(U,)'EA is a family of real numbers satisfying the following condition; there exists a finite 
number of indices ~i E B (I :( i :( n) and a number a > 0 such that lu,l :( a. ca~; for all rt E A 
and I :( i :( n. Prove the converse, and extend these results to the case where the field of 
scalars is C. 

2) (i) Let F and 0 be two vector spaces in separating duality. Show that, if F is relatively 
bounded for O'(F, 0) (III, p. 43, exerc. 6), then 0 is relatively bounded for 0'(0, F). 
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b) Let F be a vector space, and let G l' G 2 be two vector subspaces of F* such that F is in 
separating duality with G 1 and with G 2 • Show that, if F is relatively bounded for er(f', G 1) 

and er(F, G 2)' it is so also for er(F, G 1 + G 2)' 
c) Suppose that F has a countable basis. Show that, for every vector subspace G of F* which 
is in separating duality with F and has a countable basis, F is relatively bounded for er(F, G) 
(by induction define two bases (an), (bn) of F and G respectively, such that < am' bn) = '8mn ). 

3) Let F be a vector space. Show that, for the topology er(F, F*), every bounded subset of F 
is finite dimensional. Deduce that, if F is infinite dimensional, there exist, in the completion F 
of F (for er(F, F*)), compact subsets which are not contained in the closure of any bounded 
subset of F (el II, p. 52, prop. 10). 

-0 4) Let F and G be two vector spaces in separating duality, G (resp. F) being identified 
with the dual of F (resp. G) when the latter is assigned the topology er(F, G) (resp. er(G, F)). 
Let 6 (resp. '1:) be a covering of F (resp. G) consisting of convex, balanced and bounded subsets 
for er(F, G) (resp. er(G, F)). Show that the following propositions are equivalent: 

a) Every set M E 6 is precompact for the '1:-topology. 
~) Every set N E '1: is precompact for the 6-topology. 
y) On every set ME 6, the topology induced by the '1:-topology is identical with the topo­

logy induced by er(F, G). 
8) On every set N E '1:, the topology induced by the 6-topology is identical with the topo­

logy induced by er(G, F). 
(Use prop. 5 of III, p. 17 to show that a) implies 8) and exerc. 1 of II, p. 74 to show that 8) 
implies ~).) 

5) Let E and F be two locally convex Hausdorff spaces, 6 a family of subsets of E. In order 
that the 6-topology on the space .P(E; F) be compatible with the vector space structure, 
it is necessary (and sufficient, cf III, p. 13, corollary) that every set of 6 is bounded in E. 

6) a) Let E be a locally convex Hausdortr space. For every ultrafilter U on E, let U' be the 
filter for which the convex envelopes of sets of U form a base. Show that, in order that a point 
of E be a limit of U for the weakened topology, it is necessary and sufficient that it is a limit 
point of U' for the initial topology (use exerc. 11 of II, p. 84). 
b) Let A be a convex subset of a vector space E and let :Y1, :Y2 be two locally convex Haus­
dorff topologies on E, and :Y;, :Y; the corresponding weakened topologies. Show that if the 
topology induced on A by :Yl is finer than the topology induced by :Y2, then the topology 
induced on A by :Y; is finer than the topology induced on A by :Y;. 

~ 7) Let F be the direct sum space R(N), G the space e1(N) (I, p. 4, Example); F and G are 
put in duality by the bilinear form 

(x, Y) f-> I ~n 1']n 

for x = (~n) E F and Y = (1']n) E G. 
a) Show that, in F, every set K which is convex and compact for er(F, G) is finite dimen­
sional. (Assume the contrary; let (nk ) be a strictly increasing sequence of integers > 0, and 
(ak ) a sequence of points of K such that the components of ak for indices > nk are zero, but 
that of index nk is #- O. Show that there exists a sequence (lk) of numbers > 0 such that 
I tk < + 00 and that in the Banach space .'?I(N) of all bounded sequences of real numbers, 
k 

the point I lkak has non-zero components for indices n i , for all i; deduce that the sequence 
k 

p 

of partial sums sJi> = I tkak cannot have a limit point in F for er(F, G).) 
k~l 

b) Show that in F there exist compact sets for er(F, G) which are infinite dimensional (observe 
that G is the dual of F for the topology induced by the topology of the normed space .'?B(N)). 
Show that there exist precompact sets in F for er(F, G) which are not relatively compact. 
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e) Deduce from a) and b) that T(G, F) = cr(G, F), but that T(G, F) is distinct from the topo­
logy of uniform convergence on subsets of F which are compact for cr(F, G). 

8) Let E be an infinite dimensional locally convex metrizable space, and E' its dual. In order 
that the topology T(E, E') be identical with the weakened topology cr(E, E') it is necessary 
and sufficient that E is isomorphic to an everywhere dense subspace of the product space 
RN (resp. eN). (Observe that in E', for the bomology consisting of equicontinuous sets, there 
exists a countable base (Ill, p. 1) consisting of finite dimensional sets; conclude that the vector 
space E' has a countable basis). 

Give an example of a locally convex Hausdorff space E for which the initial topology, 
and the topologies cr(E, E') and T(E, E') are all distinct. 

9) a) Let E be a locally convex, Hausdorff, bomological and quasi-complete space. In order 
that the topologies T(E', E) and cr(E', E) on the dual E' of E be identical, it is necessary and 
sufficient that the topology of E is the finest locally convex topology (show that every bounded 
subset of E is finite dimensional). 
b) Let E be a locally convex Hausdorff space, E' its dual. In order that the strong topology 
~(E', E) on E' be identical with the weak topology cr(E', E), it is necessary and sufficient that 
the topology of the bomological space associated with E (Ill, p. 40, exerc. 1) is the finest locally 
convex topology on E. 

10) Let E be a locally convex Hausdorff space, E' its dual. Show that the following proposi­
tions are equivalent : 

IX) E is barrelled; 
~) every weakly bounded subset of E' is equicontinuous; 
y) every weakly bounded subset of E' is relatively weakly compact, and the topology of E 

is T(E, E'). 

11) Let E be a locally convex Hausdorff space, E' its dual, IS a covering of E consisting 
of bounded subsets; we assign the IS-topology to E'. Show that, for the bilinear form 
(x, x') ~ < x, x' > to be continuous on E x E', it is necessary and sufficient that the topology 
of E can be defined by a single norm, and that the IS-topology is the strong topology on E' 
(ef III, p. 37, exerc. 2). 

12) Let E be a locally convex Hausdorff space, E' its dual. 
a) In order that there exists a weakly bounded and absorbent set in E', it is necessary and 
sufficient that the topology of E is coarser than a normed space topology (ef IV, p. 47, exerc. 2). 
b) In order that there exists an equicontinuous and weakly total set in E', it is necessary 
and sufficient that the topology of E is finer than a normed space topology. 
e) In order that there exists an equicontinuous absorbent set in E', it is necessary and suffi­
cient that the topology of E can be defined by a single norm. 

13) Let F and G be two vector spaces over R in separating duality. 
a) Let A be a convex set in F, not containing the origin, and compact for the topology cr(F, G); 
let C be the convex cone with vertex ° generated by A. Show that the polar cone CD in G 
has an interior point for the topology T(G, F): 
b) Conversely, let C be a proper convex cone with vertex 0, closed for cr(F, G) and having 
an interior point for the topology T(F, G). Show that in G there exists a hyperplane H, closed 
for cr(G, F), not containing the origin, such that H n Co is compact for cr(G, F) and 
(H nCO) u {O} generates Co. 

14) Let E be a locally convex Hausdorff and quasi-complete space, E' its dual. Show that 
on E~ the topology of compact convergence is the finest of the topologies compatible with 
the duality between E and E' and which induces the same topology as cr(E', E) on every equi­
continuous subset of E' (ef IV, p. 48, exerc. 4). 
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"IT 15) a) Let E be a locally convex Hausdorff space. A a convex and balanced set in E, and 
u a linear form on E. Show that if A" u- 1(0) is closed with respect to A. then the restriction 
of u to A is continuous. (Tf not. show that 0 will be in the closure of the intersection of A and 
a hyperplane u- 1(ct) withct i= 0; deduce that if b E A is such that u(b) = - ct. the point ± b 
will be in the closure of A "U 1(0).) 
b) Let E be a real locally convex Hausdorff and complete space. E' its dual. Show that if a 
hyperplane H' of E' is such that its intersection with every equicontinuous and weakly closed 
subset M' c E' is weakly closed, then H' is weakly closed (use a) and Tn, p. 21. cor. 1). 
c) Let E be a locally convex Hausdorff space, E' its dual and C a convex. balanced and closed 
set in E. Let u be a linear form on E; show that if the restriction of u to C is continuous for 
the initial topology, it is also continuous for cr(E. E') (use a)). Show by an example that the 
restriction of u to the vector subspace M generated by C is not necessarily continuous (take 
E = R(N) with the norm Ilxll = sup I~"I, and for C take a suitable convex set generating E). 

n 

16) Let F and G be two vector spaces in separating duality, the set of all linear forms x' on F 
which are bounded an every subset of F bounded for cr(F, G) is called the enclosure of G 
in the algebraic dual F* of F ; this is a vector subspace G of F*. which is the dual of F when 
F is assigned the topology of the bomological space associated (IIT, p. 40. exerc. 1) with one 
of the topologies compatible with the duality between F and G. Thcn G is said to be enclosed 
in F* if G = G. 
a) Let M be a closed vector subspace of F for the topology cr(F, G). Show that if G is enclosed 
in F*, and if F/M is assigned the topology cr(F/M, MO), then its dual is enclosed in (F/M)*. 
b) Let E be a Hausdorlflocally convex space, E' its dual. For E to be bomological, it is neces­
sary and sufficient that its topology is identical with ,(E, E') and that E' is enclosed in E* 
c) Let (E)icI be a family of Hausdorff locally convex spaces, and F the direct sum space of 
the Ei, endowed with the topology defined in 1, p. 24, exerc. 14. Show that the dual of F is 
canonically isomorphic to the subspace of the product IT E; of the duals of the Ei, consisting 

iEI 

of all families (x;) such that x; = 0 except for a countable number of indices. (Let Vi be an 
arbitrary neighbourhood of 0 in Ei. Show that if x; i= 0 for an uncountable set of indices, 
then therc exists a number ct > 0 and an uncountable set H c I such that there exists Xi E Vi 
for which < Xi' X; > ;?: ct for all i E H; conclude that (x;) cannot belong to F'.) 
d) Show that if I is uncountable then F is not enclosed in F* ; if we take Ei = R for all i E I, 
then F' endowed with the strong topology, is not complete. and there exist strongly bounded 
subsets in F' which are not weakly relatively compact. 

17) Let E be a Hausdorff locally convex space, E' its dual and. in E', let '!ll be the family 
of convex eq uicontinuous sets. '!l2 the family of convex, relatively weakly compact subsets, 
1J3 3 the family of convex strongly bounded subsets, and 1J34 the family of convex weakly bounded 
subsets. Then 1J3 1 c l!lz c l!l3 c IJ3 4' Give an example of a space E for which the four families 
of sets are distinct (take for E a product of three spaces for which we have, respectively 1J3 1 i= 1J3 2 

(ef IV, p. 49, exerc. 8), IJ3z i= 1J33 (exerc. 16, d)), 1J3 3 i= l!l4 (III, p. 23, Remark 2). 

18) Let E, F be two vector spaces and E *, F* their respective algebraic duals. Show that 
if u is a linear mapping from F* into E, which is continuous for the topologies cr(F*, F) and 
cr(E, E*), then u(F*) is finite dimensional. (Use prop. 2 of IV, p. 27 to show that u is a strict 
morphism, and deduce that u(F*) is a subspace of E of minimal type (II, p. 85, exerc. 13); 
conclude by considering the bounded sets of this subspace.) 

19) Let E and F be two Hausdorff locally convex spaces, E' and F their duals. For every 
subset H of the space 2'(E; F) of continuous linear mappings from E into F, let 'H denote 
the set of the transposes of the mapping u E H. For every subset M (resp. N') of E (resp. F), 
let H(M) (resp. 'H(N'») denote the union of the sets u(M) (resp. 'u(N')) as u ranges over H. 
a) For H to be equicontinuous. it is necessary and sufficient that, for every equicontinuous 
subset N' of F, 'H(N') is an equicontinuous subset of E'. 
b) Let is be a set of bounded subsets of E. Show that H is bounded in £'(E; F)for the is-topo­
logy, if and only if for every y' E F, 'H(y') is bounded in E' for the is-topology. 
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c) Let S be a set of bounded subsets of E, 3 a set of bounded subsets of F forming an adapted 
bomology of F (III, p. 3, def. 4). Suppose E' is assigned the S-topology and F' the 3-topology. 
Then 'H is equicontinuous if and only if for every set BE S, H(B) belongs to 3. In particular, 
'H is equicontinuous for the strong topologies on F' and E' if and only if H is bounded in 
2(E; F) for the topology of bounded convergence. 
d) Deduce from b) and c) that, if 'H is bounded for the topology of simple convergence in 
2(F'; E') when F' and E' are assigned the strong topologies, then 'H is equicontinuous for 
these topologies. 
e) Show that if E is barrelled, the following properties are equivalent: 

ex) H is simply bounded in 2(E; F); 
~) H is equicontinuous; 
y) 'H is simply bounded in 2(F'; E') when E' is assigned the weak topology cr(E', E); 
8) 'H is equicontinuous, when E' and F' are assigned the strong topologies. 

f) Show that if E is infra barrelled (III, p. 44, exerc. 7), then the properties ~) and 8) of e) 
are equivalent, and are also equivalent to the following : 

£) H is bounded in 2(E; F) for the topology of bounded convergence; 
<p) 'H is simply bounded in 2(F'; E') when E' is assigned the strong topology. 

g) Show that if E is quasi-complete, the properties ex), y) and 8) of e) are equivalent. 

20) Let E be a Hausdorff locally convex space, and E' its dual. 
a) Let M be a closed vector subspace of E. The topology ,(M, E' fMC) is identical with the 
topology induced on M by ,(E, E') if and only if every convex balanced set in E'fMo which 
is compact for the weak topology cr(E' fMc, M), is the canonical image of a convex balanced, 
compact (for cr(E', E») subset of E' (cf V, p. 73, exerc. 15). 
b) Let N be a dense vector subspace of E. If the topology induced on N by that of E is identical 
with ,(N, E'), show that the topology of E is identical with ,(E, E'). 

21) a) Let E be a vector space, E* its algebraic dual. Show that the topology ,(E, E*) is 
the finest locally convex topology and that the topology ,(E*, E) is identical with cr(E*, E). 
b) Let E** be the algebraic dual ofE*. Show that ifE is infinite dimensional, then E is dense 
in E** for all the topologies compatible with the duality between E** and E*, but that the 
topology induced on E by ,(E**, E*) is distinct from ,(E, E*). 

22) Let E be a Hausdorff locally convex space, E' its dual and M a closed subspace of E. 
a) Show that if the closed convex envelope of a compact set in E is compact, then the topology 
of compact convergence on E' /Mo (identified with the dual of M) is the quotient topology 
of the topology of compact convergence on E' by MO. 
b) Show that if M is infrabarrelled and if E'jMO, endowed with the topology ~(E'jMC, M) 
is bomological, then the topology ~(E'/Mo, M) is the quotient of ~(E', E) by MO. 

23) Give an example of a family (EJiEI of Hausdorff locally convex spaces such that the cano­
nical mapping from EEl E; onto the dual of P = n Ei is not an isomorphism from the topo-

iEI iEI 
logical direct sum of the E; endowed with the weak topologies cr(E;, E) onto the dual P' 
endowed with cr(P', Pl. 

24) Let (E')'EA be a family of locally convex Hausdorff spaces, E a vector space and for every 
ex E A, let fo. be a linear mapping from E, into E. On E consider the finest locally convex topo­
logy :Y for which the functions fo are continuous (II, p. 27); suppose ,,2/ is Hausdorff and 
let E~ denote the dual of Eo, and E' that of E endowed with Y. Show that if, for every ex E A, 
the topology of E. is identical with ,(E" E~), then the topology /2/ is identical with ,(E, E'). 

25) a) Show that every real (resp. complex) Banach space is isometric to a closed vector 
subspace of a Banach space of the form '6'(S; R) (resp. '6'(S; e)l consisting of all real (resp. 
complex) continuous functions defined on a compact space S (GT, X, § 4, No. l)(use formula (3) 
of IV, p. 7). 
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b) Deduce from a) that every Hausdorff locally convex space E is isomorphic to a subspace 
ofa locally convex space of the form %,(L; R) (resp. 'fic(L; C)) (GT, X, § 1, No.6). In particular, 
every Frechet space is isomorphic to a closed subspace of a space 'fiJL; R) (resp. 'fic(L; C)), 
where L is locally compact and separable. 

§ 2 

1) a) Let E be a locally convex Hausdorff space, and E' its dual. Show that the following 
properties are equivalent : 

cz) E is infra-barrelled (Ill, p. 44, exerc. 7). 
~) Every strongly bounded subset in E' is equicontinuous. 
y) Every strongly bounded subset in E' is relatively weakly compact, and the initial topo­

logy of E is ,(E, E'). 
8) The topology induced on E by the strong topology of the bidual E" is identical with the 

initial topology on E. 
Then a fundamental system of neighbourhoods of 0 for the strong topology of E" consists 

of the closures, for the topology cr(E", E'), of a fundamental system of neighbourhoods of 0 
for the initial topology of E. 
b) Prove that if E is infra-barrelled and if its dual E' is identical with its algebraic dual E*, 
then the initial topology of E is the finest locally convex topology. 

-If 2) a) Show that every product of infra-barrelled spaces is infra-barrelled. (Reduce to the 
case of Hausdorff infra-barrelled spaces; then use exerc. I and prop. IS of IV, p. 14.) 
b) Give an example of a Hausdorff and infra-barrelled locally convex space which is neither 
bomological non barrelled. (Proceed as in Ill, p. 45, exerc. 16, replacing the barrelled spaces 
by infra-barrelled spaces and use a).) 

3) Let E be a complex Hausdorff locally convex space, Eo the underlying real locally convex 
space to E, and let E' and E~ be the duals of E and Eo respectively. Show that the canonical 
R-linear mapping fl--> f7lf from E' onto E~ is a homeomorphism for the 6-topologies on 
E' and E~, where 6 is an arbitrary set of bounded subsets of E. From this deduce the defi­
nition of the canonical R-linear mapping from the bidual E" onto the bidual E~, which is a 
homeomorphism for the weak topologies cr(E", E') and cr(E~, E~), as also for the strong 
topologies ~(E", E') and ~(E~, E~); by this mapping, E (considered embedded in E") trans­
forms into Eo (considered embedded in E~). 

4) Let E be a Hausdorff and infra-barrelled locally convex space. 
a) Show that if the strong dual E~ of E is bomological, then the completion E of E, identified 
with a vector subspace of E'* (III, p. 21, tho 2), is contained in the bidual E" of E. 
b) We say that E is distinguished if every subset of E" which is bounded for the topology 
cr(E", E) is contained in the closure (for this topology) of a bounded subset of E. Show that 
for E to be distinguished it is necessary and sufficient that its strong dual E~ is barrelled (el IV, 
p. 15, prop. 3). 

5) Let E be a Hausdorff locally convex space, and E' its dual. 
a) In order that the strong topology on E' be identical with ,(E', E), it is necessary and suf­
ficient that E is semi-reflexive. 
b) Suppose that E is infra-barrelled. In order that the strong topology on E' be identical 
with the topology of compact convergence, it is necessary and sufficient that E be a Montel 
space. 

-If 6) Let F and G be two vector spaces in separating duality. 
a) Show that the following properties are equivalent: 

cz) the space F with a topology compatible with the duality between F and G, is semi­
reflexive; 

~) the space G, with ,(G, F), is barrelled. 
b) Show that the following properties are equivalent: 

cz) the space F, with ,(F, G), is reflexive; 
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~) the space G, with t(G, F), is reflexive; 
y) F and G are barrelled for t(F, G) and t(G, F) respectively. 
c) Show that every locally convex Hausdorff space E, with the topology teE, E') is isomorphic 
to the quotient of a semi-reflexive space F by a closed subspace. (By III, p. 44, exerc. 14, c), 
E' endowed with teE', E) is isomorphic to a closed vector subspace M of a Hausdorff barrelled 
space G; take F = G' endowed with t(G', G) and use prop. 11 of IV, p. 10.} 
d) Let A be an infinite set with Card(A) > ~ 1 (S, III, § 6, exerc. 10). In the product space 
P = RA, let Eo denote the everywhere dense subspace consisting of all x = (XJ'EA such that 
x, = ° except for a countable set of indices; the space Eo is barrelled and so is the subspace E 
of P generated by Eo and the point lA in P all whose coordinates are equal to 1 (III, p. 45, 
exerc. 16). Let B be a bounded subset in Eo, whose closure in P contains lA, and let 1 be a 
subset of A with cardinality ~1 ; let prj denote the projection from Ponto R J; show that 
there exists a subset BJ in B, with cardinality ,s; ~ l' such that the closure of pr /B) in R J 
contains I J; then the set l' :::0 1 of all indices C1 E A such that for at least one point of B J the 
coordinate with index C1 is "# 0, has a cardinality equal to ~ l' We define 10 = 1 and by induc-
tion 111+ 1 = 1~, and put H = U l n , whose cardinality is ~1' and let BH = U BJn; show that 

n n 

the closure of BH (and hence also that of B) contains the point (lH' 0) E RH X RA- H = P, 
which does not belong to Eo. Conclude that for every bounded and compact set C in E, C n Eo 
is again closed in E, and that E is not semi-reflexive. 
e) Deduce from d) that the dual E' of E (which can be identified with the dual P' = R(A) of P) 
is not complete for the topology teE', E), in spite of being semi-reflexive (hence quasi-complete) 
for this topology (consider the linear form on E which is equal to 0 on Eo and equal to 1 at 
the point lA, and use III, p. 21, tho 2). 

7) Let (E)iEI be a family of Hausdorff locally convex spaces, P the product space of the Ei, 
and S their topological direct sum. Show that for P or S to be semi-reflexive (resp. reflexive), 
it is necessary and sufficient that each Ei be semi-reflexive (resp. reflexive). 

8) Let E be a Hausdorff locally convex space which is the strict inductive limit of an increasing 
sequence (En) of closed vector subspaces (II, p. 32, prop. 9). 
a) Show that, if the strong dual of each of the En is complete, then the strong dual of E is 
complete (III, p. 20, tho I). 
b) In order that E be semi-reflexive (resp. reflexive), it is necessary and sufficient that each 
of the En be semi-reflexive (resp. reflexive). 

9) Let (Ea)aEA be a family of Hausdorff locally convex spaces contained in the same vector 
space, which is directed for the relation :::0, such that, if EJl c Eo, the topology of E~ is finer 
than the topology on E~ induced by that of Ea' Let E be the intersection of the Eo, endowed 
with a topology which IS the supremum of the topologies on E induced by those on the Ea' 
Show that if each Eo is semi-reflexive, then E is semi-reflexive (consider an ultrafilter on a 
bounded subset of E). 

10) Show that every product, and every topological direct sum of Montel spaces is a Montel 
space 1. 

11) Let E be a Hausdorff locally convex space such that the strong dual E~ ofE is semi-reflexive. 
a) Show that, on every strongly bounded subset of E', the topologies induced by cr(E', EO) 
and cr(E', E) are identical. 
b) Deduce from a) that E is infra-barrelled for the topology teE, E') (cf IV, p. 52, exerc. I) 
and that, if E is its completion for this topology, and is identified with a subset of E'* (III, 
p. 21, tho 2), then En C E. In particular, if E is quasi-complete for teE, E'), then E is reflexive 
for this topology. 

1 On the other hand, a closed subspace of a Montel space need not be infrabarrelled, 
and the quotient of a Montel space by a closed subspace need not be semi-reflexive (IV, p. 63, 
exerc. 8). 
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12) Let E be a Banach spacc and E' its dual. 
a) Show that the distance x ~ d(x, A) from a point x E E to a closed convex set A is a lower 
semi-continuous function on E for the topology aCE, E'). 
b) Show that if E is reflexive, then for every closed convex subset A of E, there exists a point 
Xo E A such that 'I Xo II is equal to the distance of 0 to A (use a). This point is unique if every 
boundary point of the unit ball of E is extremal (II, p. 54, def. 1). 
e) Suppose E is reflexive and let B be a closed convex and bounded subset in E: deduce 
from a) and b) that there exist two points x E A, Y E B such that II x - y II = dCA, B) (el V, 
p. 71, exerc. 8). 

13) Let E be a Banach space, and M a closed vector subspace of E. Show that if M and ElM 
are reflexive, then E is reflexive. 

14) Let A be an infinite set. 
a) Show that the strong dual of the Banach space E = ff(A) (IV, p. 47, exerc. I) can be iden­
tified with the Banach space 1'1 (A), and that the strong dual of the Banach space f'(A) can be 
identified with the Banach space .~(A) = (' (A): deduce that E is not reflexive and that E"/E 
is infinite dimensional (el TV, p. 71, exerc. 18). If A = N, then E and E' are Banach spaces 
which satisfy the first axiom of countability, but E" does not (1, p. 25, exerc. I). 
b) Let B" be the unit ball in E" = rCA), and let B~ be the convex set B" + (B" n E). Show 
that B~ is a bounded closed convex set in E" for the strong topology, with a non-empty interior, 
but does not have any extremal point. If p is the gauge of B~, show that E" endowed with the 
norm p is not isometric to any dual of a Banach space and that B~ is not closed for the topo­
logy a(E", E') (although Bn is compact for a(E", E') and B" n E is strongly closed). 

-r 15) The notations are those of exerc. 14. 
a) Let (x~) be a sequence in E' which converges to 0 for the topology a(E', E"); show that, 
for every s > 0, there exists a finite subset H of A such that I Ix;,(a)I ,s; E for every integer 11. 

"fH 
(Argue by redueto ad absurdum : if thc property were not true, show that then there exists 
a number 0 > 0, an increasing sequence (Ilk) of integers, an increasing sequence (H k ) of finite 

o 0 
subsets of A. such that I Ix;,(a)I ,s;"8 for n ? Ilk' I IX;,(a) I ,s;"8 for 11 ,s; Ilk and 

IXEHk_ 1 a"Hk 

Ildlk-Hk-l 

Ix;,(alj ? ~; show that this implies a contradiction (the « gliding bump» method).) 

Deduce that the sequence (x~) converges to 0 for the strong topology, although the latter is 
strictly finer than the topology a(E', E"). 
b) Show that" if (x~) is a Cauchy sequence in E' for the topology a(E', E"), it converges to 
a point in E' for this topology; in other words, E' is semi-complete (Ill, p. 7) for a(E', En). 

(Show that, for every E > 0, there exists a finite subset H in A such that I IX~(Cl)1 ,s; E for 

every integer n; argue by redueto ad absurdum, as in iI), and use a).) 

'IT 16) With the notations of exerc. 14, let E" be the dual of E" = ex (A). 
a) Let eo (for Cl E A) be the element of E" for which e.Wl = o,~ (Kronecker's symbol). Let 
(Kn) be a sequence of finite subsets of A, two by two disjoint, and let (x;") be a sequence of 
points in Em. Show that there exists (n k ), a strictly increasing infinite sequence of integers> 0 
such that, if we put B = Y K nk , then the elements y;, = (x~'(Cl))'EB belong to [1 (B). (Let 0 be 

an arbitrary number> 0, and let (J".lmEN be a partition ofN in finite sets. Arguing by reduclo 
ad absurdum, show that if x'" E E"', then there exists an integer m such that I<x", x"'>1 ,s; 0 
for all x" E E" for which ilx"ll ,s; 1 and x"(a) = 0 except for indices Cl belonging to the set 
UK". Apply this result successively to .Y';', x~', ... in a suitable way.) 

nEJm 

b) Deduce from a) and from exerc. IS, u) that, if «) is a sequence converging to 0 in E'" for 
the topology a(E"', E") and if x~' is the restriction of x;;' to the strongly closed subspace E 
of E", then lim II x;;' II = 0 in E'. 

1l-~ X', 
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c) Deduce from b) that, the strongly closed subspace E of E" does not have a topological 
complement for the strong topology. (Restricting to the case A = N, let (e;.) be the sequence 
of continuous linear forms on E such that < x, e;,) = x(n) for all x E E; show that the sequence 
(e;,) tends to 0 for cr(E', E), but that e;, cannot be extended to a continuous linear form x~' 
on E" in such a way that the sequence (x;;') tends to 0 for cr(E"', E").) 

17) Let E be a non-reflexive Banach space, E' its strong dual, E" the strong dual of E', E'" 
the strong dual of E" and ElY the strong dual of E"'. 
a) Show that, in E"', E' and the subspace EO orthogonal to E (when E is considered as a sub­
space of E") are topological complements, and that the projection from E'" onto E' for this 
decomposition is a continuous linear mapping of norm 1. Comparing with exerc. 16, c), 
deduce that the Banach space .x(A) is not isomorphic (as a topological vector space) to 
the strong dual of any Banach space. 
b) Show that ElY is the topological direct sum of E" and E", and also of E'C and E ; we have 
E" n E OO = E. Let v be the linear mapping from ElY onto itself which is identity on E'o, and 
on E", is the projection from E" onto EO O parallel to E"'; show that v is an isometry, but is 
not continuous for the topology cr(EIV, E"'). 

18) Show that a Banach space E whose strong dual E' satisfies the first axiom of countability, 
and which is semi-complete (III, p. 7) for the weakened topology cr(E, E'), is reflexive (compare 
with IV, p. 54, exerc. 15, b». 
19) Let E be a Banach space, E' its strong dual, G' a strongly closed subspace of E' satisfying 
the first axiom of countability for the strong topology. Show that there exists a countable 
subset of E such that, if F is the closed vector subspace of E generated by this subset, then 
G' is isometric to a strongly closed subspace of the strong dual F' of F. (Suppose that the 
sequence (x~) is strongly dense in G'; for every n, let x" E E such that Ilx,,11 ~ 1 and 

< x"' x;,) = (1 - ~) II x;, II ; show that the strongly closed subspace F of E generated by the 

x" is the required space.) 

lIT 20) Let E be a Banach space, E' its dual, and B the unit ball in E. In order that every point 
of B have a countable fundamental system of neighbourhoods for the topology induced by 
the weakened topology cr(E, E') on B, it is necessary and sufficient that E' satisfies the first 
axiom of countability for the strong topology. (To show that the condition is necessary, 
observe that if every point in B has a countable fundamental system of neighbourhoods for 
the weakened topology, then this is also true for the closure BOO of B in E" for the topology 
cr(E", E'). Therefore there exists a sequence (a;,) in E' such that every neighbourhood of 0 
in sao for cr(E", E') contains the intersection of BOO and of a finite number of po lars {a;,} 0 ; 

consider the strongly closed subspace W' of E' generated by the a;" and the orthogonal wm 
of W' in E".) 

lIT 21) Let E be a Banach space, E' its dual, B the unit ball in E and B; the closed ball with 
centre 0 and radius r in E'. 
a) Let M~, M~ be two vector subspaces of E', which are everywhere dense for the weak topo­
logy cr(E', E). In order that the topologies induced by cr(E, M~) and cr(E, M~) on B coincide, 
it is necessary and sufficient that the strong closures of M~ and M~ in E' are identical. 
b) Let M' be a vector subspace of E' which is everywhere dense for cr(E', E); let M'(l) denote 
the vector subspac;e generated by the closure of M' n B~ in E' for the topology cr(E', E). In 
order that M'(l) = E', it is necessary and sufficient that the weak closure of M' n B~ contains 
a ball B; with r > 0 (use the fact that E' is barrelled for the strong topology). 
c) Let r be the supremum of the numbers t such that the weak closure of M' n B~ contains 
a ball B;; the number r is said to be the characteristic of M'. Show that r is the infimum of 
the numbers sup I<x, x')l/llxll where x ranges over the set of all points oft 0 in E (use 

x'EM'nB'l 

the Hahn-Banach theorem). 
d) Show that Ilr is the supremum of Ilxll as x ranges over the closure ofB in E for the topology 
cr(E, M') (use c) and the Hahn-Banach theorem). 



TVS IV.56 DUALITY IN TOPOLOGICAL VECTOR SPACES § 2 

e) Let M'G be the orthogonal of M' in E"; show that r = inf{llx + z"II/llxll) where z" ranges 
over M'O and x ranges over the set of non-zero points in E (usc c) and the Hahn-Banach th). 
Deduce that in order that M'(1) = E', it is necessary and sufficient that E + M'O be strongly 
closed in E" (use Banach's th., L p. 17). 
f) Let A = N x Nand E = Jf(A) (cf IV, p. 54, exerc. 14). In the space E" = f"'(A), let P 
be the vector subspace consisting of all points x = (Xi) such that xij = xo)(j + 1) for all 
i ;;:, O. Show that P = M" where M' is a vector subspace of E' that is everywhere dense (for 
cr(E', E»), but that E + M' = E + P is not strongly closed in EN; deduce that the charac­
teristic of M' is O. 

22) Let E be a Banach space, E' its dual and M' a strongly closed subspace in E' which is 
everywhere dense for the weak topology on E'. We say that M is irreducible if there exists no 
vector subspace N' oF M' of M' which is strongly closed and weakly everywhere dense in E'. 
a) Show that M' is irreducible if and only if the orthogonal MW of M' in E" is the topological 
complement of E (for the strong topology of E"). Deduce that then M'(1) = E' (exerc. 21) 
and that E is isomorphic to the strong dual of the space M' endowed with the topology induced 
by the strong topology of E'. 
b) Show that M' is irreducible if and only if the unit ball in E is relatively compact for the 
topology cr(E, M'l (use exerc. 21, all. 
c) For E to be isomorphic to a strong dual of a Banach space (for thc topological vector 
space structure), it is necessary and sufficient that there exist an irreducible subspace in E'. 
Deduce a new proof of the fact that the Banach space )feN) is not isomorphic to a strong 
dual of a Banach space (c{ IV, p. 55, exerc. 16, c». 

23) With the same notations as in exerc. 22, assume that M' is irreducible. 
a) In order that the canonical mapping from E into E" /Mw , which is the restriction of the 
canonical mapping E" -> E"/M'o be a Banach space isometry, it is necessary and sufficient 
that the characteristic (IV, p. 55, exerc. 21) of M' is equal to 1. Then, M' endowed with the 
norm induced by that of E' is said to be the predual of E and E can be canonically identified 
(with its norm) with the dual of the Banach space M'. 
b) For every vector subspace F of E which is closed for cr(E, M'), show that the canonical 
image of M' in the dual F' of F, identified with E'/Fo, is a predual of F. 

24) a) Let (ak)1 ,;:k",,, be a finite sequence of points in a normed space E, and let (/"kll ';:k';:n 
n k-l 

be a finite sequence of numbers> 0 such that I Ak < 1; put ~lk = I - I I'i for every k; 
k=l j~l 

then 

b) Let (anl be an infinite sequence of points in the unit ball of E, and let (An) be an infinite 
11-1 

sequence of numbers> 0 such that I An = 1. For every n > 0, put I!n = 1 - I Ak and 

n-I 

bn = I Akak + I!n a,,; show that, for all n ;;:, 1, we have 
k~1 

(Apply a) by induction.) 
c) Let (Cn) be a decreasing sequence of convex sets in E, contained in the unit ball, and suppose 
that d(O, C I ) ;;:, e > 0 (hence, afortiori d(O, Cn ) ;;:, e for all n). Let (An) be a sequence of num­
bers > 0 such that I An = 1. Show that there exists a number (l such that e ~ (l ~ 1 and a 
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sequence (xn) of points of E such that xn E en for all n, III Anxnll = rx and, for all n 

II f Akxkll :::; rx(1 - 8 I Aj). 
k=l j=n+l 

(Take Xl such that IlxI11 is arbitrarily close to d(O, e l ), then, by induction, take xn 
11-1 CIj 

such that II I AkXk + (I A) xnll is arbitrarily close to the infimum of the numbers 
k=l j=n 

11- 1 00 

II I AkXk + (I A) yll where y ranges over en" Then use b).) 
k= 1 j=n 

-If 25) Let E be a Banach space satisfying the first axiom of countability. Show that the follow­
ing properties are equivalent : 

rx) E is not reflexive. 
~) For every number 6 such that 0 < 6 < I, there exists a sequence (x~) in E' such that, 

Ilx~11 :::; I for all n, that the sequence (x~) converges to 0 for cr(E', E) and that the distance 
of 0 from the convex set generated by the x;, is ;;: 6. 

y) For every number 8 such that 0 < 8 < I and every sequence An of numbers> 0 such 
that I An = I, there exists a number rx such that 6 :::; rx :::; I and a sequence (y~) of points of 

E' such that IIY~ II :::; I for all n, II I Any~ II = rx and II f AkY~ II :::; rx(1 - 8 I Aj) for all n. 
n k=l j=n+l 

8) There exists z' E E' such that for no X E E do we have I<x, z'>1 = Ilxll.llz'll (Theorem 
of J ames-Klee). 
(To see that rx) implies ~), observe that there exists z" E E" such that Ilz"ll < I and d(z", E) > 6. 
If(xJ is an everywhere dense sequence in E, find the sequence (x;,) in E' such that Ilx~11 < I 
and such that < xk ' x~ > = 0 for k :::; nand < x;" z" > = 8. To see that ~) implies y), use exerc. 24. 
For y) implies 8), show that for all x E E we have I I An < x, y~ > I < rx, with the notations 

of y).) 

26) A locally convex space E is said to have the property (GDF) if every linear mapping u 
from E into a Banach space F which satisfies the following property, is continuous : in the 
product space E x F, every limit of a convergent sequence of points in the graph r of u again 
belongs to r. Every Frechet space has the property (GDF) (I, p. 19, cor. 5); this is also true of 
every inductive limit of a family ofFrechet spaces (II, p. 34, prop. 10). Show that every Hausdorlf 
locally convex space with the (GDF) property is barrelled. (Let V be a barrel in E, q its gauge 
and H the Hausdorff space associated with E endowed with this semi-norm; show that the 
canonical mapping TC from E into the completion fI is continuous by using the property 
(GDF) and the fact that every linear form x' E VO can be extended uniquely to a continuous 
linear form on fI, the set of these forms being the unit ball in the dual of fr.) 

§ 3 

-If 1) Let E be a locally convex metrizable space, and E~ its strong dual. If E~ is metrizable, 
prove that the topology ofE can be defined by a single norm (use III, p. 37, exerc. 2 and p. 38, 
exerc. 5 and also the fact that E is bomological). 

-If 2) An infra-barrelled space is semi-barrelled. A locally convex space is said to be a (DF) 
space if it is semi-barrelled and if the canonical bomology (III, p. 3, def 5) has a countable 
base. Every normed space and every strict inductive limit of a sequence of normed spaces 
(II, p. 33) is a (DF) space. Every strong dual of a Frechet space is a (DF) space. 
a) The strong dual of a (DF) space is a Frechet space. 
b) Let E be a (D F) space and let (An) be an increasing sequence of bounded, convex, balanced 
and closed subsets of E such that every bounded subset of E is absorbed by one of the An' 
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Let U be the union of the An; show that the closure U of U in E is precisely the set of all x E E 
such that AX E U for ° :S; I, < 1. (If x ¢ AU for some A > I, then for every n, there exists a 
linear form x;, E E' such that x;, E A~ and < x, x;, > = A, and the sequence (x;) is equicontinuous, 
hence has a weak limit point.) 
e) Show that if a (OF) space is barrelled, it is also bomological (cr Ill, p. 44, ex ere. 13, b». 
Give examples of (OF) spaces which are not ultrabomological, but are bomological and 
barrelled (III, p. 46, exerc. 22) and also of (OF) spaces which are not barrelled but are bomo­
logical. 

'IT 3) Let E be a locally convex metrizable space, and E~ its strong dual. 
a) Show that every convex balanced subset V' of E~ which absorbs the strongly bounded 
subsets of E~ contains a barrel (for the strong topology) which absorbs the strongly bounded 
subsets of E~. (Let (K~) be a countable base of the canonical bomology of E~ and let An be such 
that A"K;, c iV'; apply exerc. 2, b) to the sequence A;" where A;, is the convex envelope of 
the union of the AjKj for j :S; n.) 
b) Deduce from a) that the following properties are equivalent 

~) E is distinguished (IV, p. 52, exerc. 4). 
~) E~ is infra barrelled (III, p. 44, exerc. 7). 
y) E~ is bomological. 
8) E~ is barrelled. 
£) E~ is ultrabornological (Ill, p: 45, exerc. 19). 

e) Show that ifE~ is reflexive, then E = E" (which is obviously reflexive) (ei IV, p. 52, ex ere. 4 
and p. 53, exerc. II). 

4) Let E be a locally convex Hausdorff space, E' its dual. If M is a closed vector subspace of E 
which is metrizable and distinguished (IV, p. 52, exerc. 4), then the strong topology ~(E' IM c, M) 
is the quotient topology by Me of the strong topology ~(E', E) (use ex ere. 3, b) and IV, p. 51, 
ex ere. 22, b). 

'IT 5) For every integer n > 0, let d n ) be the double sequence (a~~) (p E N, q E N) such that 
a~~ = q if p :S; n and a~~ = I if p > n. Let E be the vector space of all double sequences 
x = (xpq)(P.q)EN x N of real numbers such that, for every integer n > 0, the number rn(x) = I a~~ IXpql 

p.q 

is finite. If E is assigned the topology defined by the semi-norms rn' then E is a Frechet space 
satisfying the first axiom of countability (IV, p. 47, ex ere. 1, e»); the dual E' ofE can be identified 
with the space of all double sequences x' = (x~q) of real numbers such that for at least one 
index n, there exists kn > ° such that IX~ql :S; k"a~~ for every pair (p, q); and < x, x' > = I x pqX;q 

P.q 
(IV, p. 47, exerc. 1, e»). 

For every integer Po > ° and every sequence (mp) of integers> 0, let J(po; (m ») be the set 
of pairs of integers p > 0, q > ° such that p ? Po and q ? mp; let "D be the filter base on 
N x N consisting of the sets l(Po; (mp») and let 3' be an ultrafilter which is finer than the filter 
with base "D. 
a) Show that for all x' = (x~q) E E', the double sequence (x~q) has a limit u(x') with respect 
to the ultrafilter 3'; if V n is a neighbourhood of ° in E defineCl by r,,(x) :S; 1, then lu(x')1 :S; 1 
for all x' E V~. 
b) Let U' be a neighbourhood of ° in E', for the strong topology, which is convex, balanced 
and weakly closed, and for every n, let ~n > ° be such that ~n V~ c U'. For every integer 
p > 0, let mp be an integer such that 2P+ 1 :S; r:1pmp' and let x' = (x~q) be the double sequence 
with X~q = ° for q < mp' X~q = 2 for q ? mp' Show that x' E U' but that u(x') = 2; deduce 
that u is not strongly continuous in E', while being bounded on every bounded subset of E'. 
Conclude (IV, p. 58, exerc. 3) that E is not distinguished, and consequently that the strong 
dual E~ is a non infra-barrelled (OF) space. 
e) Using b) construct an example of a closed subspace M of a Frechet space F such that the 
strong topology ~(F' IMo, M) is distinct from the quotient topology by Me of the strong topo­
logy ~(F', F) (embed E in a countable product of Banach spaces). 
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~ 6) a) Let E be a (DF) space (IV, p. 57, exerc. 2), and let U be a convex set such that for 
every bounded, convex and balanced subset A of E, UnA is a neighbourhood of 0 for the 
topology induced on A by that of E. Show that U is a neighbourhood of 0 in A. (Let (An) be 
a countable base for the canonical bomology of E (III, p. 3, def. 5). Show that, by induction 
we can define a sequence (An) of numbers > 0 and a sequence (Vn ) of closed, convex and balanced 

X) 

neighbourhoods of 0 in E such that AnAn c tu, A"A" c n V j , V" n An C U for every 11. 
j~ 1 

First show that if Aj and Vj have been constructed for j :( 11, then we can find A,,+ 1 such that 
A,,+ 1 An+ 1 c t U and A,,+ 1 An+ 1 c Vj for j :( 11. Next prove that we can find V" + 1 such that 
AjAj c V,,+ 1 for j :( 11 + I and Vn + 1 n A,,+ 1 c U; for this, letting A denote the convex 
envelopeoftheAAJorj:( 11 + l,showthatwecantakeV,,+l = A + Vfor a suitable convex 
balanced neighbourhood V of 0; we remark that for this it is enough to show that, if 
B = An + 1 n C U, then 0 is not in the closure of the set B + 2A.) 
b) Deduce from a) that if u is a linear mapping from E into a locally convex space F, such that 
the restriction of u to every bounded subset of E is continuous, then u is continuous (cf IV, 
p. 50, exerc. 15). 

~ 7) a) Let E be a (DF) space, U a convex, balanced and closed set in E, which absorbs the 
bounded subsets of E, and let (xn) be a sequence of points of C U. Show that there exists a 
neighbourhood V of 0 in E which does not contain any of the x"' (Let (An) be a countable 
base for the canonical bomology of E. Show that, by induction we can define a sequence 
(A,,) of numbers> 0 and a sequence (V,,) of convex, balanced and closed neighbourhoods of 

o such that A"A" c n Vj' A"A" c U and x" E C V" for all 11. For this, if the Aj and Vj have 
j~ 1 

been constructed for j :( 11, take An+l such that A,,+lAn+l c U and A,,+lA"+1 c Vj for all 
j :( 11, then take V" + 1 containing the closure of the convex envelope of the union of the AjA j 
for j :( 11 + 1.) 
b) Deduce from a) that if M is a subset of E containing an everywhere dense countable set, 
then the topology induced on M by the strong topology of the bidual E" of E is identical with 
the topology induced by that of E. In particular, the convergent sequences in E are the same 
for the topology of E and for the topology induced by the strong topology of E"; for every 
metrizable subset M of E, the topology induced on M by the topology of E is identical with 
the topology induced by the strong topology of E". 
c) Deduce from a) that if there exists a countable everywhere dense set in E, then E is infra­
barrelled. 
d) Deduce from b) and from exerc. 6 that if every bounded subset of E is metrizable for the 
topology induced by that of E, then E is infra barrelled. 

~ 8) Let E be a Frechet space, E~ its strong dual. Suppose that there exists an everywhere 
dense sequence (x;,) in E~. Show that E satisfies the first axiom of countability. (Let (K~) be a 
countable base for the canonical bomology of E~ consisting of closed convex balanced sets. 
For every system (1 consisting of a point x~, an arbitrary finite number of rational numbers 

m 

Ak > 0 (1 :( k :( m) and m indices 11k such that x;, ric 2 I AkK~k = 2H~, let x, E E be such that 
k~l 

the hyperplane with equation < x" y') = I strictly separates the two weakly compact sets 
H~ and x~ + H~. Show that for every x' =I- 0 in E', there exists a system (1 such that < x" x') =I- O. 
For this, consider a neighbourhood V' of 0 in E~ such that V' n (x' + V') = 0, then for each 
integer m, take a rational number Am > 0 such that AmK~ c V'; use the fact that the union 
U' c V' of the AmK~ is a neighbourhood of 0 (exerc. 7, and IV, p. 58, exerc. 3, b)) and drat 
there exists 11 such that x;, EX' + U'.) 

~ 9) a) Let E be a HausdortT semi-barrelled space, M a closed vector subspace of E and E' 
the dual of E. Show that ElM is semi-barrelled and that the strong topology ~(MO, ElM) 
is identical with the topology induced on MO by the strong topology ~(E', E). (Note that 
it is enough to prove that a sequence (x~) in MO which converges to 0 for ~(E', E) is bounded 
for ~(MO, ElM).) Deduce that if E is a (DF) space, then so is ElM (cf IV, p. 63, exerc. 8). 
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b) Let E be a locally convex Hausdorff space, M a (not-necessarily closed) vector subspace 
ofE. Show that if M is a semi-barrelled space, then the strong topology ~(E' IMo, M) is identical 
with the quotient topology by MO of the strong topology ~(E', E). (Argue as in a).) 
c) Show that a Hausdorff and quasi-complete semi-barrelled space E is complete (use b) 
applied to E and E). In particular, a semi-barrelled, semi-reflexive space is complete (ef IV, 
p. 52, exerc. 6). 
d) Show that the completion of a semi-barrelled (resp. (DF») Hausdorff space is semi-bar­
relled (resp. a (D F) space). 
e) Let (E,,) be a sequence of semi-barrelled (resp. (DF») spaces, E a vector space, and for each n, 
let J;, be a linear mapping from E" into E. Suppose that E is the union of the j~(E,,) ; show that, 
E is semi-barrelled (resp. a (DF) space) for the finest locally convex topology for which all 
the In are continuous (first examine the case where E is the topological direct sum of the E,,). 
If the E" are semi-reflexive (resp. reflexive) and if E is Hausdorff, then E is semi-reflexive (resp. 
reflexive). 

10) Let E be a Frechet space satisfying the first axiom of countability. Show that if in the dual 
E' of E, every sequence which converges for the weak topology cr(E', E) also converges for the 
strong topology ~(E', E), then E is a Montel space. (Show that every bounded subset of E' 
is relatively compact for the strong topology; use GT, II, § 4, exerc. 6; then use IV, p. 53, 
ex ere. 11, b).) 

~ II) Let (emn ) be a double sequence of numbers> 0 such that Cm n :( Cm+ 1" and let E be 
the space of all sequences x = (x.,) of real numbers such that Pm(x) ~ I Cm" Ix,,1 < + CIJ for 

every integer m. We endow E with the topology defined by the semi-norms Pm and for this 
topology E is a Frechet space satisfying the first axiom of countability; the dual E' of E can 
be identified with the space of all sequences x' = (x;) such that sup c,~/ Ix;,1 < + CIJ for at 

n 

least one m, the canonical bilinear form < x, x') being identified with I XliX;, (IV, p. 47, 

ex ere. I, c». Suppose that there does not exist any subsequence (nk ) for which there is a sequence 
(am) of numbers? 0 and an index mo such that Cm'''k :( amCmO.llk for all m ? mo and for all k. 
Under these conditions, every weakly convergent sequence in E' is strongly convergent and 
consequently (IV, p. 60, exerc. 10) E is a Montel space. (Argue by reductio ad absurdum; if 
necessary make a transformation of the form (xn) H (anxn) to reduce to the case where Cma" = I 
for all n and some mo, and where there exists a sequence (x,(p)p" 0 which converges weakly 
to 0 in E', and is such that Ix;,(p)1 :( I for every pair (p, n), and also that there exists a bounded 
set B in E, defined by Pm(x) :( bm for all m ? 0 and such that sup 1< X, x'(p) 1 ? 20 > 0 for 

XEB 

every integer p. Under these hypothesis, prove that there exists a strictly increasing sequence 
(rq) of integers, and a sequence (x(q) of points of B such that 

for each index q. Then show, by reductio ad absurdum, that for every q, there exists at least one 
index Sq such that l'q < Sq :( rq + 1 and that for every integer m, we have em,s :( bm2m+ 21o, 
which contradicts the hypothesis.) q 

12) a) Let F be a H!;lusdorff (DF) space, and F~ its strong dual. Show that if F~ is reflexive, 
then the completion F of F is reflexive and is equal to the bidual F" of F (ef IV, p, 52, exerc. 4 
and p. 53, exerc, II), 
b) Let E be a Frechet space. Show that if the bidual E" of E is reflexive, then E is reflexive, 

13) a) Let E, F be two Frechet spaces, G a locally convex Hausdorff space and E', F', G' the 
duals of E, F, G respectively. Let u be a bilinear mapping from E' x F' into G', which is sepa­
rately continuous (III, p, 28) when E', F', G' are assigned the weak topologies cr(E', E), cr(F', F) 
and cr(G', G), Show that under these conditions, u is a continuous mapping from E' x F' 
into G' when E', F' and G' are assigned the strong topologies. (For Z E G, put 
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< z, u(x', y') > = < vz(x'), y' > where vz(x') EO F. First show that if E' is assigned the strong topo­
logy and F the initial topology, then the set of all vZ ' as z ranges over a bounded set C in G, 
is equicontinuous; for this use IV, p. 51, exerc. 19, d). Next show that there exists a neigh­
bourhood V' of 0 for the strong topology of E' such that the union of the sets vz(V') as z ranges 
over C is bounded in F; for this use III, p. 47, ex ere. 5.) 
b) Give an example to show that the conclusion of a) does not hold if we assume that E is 
a Frechet space and F a strict inductive limit of Frechet spaces (III, p. 47, exerc. 3). 

14) a) Let E be a Frechet space, E' its dual. Show that E', endowed with the topology of 
compact convergence or with a finer 6-topology, is complete (cf III, p. 22, Remark 1). If E 
is not reflexive, show that E' is not infra barrelled for any 6-topology which is finer than the 
topology of compact convergence and coarser than 't(E', E). 
b) Let (E')'EA be a family of Frechet spaces, E a vector space and for every r:x EO A, let h, be a 
linear mapping from E, into E. Suppose that E, endowed with the finest locally convex topology 
for which the h, are continuous (II, p. 27) is Hausdorff. Prove that the dual E' of E, endowed 
with the topology of compact convergence or with any finer 6-topology, is complete (cf Ill, 
p. 20, tho 1). 

15) Let E be an infinite dimensional Banach space, (a,,),,,,! a countable total free family of 
points of E, and let FII be the n-dimensional subspace of E generated by the all/ for m :( n. 
Let Sn be the sphere with equation Ilxll = n in E; in Sn n FII let All be a finite set such that every 

ex) 

point of Sn n F" is at a distance :( lin from All' Prove that A = n An is such that its inter-
n=l 

section with every closed bounded set is closed, but that 0 is a limit point of A for the weakened 
topology. 

16) Let E be an inductive limit space of a sequence (E ) of locally convex metrizable spaces, 
the canonical mappings E --> E being injective and let Ii be the union of the images of the E . 
Show that the strong dua(E~ of E is exhaustible (III, p. 49, exerc. 1). (Let (Uf) be a decreasin"g 
fundamental system of closed convex and balanced neighbourhoods of 0 in E ; consider the 
finite intersections of the polar sets (Uf)O in E'; use the fact that for every incre~sing sequence 

~ 

Cm)},,! the intersection n (U!.,Y is the polar of a neighbourhood of 0 in E, and that E~ is 
) ~ ! 

complete.) 

-If 17) a) Let E be a locally convex Hausdorff space, such that the bomology consisting 
of the relatively compact sets of E has a countable base (All) (Ill, p. 1). Show that (An) is also 
a base for the canonical bomology (III, p. 3, def. 5). (Let C n be the relatively compact set which 
is the sum of n sets each equal to An; then (CII) is also a base for the bomology of relatively 
compact sets. Argue by reductio ad absurdum, considering a bounded set B which is not 
contained in any of the CII , and conclude that there exists a sequence (xn) of points of B such 
that xnln ~ An; deduce a contradiction.) Then, the space E is semi-reflexive and the closed 
convex balanced envelope of every compact set in E is compact. 
b) Suppose that E is infrabarrelled 'lnd that for a topology iT compatible with the duality 
between E and E', there exists a countable base for the bomology of relatively compact subsets 
of E for :Y. Show that then E is a reflexive (DF) space (IV, p. 57, exerc. 2). (Use a), observing 
that the closed bounded sets in E are compact for ,cT, and consequently, complete for the 
initial topology of E; this implies that E is barrelled). If:Y is the initial topology, then E is a 
Montel space. 

18) a) Let E be a locally convex Hausdorff space, and let (All) be an increasing sequence of 
convex, balanced, compact sets for the weakened topology crCE, E'), such that the union of the 
sets All is E, and that for every integer n and every Ie > 0, there exists m such that leAn C AII/' 
Show that (An) is a base for the bomology consisting of convex and relatively compact sets 
for cr(E, E'). (Observe that on E' the topology of uniform convergence on the An is 't(E', E).) 
b) If E is barrelled and if there exists a sequence (An) having the properties mentioned in a), 
then E is a reflexive (DF) space. (Observe that E', endowed with 't(E', E) is metrizable and that 
the topology of E is ~(E, E').) 
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§ 4 

1) Let E and F be two locally convex Hausdorlf spaces, E' and F' their respective duals. Show 
that if, for every vector subspace N of F, the topology induced on N by T(F, F') is identical 
with ,(N, F'/N°) (IV, p. 51, exerc. 20), then every strict morphism from E into F for the topo­
logies cr(E, E') and cr(F, F') is also a strict morphism for the topologies ,(E, E') and T(F, F') 
(ef IV, p. 10, prop. 11). Consider the case when F is metrizable. 

2) Let E be a locally convex Hausdorlf space such that in the dual E' there exists an infinite 
dimensional convex set B' which is compact for cr(E', E) (this condition is realized for example, 
when E is an infinite dimensional vector space, endowed with cr(E, E*)). Show that there exists 
a linear form u E E'* which is unbounded on B'; deduce that B' is not compact for the topology 
cr(E', F), where F is the subspace E + Ru of E'*. Conclude from this that the canonical injec­
tion from E into F is a strict morphism for the topologies cr(E, E') and cr(F, E'), but not for 
the topologies ,(E, E') and T(F, E'). 

3) Give an example of a strict injective morphism u from a Frechet space E into a Frechet 
space F such that 'u is not a strict morphism from F~ into E~ (ef IV, p. 58, exerc. 5, e)). 

4) Let E and F be two locally convex Hausdorlf spaces, u a continuous linear mapping from 
E into F, and M an everywhere dense vector subspace of E. Show that if the restriction of u 
to M is a strict morphism from Minto F, then u is a strict morphism from E into F (use prop. 2 
of IV, p. 27). If in addition u(M) = F, show that for every open, convex and balanced neigh­
bourhood V of 0 in E, u(V) is in the interior of u(V n M). 

5) Let E and F be two normed spaces, u a continuous linear mapping from E into F. 
a) Show that if u is a strict morphism from E into F, then 'u is a strict morphism from the 
strong dual F~ into the strong dual E~. 
b) Suppose E is complete; show that if'u is a strict morphism from F~ into E~, then u is a strict 
morphism from E into F, and 'u is a strict morphism from F' into E' for the weak topologies 
cr(F', F) and cr(E', E) (consider F as a subspace of its completion). 
c) Give an example where E is not complete, F is complete, 'u is a strict injective morphism 
from F' into E' for the strong topologies and for the weak topologies, but u is not a strict 
morphism from E into F (c:f II, p. 74, exerc. 5). 
d) Give an example where E is not complete, F is complete, u is a strict injective morphism 
from E into F, 'u is a strict morphism from F' into E' for the strong topologies, but not for 
the weak topologies (take E to be everywhere dense in F). 
e) If F is complete and if 'u is a strict morphism from F' into E' for the weak topologies, then 
'u is a strict morphism from F' into E' for the strong topologies (extend u to E). 
f) Give an example where E is complete, F is not complete, 'u is a strict morphism from F' 
into E' for the weak topologies but not for the strong topologies (ef II, p. 74, exerc. 5). 

6) Let E be the locally convex metrizable space fl (N) (I, p. 4) endowed with the topology 
induced by that of the product space RN ; its dual E' can be identified with R(N) and the topology 
T(E', E) is the topology induced on E' by the norm topology of eo(N) (IV, p. 47, exerc. 1). 
Show that if u is a surjective continuous linear mapping from E onto a Hausdorlf barrelled 
space F, then F is necessarily finite dimensional. (Observe that 'u is an isomorphism from F', 
endowed with cr(F', F), onto a subspace of E', endowed with cr(E', E) ; from the fact that F is 
barrelled, conclude that 'u(F') endowed with the topology induced by T(E', E), is a Banach 
space, and use exerc. 24 of II, p. 80.) 

7) a) Let E be a Banach space, and (XaLA an everywhere dense set in the unit sphere of E. 
Let u be the linear mapping from the space fl(A)(I, p. 4) into E defined by u(t) = I t(CX)Xa 

"EA 
for all t = (t(CX))"EA belonging to fleA). Show that u is a strict morphism from fleA) onto E 
and consequently that E is isomorphic to a quotient space of fleA). 
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b) From a) deduce an example of a closed subspace of Cl(N) which has no topological com­
plement in [l(N) (for E take co(N) and use IV, p. 54, exerc. 15, b) and p. 55, exerc. 18). 

~ 8) For every integer n > 0, let d n) be the double sequence d n ) = (a~~»i" l.j" 1 defined by 
a~'J) = j" for every pair (i, j) such that i < n and a~:;> = in for every pair (i, j) such that i ;" n. 
Let E be the vector space of double sequences x = (Xi) of real numbers such that, for every 
integer n > 0, we have Pn(x) = I a~'J) Ixi) < + CfJ; the semi-norms Pn define a topology of 

i,j 

a Frechet space and of a Montel space on E (IV, p. 60, exerc. 11); the dual E' of E, which is 
a (DF) space and a Montel space (hence ultrabornological and reflexive) is identical with the 
space of all sequences x' = (x;) such that, for at least one index n, we have the relation 
sup la~'J)I- 1 IX;jl < + CfJ (IV, p. 47, exerc. 1, c». 

I.) 

a) For every x = (Xi) E E, let Yj = I Xij (for all j ;" 1). Show that I IYjl < + CfJ; let u(x) 
i j 

denote the sequence (y) E Cl(N); show that u is a continuous linear mapping from E into 
F = [l(N), and that for every sequence y' = (y) E F = fOC(N), 'u(y') is the sequence (z;) E E' 
for which z;. = y'. for every index i. Deduce that 'u is an injective linear mapping from pe''(N) 
onto a subspace 6fE' which is closed for cr(E', E), and consequently that u is a strict morphism 
from E onto fl(N) for the initial topologies, and 'u is an isomorphism from F = fuc(N) onto 
'u(F) for the weak topologies cr(F, F) and cr(E', E). 
b) Let M = u-l(O); then MO = 'u(F). Show that the inverse image under 'u of the topology 
induced on Me by the strong topology of E', is the topology of uniform convergence on com­
pact subsets ofF (IV, p. 28, tho 1 and p. 54, exerc. 15). Deduce that on MO, the topology induced 
by the strong topology ~(E', E) is not the strong topology ~(MO, ElM), and that for the topo­
logy induced by ~(E', E), MC is not an infra-barrelled space, in spite of being a closed subspace 
of an ultrabornological Montel space; on the other hand, ElM, which is the quotient of a 
Frechet and a Montel space by a closed subspace, is not reflexive. Show that in ElM there 
exist bounded sets which are not the canonical images of bounded subsets of E. 

-r 9) Let A be a countable set. Consider three pairs of vector spaces (P, P'), (Q, Q'), (E, E'), 
each of the six spaces being vector subspaces of RA and containing the direct sum subspace 
R(A); in addition, suppose that for every point x E P (resp. x E Q, X E E) and every point 
x' E P' (resp. x' E Q', x' E E'), the family (x"X~)oEA is summable and put < x, x') = I xox~; 

OEA 

this bilinear form puts P and P' (resp. Q and Q', E and E') in separating duality. 
a) Suppose that E = P n Q, E' =0 P' + Q' and E' =1= P' + Q'. Consider the linear mapping 
u : x f-> (x, x) from E into F = P x Q, which is put into separating duality with F' = P' x Q'. 
Show that u is continuous for the weak topologies cr(E, E') and cr(F, F) and that its image 
M = u(E) is a closed subspace for cr(F, F); deduce that 'u is a strict morphism from F into 
E' for the topologies cr(F, F) and cr(E', E), and that N = 'u(F) is not closed in E' for cr(E', E). 
If E' is metrizable for the topology ,(E', E), deduce that 'u is also a strict morphism from F 
into E' for the topologies ,(F, F) and ,(E', E). 
b) In addition, suppose that E' is a Frechet space for ,(E', E). Then F IMc endowed with the 
quotient topology of ,(F, F) by MO, is not semi-complete, and there exist bounded sets in 
F IM c which are not relatively compact for ,(F IMo, M). 
c) Under the same hypotheses as in b), let x' be an element of E' not belonging to N = 'u(F'); 
for every Y EM, let v(y) = < x, x'), where x E E is the unique element such that u(x) = y. 
Show that the linear form v on M is not continuous for the topology cr(F, F), but that its 
restriction to every bounded subset of M is continuous for cr(M, F IMO). Deduce that L = v - 1(0) 
is a vector subspace of F, whose intersection with every bounded and closed subset of F (for 
cr(F, F») is closed for cr(F, F), but which is not closed in F for cr(F, F). 

~ 10) a) Let G, H be two reflexive Banach spaces such that R(N) c G c H c RN (* for 
example G = e'(N) and H = fP(N), with 1 < r < P < + CfJ *). Taking A = N x N, P = H(N) 
(topological direct sum), P' = H'N, Q = GN, Q' = G,(Nl, E = G(Nl, E' = G'N, show that the 
conditions of exerc. 9, a) are satisfied; that E' is a reflexive Frechet space, that E, F, Fare 
the strict inductive limits of reflexive Frechet spaces (hence complete and reflexive). 
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b) From a) and exerc. 9, construct examples with the following properties: 
ex) A quotient space of a strict inductive limit of reflexive Frechet spaces which is neither 

quasi-complete nor semi-reflexive. 
~) A closed subspace of a strict inductive limit of reflexive Frechet spaces which is not 

reflexive, and whose dual is not complete. 
y) A vector subspace of a strict inductive limit of reflexive Frechet spaces En' which is 

not closed (hence not barrelled) but whose intersection with each of the subspaces En is closed. 
8) A non-closed subspace of the dual of a strict inductive limit of reflexive Frechet spaces, 

whose intersection with every weakly compact subset is weakly compact (el IV, p. 25, cor. 2). 

~ 11) a) Let E be a strict inductive limit of Frechet spaces En satisfying the first axiom of 
countability, and F an everywhere dense subspace of E. For every n, put Fn = F n En; show 
that E is the strict inductive limit of the Fn (el III, p. 44, exerc. 13, b)). Deduce that F is bomo­
logical. (Let u be a linear mapping from F into a Banach space L which transforms every 
bounded set into a bounded set. Observe that the restriction Un of u to F n En is continuous 
and can be extended to a continuous linear mapping un from F n En into L, the Un being restric­
tions of the same linear mapping v from E into L, and conclude that v is continuous.) 
b) Suppose F is not closed in E but that F n En is closed in En for all n (exerc. 10, b)). Let An 
be a countable dense set in En' and let G be the vector subspace of E generated by the union 
of F and the An' Show that G is a bomological space in which F is a subspace with a comple­
ment which has a countable basis, but that F is not infra-barrelled (cl III, p. 41, § 2, exerc. 4 
and p. 45, exerc. 17). 

12) Let E, F be two Frechet spaces, u a strict morphism from E into F. Show that for every 
finite rank continuous linear mapping v from E into F, u + U is a strict morphism from E 
into F. 

IIf 13) a) Let E be a Hausdorlf and complete locally convex space. Suppose that there exists 
(Fn) a decreasing sequence of closed vector subspaces in E such that for every neighbourhood 
V of 0 in E, there exists n such that Fn c: V. Show that the space E is of minimal type (II, p. 85, 
exerc. 13). 
b) Let E be a Frechet space satisfying the first axiom of countability, and which is not of 
minimal type. Show that there exist two closed vector subspaces M, N in E such that 
M n N = {O} and such that M + N is not closed. (Let (x~) denote a sequence of linearly 
independent continuous linear forms on E, forming a total set for cr(E', E) (III, p. 19, cor. 2); 
let Ln be the subspace of E orthogonal to the x; for indices i < 2n; let xn' Yn be two linearly 
independent vectors in the complement of L" + 1 with respect to L". Let d be a translation 
invariant distance defining the topology of E. Using a), show that there exists a number ex > 0 
such that we can take d(O, xn) ~ ex, d(O, Y,,) ~ ex and d(x", Y,,) < 1jn. Show that ifM (resp. N) 
is the closed vector subspace generated by the x" (resp. Yn)' then M and N have the properties 
required; use I, p. 19, cor. 4.) 
c) Let E be a closed subspace of a product Il Fo of normed spaces; show that if every closed 

OEA 

subspace of E generated by a countable family of points is of minimal type, then E itself is 
of minimal type. (Argue by reductio ad absurdum, assuming that the projection of E on each 
Fo is equal to Fa' and that for some ex, Fo is infinite dimensional.) 
d) Let E be a Hausdorlf and complete locally convex space, in which every subspace gene­
rated by a countable family of points is metrizable. In order that E be of minimal type, it is 
necessary and sufficient that for every pair of closed vector subspaces M, N of E such that 
M n N = {O}, M + N is closed in E (use b) and c)). 

14) a) Let E be a Frechet space on which there exists no continuous norm. Show that 
there exists a closed vector subspace of minimal type in E (II, p. 85, exerc. 13), which is infinite 
dimensional, and consequently, has a topological complement in E. (There exists a strictly 
decreasing fundamental sequence (V,,) of convex, balanced neighbourhoods of 0 in E, and 
a sequence (x,,) of points of E such that xn ¢ V" + 1 and such that the line passing through xn 
is contained in V"' the xn being linearly independent; show that the required space is the closed 
vector subspace generated by the x n.) 
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b) Let E be a Frechet space whose topology cannot be defined by a single norm, but by an 
increasing sequence (Pn) of norms. Let Vn be the neighbourhood defined by p,,(x) :0( 1, and 
let A~ = V~ be its polar in E' ; we can assume that A~ + 1 is not contained in the vector subspace 
of E' generated by A~ (IV, p. 49, exerc. 12, c». Let (x;,) be a sequence of points of E' such that 
x~ E A~ and that x~ does not belong to the vector subspace generated by A~ _ 1 ; show that the 
vector subspace M' generated by the sequence (x~) is weakly closed in E' (cf IV, p. 25, cor. 2) 
and does not have a topological complement in E' for the topology cr(E', E). (Observe that 
if there existed a weakly continuous projector u' from E' onto M', then u'(A'I) would be con­
tained in one of the sets M' n A~ by Baire's theorem, and derive a contradiction, since A~ 
is weakly total in E'.) Deduce that the subspace M W of E does not have a topological comple­
ment in E. 
c) Let E be a Frechet space whose topology cannot be defined by a single norm. Show that 
if E is not isomorphic to a product of Banach spaces, then there exists a closed vector subspace 
in E which has no topological complement. (Argue by reductio ad absurdum; let (Pn)n~ I be 
an increasing sequence of semi-norms on E, defining the topology of E; let Fn = p,~ 1(0) 
and let Edl be a topological complement ofFn+ 1 with respect to Fn (we put E = Fo); using 
b), show that En+ 1 is a Banach space and that E is isomorphic to the product of the En (n ~ 1); 
for this use I, p. 17, tho 1.) 

IS) a) Lct E be an infinite dimensional normed space (real or complex). Show that there 
exists a sequence (xn) in E such that, for every bounded sequence (An) of scalars, there exists 
a continuous linear form x' on E such that <Xn , x') = An for all n. (Construct a sequence 
(x~) of points in the dual E' of E and a sequence (xn) of points in E such that < Xi' xj) = 8ij 
and Ilx~11 :0( 2-n.) 
b) For a locally convex metrizable space E to have the property stated in a), it is necessary 
and sufficient that the completion of E is not a spacc of minimal type (II, p. 85, exerc. 13). 

16) a) Let E and F be two infinite dimensional complex normed spaces, and u a bijective 
semilinear mapping from E onto F, with respect to an automorphism cr of C, which trans­
forms every closed hyperplane of E into a closed hyperplane of F. Show that the automor­
phism cr of e is_necessarily continuous (and consequently, is either the identity or the auto­
morphism ~ f-4 ~). (Argue by reductio ad absurdum: let (xn) be a sequence of points in E satis­
fying the condition of exerc. IS, a) and let (An) be a bounded sequence of complex numbers 
such that IA~I ~ n.llu(xn)11 for all n; if x' E E' is such that <xn, x') = An for all n, consider 
the image under u of the closed hyperplane of all x E E such that < x, x') = I and derive 
a contradiction.) 
h) Deduce from a) that u is a continuous semi-linear mapping from E into F (IV, p. 7, corollary). 
c) Let cr be a discontinuous automorphism of the field C. Show that the bijection (~n) f-4 (~~) 
from eN onto itself transforms every closed hyperplane into a closed hyperplane (cf IV, p. 14, 
prop. 15). 

17) Let E, F be two Banach spaces, u a strict morphism from E onto F. Then there exists 
a number m > 0 such that for every E E) 0, m ( and for every y E F, there exists z E E such 
that u(z) = yand Ilzll :0( (m - E)-1 Ilyli. 
a) Let B be a closed ball Ilx - all :0( r in E, and let co be a mapping from B into F satisfying 
the following conditions : 10 sup II w(x) II = M < + CfJ; 20 there exists a number k > 0 

XEB 

such that for all x, x' in B, we have Ilw(x) - w(x') II :0( k Ilx - x'il (<< Lipschitz condition »). 
Show that if k < m and M < rem - k), then the image of B under the mapping xf-4u(x) + w(x) 
contains a ball with center b = u(a). (Show that for every y E F close enough to h, we can define 
a sequence (x',)n~O of points of B such that u(xo) = y and u(x,.) = y - w(xn_ l ) for n ~ 1, 
and such that (xn ) converges to a point of B.) 
b) Suppose that w is a mapping from all E into F, such that II w(x) - w(x') II :0( k II x - x'il 
for every x, x' in E. Show that if k < m, u + w is a surjective and open mapping from E onto F. 
c) In particular, if w is a continuous linear mapping from E into F such that II wll < m, then 
v = u + w is a strict morphism from E onto F. If E E) 0, m(, then for every x E v - I (0) with 
Ilxll = I, there exists Xo E u- 1(0) such that Ilx- xoll :0( II wll/(m - E); if in addition II wll < m- E, 
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then for every Xo EO u- 1(0) with Ilxo II = 1, there exists x EO v - 1(0) such that 

Ilx - xoll :( Ilwll/(m - € - Ilwll)· 

§4 

Deduce that if there exists a closed vector subspace G ofE which is the complement of u- 1(0), 
then G is also the complement of v - 1(0) whenever II w II is small enough (argue by reductio ad 
absurdum: show that the projection of v- 1(0) onto u- 1(0) cannot be contained in a closed 
hyperplane of u- 1(0); on the other hand, note that there exists a > 0 such that every point 
x EO G such that Ilxll = 1 is at a distance:? a from u- 1(0»). 

18) a) Let E, F be two normed spaces, u a strict injective morphism from E into F; then there 
is a number m > 0 such that Ilu(x)11 :? m Ilxll for all x EO E. Show that if w is a continuous 
linear mapping from E into F such that II wll < m, then v = u + w is a strict injective mor­
phism from E into F. Moreover, for all Yo EO u(E) such that IIYol1 = 1, there exists yEO veE) 
such that IIY - Yoll :( Ilwll/m; for every Y EO veE) with Ilyll = 1, there exists Yo EO u(E) such 
that Ily - Yoll :( Ilwll/(m - Ilwll)· 
b) Deduce from a) that, if in addition, E and F are Banach spaces, and if there exists a closed 
vector subspace G of F which is the complement of the closed subspace u(E), then G is also 
the complement of veE) whenever II wll is small enough (argue as in exerc. 17, c». 

19) Let E be the subspace of the Banach space '6'(( - 1, I); R) of all continuous mappings 
from (- 1, 1) into R, consisting of the polynomials. Similarly, let F be the subspace of 
(6'(( 0, I); R) consisting of all polynomials. Let u be the mapping which associates to each 
polynomial f EO E, the polynomial t f-4 ~f(Jt) + f( - Jt)) in F. Also, let w be the mapping 
from E into F which associates with every polynomial f EO E its restriction to (0, 1). Show 
that u is a strict morphism from E onto F, but that for every E > 0, u + €w is not a strict 
morphism from E into F. 

20) a) Let E, F be two Banach spaces, u a strict morphism from" E. into F, such that u- 1(0) 
is finite dimensional. Show that for every continuous linear mapping w from E into F with 
small enough norm, v = u + w is a strict morphism from E into F and dim v- 1(0) :( dim u- 1(0). 
(Write E as the topological direct sum of u- 1(0) and a closed subspace and use exerc. 18 of 
IV, p. 66.) 
b) Let E, F be two Banach spaces, u a continuous linear mapping from E into F such that 
u(E) has finite codimension in F. Then u(E) is closed and u is a strict morphism (I, p. 28, exerc. 4). 
Show that for every continuous linear mapping w from E into F, of small enough norm, v = u + w 
is a strict morphism from E into F and 

codim(v(E») :( codim(u(E») 

(consider tv = tu + tw, and use a) and IV, p. 30, cor. 3). 

21) Let E and F be two Banach spaces. A continuous linear mapping from E into F is said to 
be a Fredholm operator (or a quasi-isomorphism) if u- 1(0) is finite dimensional and u(E) 
has finite co dimension (this implies that u(E) is closed in F and u is a strict morphism); the 
number Ind(u) = codim(u(E») - dim(u- 1 (0») is called the index of u. 
a) Show that tu: F' --+ E' is also a Fredholm operator and that Ind(tu) = - Ind(u). 
b) If u: E --+ F and v: F --+ G are two Fredholm operators, then so is v 0 u: E --+ G and 
Ind(v 0 u) = Ind(u) + Ind(v). 
c) If w: E --+ F is a continuous linear mapping with finite rank or with a small enough norm, 
then u + w is a Fredholm operator and lnd(u + w) = Ind(u) (use exerc. 17, c) oflV, p. 65 and 
18, b». 

22) Let X be a real Banach space, E a finite dimensional subspace of X. 
a) Let S be the unit sphere in X. Show that for every E > 0, there exists a finite number of 
linearly independent points Zi EO S (l :( i :( r) such that for every x EO S Il E, there exists 
an index i such that II x - Zi II :( €. 

b) Let z; (1 :( i :( r) be points in the dual E' of E with II z;II :? 1 for every i, and < Zi' z'.) = 8 i · 

(Kronecker's index), and let F be the closed subspace of codimension r in E which i~ ortho: 
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gonal to the subspace of E' generated by the z;. Show that for every XES n E and for every 
y E F. Ilx + yll ? I-E. and in particular, E n F = {o}. so that the sum E + F is the topo­
logical direct sum. 
c) Deduce from b) that the continuous projector P from E + F onto E corresponding to 
the topological direct sum decomposition E EB F has a norm IIPII < I/O - E). 

-If 23) Let X be a real infinite dimensional Banach space. 
a) Suppose that for every A > 0, there exists a finite dimensional subspace E, of X such that 
there exists no continuous projector P on X with image EA and such that II PII ~ A. Show that 
every closed subspace Y of X with finite codimension has the same property as X. 
b) By induction on n, show that there exists a decreasing sequence (Xn ) of closed subspaces 
of X, of finite codimension, and for every n, a finite dimensional subspace E" of X such that: 
10 the sum El + E z + 00' + E" is direct, and there exists a continuous projector P" on Xn , 

with norm ~ 2 whose image is El + Ez + 00. + E,,; 20 the space E" is contained in 
(I - P,,-l) (X,,-l); 3u there exists no continuous projector on X with image E" and with 
norm ~ n + 2. 
c) Let Z be the closed subspace of X generated by the union of the E". Show that there does 
not exist a topological complement of Z in X (observe that if Q were a continuous projector 
on X, with image Z, then (1 - P,,-l) P"Q would be a continuous projector on X with image E,,). 

§ 5 

I) Let I be an uncountable set, and let E be the space R(l) endowed with the topology defined 
in I, p. 24, exerc. 14; let E' be its dual (IV, p. 50, exerc. 16, c». Show that in E' there exist non 
relatively compact (for cr(E', E») subsets H such that from every sequence of points of H we 
can extract a sequence which converges to a point of H for cr(E', E). 

2) a) Let X be a regular space and A a subset of X. Suppose that every sequence of points 
of A has a limit point in X and that there exists a metrizable topology :Y on X which is coarser 
than the given topology /70 , Show that the closure A of A in X is a compact metrizable space 
(arguing by reductio ad absurdum, show that the topologies induced by .F and fa on A are 
identical). 
b) Let E be a Hausdorff locally convex space, which is the union of a sequence (En) of me­
trizable vector subspaces for the topology induced by that of E. Show that, for a subset A 
of E to be relatively compact in E, it is necessary and sufficient that every sequence of points 
of A has a limit point in E. (If (W rn,,) (for m ? 1) is a fundamental system of convex neighbour­
hoods of ° in E" which are open in En' let Urn" be a convex neighbourhood of ° in E such that 
E" n Urn" = W rn" (II, p. 33, lemma 2); on E consider the topology for which the Urn" (m ? 1, 
n ? 1) form a fundamental system of neighbourhoods of 0). 
c) Extend Smulian's theorem to a strict inductive limit space (II, p. 33) of Frechet spaces. 

3) a) Let E be a Hausdorff locally convex space and E' its dual; suppose that there exists 
a countable everywhere dense set in E' for the topology crCE', E). Show that the topology of E 
(resp. cr(E, E'») is finer than a metrizable locally convex topology. 
b) Let CXn) be a sequence of points of E such that every sequence extracted from (x,,) has a 
limit point for the initial topology (resp. the topology cr(E, E'»). Show that there exists a sequence 
extracted from (x,,) which converges in E for the initial topology (resp. the topology cr(E, E'»). 
(Let (a;) be an everywhere dense sequence in E' for cr(E', E); extract a sequence (y,,) from (x,,) 
such that (y", a~») tends to a limit for every index p, and show that the sequence (y,,) has 
only one limit P01l1t for the initial topology (resp. for cr(E, E'».) 
c) For a subset A of E to be relatively compact for the initial topology (resp. for cr(E, E'), 
it is necessary and sufficient that from every sequence (x,,) of points of A, we can extract a 
sequence (x"J which converges to a point of E for the initial topology (resp. for cr(E, E'» 
(use exerc. 2, a»). 

4) Let E be the Banach space CW(N). which does not satisfy the first axiom of countability 
(I, p. 25, exerc. 1), and let E' be its dual. For every integer n ? 0, let e;, be the continuous linear 



TVS IV.68 DUALITY IN TOPOLOGICAL VECTOR SPACES § 5 

form on E which associates to each x = (~n) E E the nth term of this sequence. Show that 
the sequence (e;) is total in E' for O'(E', E); moreover, every sequence extracted from (e~) 
has a limit point in E', for the topology O'(E', E), but there exists no sequence extracted from 
(e;.) which converges in E' for this topology. 

5) a) Let X be a compact space. H an arbitrary subset of the space '(,(X) of continuous nume­
rical functions on X. Let j~) be a point of '6'(X) which is in the closure of H for the topology 
:Ys of simple convergence on (;!i'(X). Show that there exists a countable subset Ha of H such 
that fa is in the closure of Ho for ·-:Fs ' (Show that for every pair of integers 111 > 0, n > 0 there 
exists a finite subset H(m, n) of H with the following property: for every set of m points tk in 
X (1 :;::: k :;::: 111), there exists f E H(m, n) such that Ifa(tk) - f(tk)1 :;::: l/n for I :;::: k :;::: 111.) 
b) Let E 'be a locally convex metrizable space, E' its dual and H a subset of E. Show that if 
xa is in the closure of H for the weakened topology O'(E, E'), then there exists a countable 
subset Ho of H such that Xa is in the closure of Ho for this topology. (Use a), observing that 
E' is the union of a countable family of compact sets for O'(E', E).) 

"!l 6) a) Let X be a compact space. H a convex subset of the product space RX, consisting 
of continuous functions on X. Suppose that every decreasing: sequence of non-empty convex 
and closed subsets in H has a non-empty intersection. Show that the closure IT of H in RX is 
compact and consists of continuous functions on X. (Argue by reductio ad absurdum: consider 
a non continuous function U E IT: show that then there will exist a point a E X, a number 
o > 0, a sequence (x,,) points of X and a sequence (j~) offunctiolls in H such that: 

1° lu(xn)-u(a)l~o for all n: 2° Ifm(x")-fm(a)I:;:::~ for 111:;:::11: 3() lu(x.,)-j~(xn)I:;:::~ and 

lu(a) - .f~(a)1 :;::: ~ for 111 ~ n + 1. Consider a limit point b of the sequence (x,,), and a func­

tion f belonging to the intersection of the Am' where Am is the closed convex envelope in H 
of the set of all h for k ~ m.) 
b) Let E be a Hausdorff and quasi-complete locally convex space, E' its dual. Let H be a 
convex subset of E such that every decreasing sequence of non-empty and closed convex 
subsets of H has a non-empty intersection; show that H is relatively compact in E for the 
topology O'(E, E'). (Reduce to the case where E is complete; consider E to be embedded in 
E'* and use a) and also Ill, p. 21, cor. 1.) 

7) Let E be a Frcchet space satisfying the first axiom of countability, E' its dual. Show that 
for a convex subset A' of E' to be closed for O'(E', E), it is suiTicient that, if a sequence (x~) of 
points of A' has a limit a' in E' for O'(E', E), then a' E A'. 

8) Let F and G be two vector spaces in separating duality, Show that the properties a) and ~) 
of IV, p. 52, excrc. 6, il) are also equivalent to the following: 

y) F, with 1:(F, G) is quasi-complete, and every bounded sequence of points of F has a 
limit point for O'(F, G) (ef IV, p. 35, tho I); 

0) F, with 1:(F, G) is quasi-complete, and every decreasing sequence of non-empty closed 
convex and bounded sets in F has a non-empty intersection (ef exerc. 6, b». 
9) Let E be a Hausdorff and quasi-complete locally convex space; for E to be semi-reflexive, 
it is necessary and sufficient that every closed vector subspace of E, in which there exists a 
countable everywhere dense subset, is semi-reflexive (ef IV, p. 35, tho n 
"!l' 10) Let F be a HausdoIif, quasi-complete and non semi-reflexive locally convex space, 
and let H be a closed hyperplane in E containing the origin. Let (C,,) be a decreasing sequence 
of non-empty, closed convex and bounded sets, contained in H and not containing 0 and 
whose intersection is empty (exerc. 8). Let x be a point not belonging to H, and let A be the closed 

convex and balanced envelope of the union of the sets (1 - ~) x + e" for 11 > O. 

a) Show that there exists no supporting hyperplane of A which is parallel to H (for y E x + H, 
observe that there exists an integer n such that y ~ x + Cn). 
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b) Let Z E H be such that z ¢c C1 ; show that the convex envelope of the union of two closed 
convex and bounded sets A and B = x + z + C 1 , is not closed (prove that x + z is in the 
closure of this envelope, but does not belong to it). 

II) Let A be an infinite set, and let E = J'C'(A) (IV, p. 47, exerc. I), E' = fleA) its dual, 
E" = i'Xl(A) its bidual (IV, p. 54, exerc. 14). Show that every subset of E', which is compact for 
cr(E', E") is strongly compact (use Smulian's theorem and IV, p. 54, exerc. IS). 

12) Let E be a non reflexive Banach space. Prove that there exists a closed, non reflexive 
vector subspace M of infinite codimension in E. (Let (xn ) be a bounded sequence in E which 
has no limit point for the topology cr(E, E') (IV, p. 68, exerc. 8); by induction construct a 
sequence (xn.) extracted from (xn) and a topologically free sequence (Yk) such that 
II xnk - Yk II ~ Ilk for k ~ I, and consider the closed vector subspace of E generated by the 
Y2k') 

~ 13) Let E be a non reflexive Banach space satisfying the first axiom of countability, and let 
M be a non reflexive closed vector subspace of E of infinite codimension (exerc. 12). Let (xn) 
be an everywhere dense sequence in the unit sphere, C the closed convex balanced envelope 
of the sequence (x,jn); C is strongly compact in E and C + M = A is a closed convex set 
(GT. III. 9 4. No.1. cor. 1 to prop. 1). Let S be the unit ball in E, and B = An S. 
a) Show that 0 is not an interior point of A and deduce that there exists Xo E E such that 
Axo ¢C A for A > O. 
b) Show that there exists no supporting hyperplane of B passing through 0 (observe that such 
a hyperplane must be a supporting hyperplane of C). 
c) Let Uo = M n S. and let (Un)n;"! be a decreasing sequence of closed convex, bounded 
and non-empty sets. such that U 1 C tUo and such that the intersection of the Un is empty 

(IV, p. 68, exerc. 8). Let F be the closed convex envelope of the union of the sets'!' Xo + Un 
n 

(n ~ O. Show that B n F = 0 but that there exists no closed hyperplane separating B 
and F (use b)). 

14) Let E be a Banach space satisfying the first axiom of countability. A sequence (en)n;,o 
of elements of E is said to be a Banach basis if the following property is satisfied: for every 

Xl 
x E E, there exists a unique sequence (an) of scalars such that x = S anen, where the series on 

n=O 

the right hand side is convergent. 
a) Show that the family (en) is total and free. Let En be the vector subspace (closed) of E gene­
rated by the em for indices m ~ n, and let Pn be the projector from E onto En defined 

rx: 11 

by Pn . (S amem) = I amem· Show that the Pn are continuous linear mappings and that 
m=O m=O 

sup IIPnll < + 00. (Consider the norm on E defined by III S aA,111 = sup II t amemll; 
n n=O n m=O 

show that E is complete for this norm and deduce that it is equivalent to the given norm on 
E (cf I, p. 17, tho 1).) Show that for every pair of integers p < q, the norm of the projection 
Pq •P of Eq onto Ep, which is parallel to the vector subspace generated by the em for indices m 
such that p + I ~ m ~ q, is bounded by a number independent of p, q. 
b) Conversely, let (en) be a total sequence of dements of E, which is a free family and is such 
that the norms of the projections Pq •P for 0 ~ p < q are bounded by a number M independent 
of p and q. Show that (en) is a Banach basis of E. (First prove that the sequence (en) is topolo­
gically free and define the projectors Pn ; then II Pn II ~ M for all n. Next observe that if d(x, En) 
is the distance of a point x E E from En' then II x- Pn' xii ~ (M + I) d(x, En).) 1 

1 It is clear that the existence of a Banach basis in E implies that E satisfies the first axiom 
of countability. But there are examples of Banach spaces satisfying the first axiom of counta­
bility in which there does not exist a Banach basis (P. ENFLO, Acta Math., 1. CXXX (1973), 
p. 309-317). 
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~ 15) Let E be a Banach space with a Banach basis (en)( exerc. 14); then there exists a unique 
sequence (c;,) in the dual E' of E such that the expression of every x E E in terms of the Banach 

'Y' 

basis (en) can be written as x = S (x, e~) en' 
n= 0 

a) Let Fn be the closed vector subspace of E generated by the em for m ? n. For every x' E E', 
let II x'iln denote the norm of the restriction of the linear form x' to Fn' Show that, for (c;,) to be 
a Banach basis of E', it is necessary and sufficient that for every x' E E', the sequence (1Ix'lln) 
tends to O. (Consider the transpose 'P" and evaluate the norm II'P".x' - x'II.) In this case, 
the Banach basis (e") is said to be contracting. 
b) Suppose that the Banach basis (e,,) is contracting. Show that for every point x" of the bidual 

" En of E, the sequence of sums I (e~, x") em is bounded in E (consider the transpose '('p") 
m=O 

" in E"). Conversely, for every sequence (il,,) of scalars such that the sequence of sums I amem 
m=O 

is bounded in E, there exists a unique x" E E" s lIch that ( c~, x") = an for all n (use the com­
pactness of a closed ball in En for the topology a(E", E'»). 
c) A Banach basis (en) in E is said to be complctc if, for every sequence (a") of scalars such that 

" ~ 
the sequence of sums I amCm is bounded, the series S a"c" converges. !f(e,,) is a contracting 

/II--=- 0 ,,= 0 

basis ofE, the basis (e;,l ofE' is complete (use the compactness of a closed ball in E' for a(E', E»). 
d) In general, the sequence (e;) is a Banach basis of the closed subspace F' of the strong dual 
E' of E, generated by the e;,. and there is an injective continuous linear mapping J from E 
into the strong dual F' of F' such that (J.x, z') = (x, z') for all x E E and all z' E F'. Show 
that there exists a constant K > 0 such that 111. xii ? K.II and that if the basis (e") is 
complete, then J is an isomorphism from E onto the topological vector space F". 
e) Show that for E to be reflexive, it is necessary and sutricient that the basis (cn) is contracting 
and complete (use b). 

16) a) Let E be a Banach space. For an infinite sequence (x,,) of points of E, the following 
properties are equivalent: 

ex) The series with the general term xn is eommutatively convergent (OT, III, § 5, No.7). 
~) For every subset I of N, the series defined by the sequence (Xn)"cl is convergent (OT, III, 

~ 5, No.3, prop. 2 and § 5, exerc. 4). 
y) For every sequence (E") of numbers equal to 1 or to - 1, the series with the general 

term E"X" is convergent. 
8) For every 0 > 0, there exists a finite subset J of N such that, for every finite subset H 

of N not intersecting J, we have II I :s; E. 
nEH 

0) Let (e,,) be a Banach basis of E. The following properties are equivalent: 
:x) For every permutation TC of N, the sequence (CRI ,,) is a Banach basis of E. 
~) For every sequence (E") of numbers equal to 1 or to - 1, the sequence (tV,,) is a Banach 

basis of E. 

y) For every x = S ~"e" in E and every sequence (l1,,)"EN for which 111,,1 :s; I~nl for all 11, 
n= 0 

the series with the general term l1"C" converges in E. 
00 

8) For every x = S ~t1e" in E and every strictly increasing sequence (l1 k)kcN of integers? 0, 
n= 0 

the series with the general term ~nke"k converges in E. 
0) There exists <1 real number M > 0 such that, for every finite subset J of:"l and for every 

, 
x = S ~"c" in E, we have III ~"e"il :s; M 

11- () IIEJ 

(To prove that ex) implies E), argue as in IV, p. 69, exerc. 14. To prove that ~) implies y), 
q 

reduce to the case where the ~" and the 11" are real, and consider the sums I (11"1',,, x') 

Cor .y' E E'.) 
n=p 
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When these conditions are satisfied, (en) is said to be an unconditional Banach basis of E. 
c) Suppose (en) is an unconditional basis. Show that there exists a real number K > Osuch 

YO 

that, for every sequence (E,) of numbers equal to 1 or - 1 and for all x = S ~nen in E, we 
11= 0 

x 

have II S En~nenll os:; M Ilxll (same method as in IV, p. 69, exerc. 14). Deduce that for every 
1/= 0 

bounded sequence of scalars (A,) and for all x = S ~nen in X, we have 
11=0 

00 00 

II S An~nen II os:; 2K sup IAnl . II S ~nen II 
11=0 11 1/=0 

(argue as in b). for the proof that ~) implies y». 

'If 17) a) Let E be a Banach space with an unconditional Banach basis (en) (exerc. 16). Show 
that if the basis (en) is not contracting (IV, p. 70, exerc. 15), then there exists a number a > 0, 
a linear form x' E E' such that Ilx'll = I, a strictly increasing sequence of integers (17k) and for 
each k, an element Yk which is a linear combination of the e} for nk os:; j os:; nk + l' and is such 
that IIYkl1 os:; 1 and (Yk' x') ): a. Deduce that for every finite sequence (1,.)1 "}"o1 of scalars, 

m C1 m 
we have III AjyJ ): 2K .I IAjl (use exerc. 16, c». Conclude that there exists a topological 

J~l J~l 

vector space isomorphism from 1'1 (N) onto a closed subspace of E. 
b) Deduce from a) that if the strong dual E' of E satisfies the first axiom of countability, then 
every unconditional basis (e,) of E is contracting, and hence (e;) is an unconditional basis of 
E' (IV, p. 70, exerc. IS, a». (Observe that if a closed vector subspace ofE is isomorphic to fl(N), 
then E' cannot satisfy the first axiom of countability.) 
c) Show that if E has an unconditional basis and if the strong bidual EO of E satisfies the first 
axiom of countability, then E is reflexive. (Using IV, p. 51, exerc. 25, note that the strong dual 
E' of E satisfies the first axiom of countability; then use IV, p. 70, exerc. 15. c) and IV, p. 53, 
exerc. 11.) 

'If 18) a) In the space RN of all infinite sequences of real numbers, consider the set J of all 
sequences x = (~,.) for which the number 

Ilxll = sUP(~Pl - ~py + (~P2 - ~PY + ... + (~Pm-l - ~pJz + ~;m' )1/2 

is finite, the supremum being taken for all integers m ): 1 and for all strictly increasing sequences 
of integers Pi < P2 < ... < Po1 + I' Show that Ilxll is a norm on J and that for this norm 1 is a 
Banach space. For every x E E, show that the sequence (~,,) has a finite limit u(x) and that u 
is a non zero continuous linear form on E; let 10 denote the closed hyperplane of 1 with equa­
tion u(x) = ° (R. C. James' space). 
b) Show that the vectors en = (801n )m;;,0 form a Banach basis of 10 and that this basis is con­
tracting (IV, p. 70, exerc. 15). (To prove the latter point, argue as in exerc. 17, a), by showing 
that the constructed sequence (Yk), is such that the series with the general term Yk/k is conver­
gent in E; this implies a contradiction.) 
c) Show that the identity mapping from 10 onto itself can be extended to a topological vector 
space isomorphism from the strong bidual 1~ onto J, in such a way that 1~/Jo is I-dimensional 
(use IV, p. 70, exerc. 15, b». Deduce that no Banach basis of 10 can be unconditional 
(exerc. 17, e». 
* d) Let Hi' H2 be two closed vector subspaces of 10 generated by the e2n and the e2n + 1 

respectively, for n ): 0. Show that as topological vector spaces, H I and Hz are isomorphic 
to the Hilbert space 1'2(N), and that 10 is not the sum of HI and Hz. * 
e) Show that on 10 there exists no complex locally convex space structure having the real 
locally convex space structure of Jo as the underlying structure (ef IV, p. 52, exerc. 3). 
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APPENDIX 

1) Let E be a Hausdorff locally convex space. K a compact convex subset of E, and S a set of 
continuous affine linear transformations from K into itself, which is stable under composition. 
The set S is said to be distal if, for every pair of distinct points a, b in K, the closure of the set 
of pairs (s. a, s. b), where s ranges over S, does not contain any point of the diagonal of K x K. 
a) Show that an equicontinuous group of affine transformations of K is distal. 
b) Show that if K is non-empty and S is distal, then there exists at least one point of K which 
is invariant under every transformation of S. (If M is a non-empty compact convex subset 
of K which is stable under S, show that if M contains two distinct points XI' x 2 ' and if A is the 

closure of the orbit of X = Xl ~ x 2 , then A cannot contain any extremal point of M. Deduce 

that if L is a minimal element of the family of non-empty compact convex subsets of K. which 
are stable under S, then L reduces to a point; argue by reductio ad absurdum: with the same 
notations, the closed convex envelope of A would be equal to L, which would contradict 
the Krein-Milman theorem.) 

2) Let E be a Banach space, K a precompact subset of E which is not a single point, and d the 
diameter of K. Show that there exists a point Xo E K and a number r such that 0 < r < d, 
such that II X - Xo II ~ r for all X E K (choose f: > 0 small enough, and n points Yl' ... , Yn 

of K such that every point of K is at a distance < f: from one of the Yj' and put 

Xo = 1. (YI + ... + Yn).) Deduce a new proof of the Ryll-Nardzewski theorem for convex, 
n 

strongly compact sets in E. 

* 3) Let G be a topological group and TI a continuous unitary representation ofG on a complex 
hilbertian space E. A continuous linear mapping c: G --> E which satisfies the relation 

c(st) = TI(s). c(t) + c(s) 

for every s, tin G, is called a continuous l-cocycle. Let ZI(G; E) denote the complex vector 
space of continuous l-cocycles. For every a E E, the mapping 8(a): Sf-> TI(s). a - a is a conti­
nuous l-cocycle, called the cobord of a. Let Bl(G; E) denote the image of the linear mapping 
8: E --> Zl(G; E); put Hl(G; E) = Zl(G; E)jBl(G; E) (<< first continuous cohomology 
group of G with values in EO). 
a) Show that Bl(G; E) is composed of continuous and bounded I-cocycles. (For every conti­
nuous l-cocycle c and every s E G, we define an affine transformation As on E by 
As' X = TI(s). X + c(s); then Ast = As' At for all s, t in G. Let K be the closed convex envelope 
of c(G); then As(K) = Kfor all s E G, and As induces an isometry ofK onto itself. If c is bounded, 
show that the Ryll-Nardzewski theorem applies to As' and if As.a = a for all s E G, then 
c = - 8(a).) 
b) If G is compact, show that Hl(G; E) = {O}. * 

~ 4) Let G be a discrete group. We say that G is a group on which a mean can be defined 
ifthereexistsalinearformuone~(G)(I,p.4)suchthatu(x)? Of or x ? O,u(l) = 1,andsuch 
that u(y(s) x) = u(x) for all S E G and all x E e:(G) (where (y(s) x) (t) = X(S-l t) for all t E G) 
(invariance under left translations). 
a) If we put x = x(t -1) for x E e:(G) and t E G, and if the linear form u is invariant under 
left translations, then the linear form v: x f-> u(x) is invariant under right translations, in other 
words v(8(s) x) = vex) for all s E G and for all x E e:(G) (where (8(s) x) (t) = x(ts) for all 
t E G). Put Fx(s) = u(8(s) x) for s E G and x E e:(G), then Fy(t)x(s) = F xes) and Fo(t)x(s) = F x(st) 
for all t E G; deduce that the linear form w on e:(G) defined by w(x) = v(F x) is invariant 
under left and right translations, and is such that w(x) ? 0 for x ? 0 and w(l) = I. 
* b) Let K be a non-empty compact space and r a subgroup of the group of all homeo­
morphisms from K onto itself. Show that if a mean can be defined on r, then there exists a 
measure J.l ? 0 on K of mass I, which is invariant under r. (If a E K, consider the linear mapping 
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which associates to each continuous real function fin K, the function cr f-> f( cr(a)) belonging 
toe~(n) 
c) Let E be a Hausdorlf topological vector space over R, and K a non-empty compact convex 
subset of E. Let r be a group of continuous affine transformations from K onto itself. Show 
that if a mean can be defined on r, then there exists a point bE K such that cr(b) = b for all 
cr E r. (Use b) and consider the barycenter of fl.) 
d) Show that a mean can be defined on a discrete group G if and only if there exists a non 
null measure fl which is invariant under G, on every non-empty compact space K on which G 
operates continuously. (If E = ff(G), consider the unit ball B in E' = eMG), endowed with 
cr(E', E), and associate to each element x E ~(G) = E" its restriction to B.) If G is countable, 
it is enough that the above property holds for every compact metrizable K. * 

~ * 5) Let G be a discrete group. 
a) Show that a mean can be defined on G (exerc. 4) if and only if the closed vector subspace N 
of e~(G) generated by the functions yes) x - x, where s E G and x E e~(G), is distinct from 
e~(G) (use the Hahn-Banach theorem). 
b) Suppose that for every € > 0 and for every finite sequence SI' ... , Sk of elements of G, there 
exists a non-empty finite subset F of G such that 

Card(F n sjF) ~ (I - €) Card(F) for I ~ j ~ k . 

Show that a mean can be defined on G (use a) and show that 1 ¢ N). 
c) Suppose a mean can be defined on G. Let € > 0 and let SI' ... , Sk be elements of G. Show 
that there exists a vector x ~ 0 in the space e~(G) such that Ilxll = I and that 

k 

I IIY(s) x-xii ~€. (In the space E=(e~(G)l, consider the set C of points (y(s) X-X)I<;j<;k' 
j= I 

where x ranges over the set of all vectors ore~(G) such that x ~ 0 and Ilxll = I. Show that 
o belongs to the closure of the convex set C for the topology cr(E, E'); for this, use a), observing 
that the unit ball of E is dense in the unit ball of E" for cr(E", E').) 
d) For every x ~ 0 in eMG), and for every a > 0, let xa denote the characteristic function of 
the set of all S E G such that xes) ~ a (i.e. xa(s) = I if xes) ~ a, xa(s) = 0 if xes) < a). Then for 

every S E G, {" x/s) dr = xes) and, for two elements x ~ 0, Y ~ 0 ofe~(G), 

{" Ix/s) - Yr(s) I dr = Ix(s) - y(s)l· 

e) Show that, if a mean can be defined on G, then for every € > 0, and for every finite sequence 
of elements SI' ... , Sk of G, there exists a non-empty finite subset F of G such that 

Card(F n sjF) ~ (I - €) Card(F) for I ~ j ~ k. 

k 

(Show that, having chosen x as in c), there exists an a> 0 such that I IIY(s) Xa - xall ~ €; 
j= I 

use d).) * 

~ 6) Let S be a set on which a group r operates on the left (A, I, § 5, No.1). Let E be the real 
vector space IE(S) of all bounded numerical functions on S (I, p. 4, Example). Suppose that 
the group r (endowed with the discrete topology) has a left invariant mean, and let r operate 
on E in such a way that sf(x) = f(S-1 x) for all s E r, fEE and XES. 

Let gEE be a positive function; let EI be the vector subspace ofE generated by the functions 
sg, where s ranges over r; let Ez be the vector subspace of E generated by the positive func­
tions which are bounded by functions of EI . 

Show that if there exists a non null positive linear form q, on EI , which is invariant under r, 
then there exists a non null positive linear form on E2 , which is invariant under r. (Using 
prop. 1 of II, p. 21, first construct a positive linear form on E2 , which extends q" and let r 
operate on the set of these extensions). In particular consider the case where 9 = I. 
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* 7) a) Let m be the set of bounded subsets of the plane R2 and let r be the group of dis­
placements of R2 ; let C be the square (0, I) x (0, 1). Show that there exists a positive addi­
tive set function A defined on m, which is invariant under r and is such that A(C) = 1 (apply 
exerc. 6 to the case where g is the characteristic function of C; observe that r is solvable, 
hence has an invariant mean (IV, p. 41, corollary)). If A is a bounded subset ofRz, whose boun­
dary is negligible for the Lebesgue measure Il on RZ, then A(A) = Il(A) (for every E > 0, 
there exists two sets Al and A2 such that Al cAe Az, Il(Az - Al) < E, and Al and Az are 
unions of a finite number of squares). 
b) Consider the same question as in a), taking for m the set of all subsets ofR2, for r the group 
of similarity transformations and C = R2. * 

8) Let E be a real vector space and r a solvable group of automorphisms of E. Let p be a 
semi-norm on E which is invariant under rand M a vector subspace of E, invariant under r. 
Let u be a linear form on M, invariant under r and such that lu(x)1 ~ p(x) for all x EM. 
Show that there exists a linear form v on E which is invariant under r and is such that Ivl ~ p 
and that v extends u. (Let K be the set of linear forms v on E which extend u, and such that 
Ivl ~ p; then K is a convex subset ofE*, stable under r and compact for the topology induced 
by cr(E*, E). Apply the corollary of IV, p. 40.) 



TABLES 

TABLE I. - Principal types of locally convex spaces. 
(N.B. - « Dual» is taken in the sense of« strong dual ».) 

TVS IV.7S 

Finite Frechet- Montel 
dimensional ----------.., .. ~ Montel -----------.. space 

space space 

t 
Hilbert 
space 

l 
Reflexive Banach ----7~----~----_ 

space 

I ~e~~h~e 
Frechet space space 

satisfying the first / 
axiom of coun.tability 

Banach 

Dual of a 
reflexive 

Frechet space 

~ 
space D·st·n ·shed 1 1 gUi Reflexive 

Frechet space 
Dual of a 

distinguished 
Frechet space 

space 

Frechet 

Complete 
space ~ 

/ 
UItrabornological 

space 

\ 
Barrelled 

space 

Quasi-complete 
space 

/ 
Dual of a 

semireflexive 
space 

Dual of a 
Frechet 

Semi-barrelled 
space 

Semi~reflexive 
semi-barrelled 

space 
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TABLE II. - Principal homologies on the dual of a locally convex space. 

Contained in a convex 
balanced and strongly 

compact set 

1 
strongly 
bounded 

I 
Bounded for aCE', E") 

~ ~ Bounded fo, 
(1) (6~ the 6-topology 

~(7)t 
Weakly 

bounded 

Equicontinuous 

Contained in a convex 
balanced and weakly compact set 

t (5) 

~ 
Weakly 

Precompact 

N.B. - We denote by G a family of bounded subsets of E such that every element is con­
tained in a set belonging to 6. A number on the side of an arrow indicates that the corres­
ponding implication holds if the property with the same number is satisfied. 

PROPERTIES 

1) Whenever E is semi-reflexive; 
2) whenever E is bomological (III, p. 22, prop. 10); 
3) if and only if E has the Mackey topology T(E, E') ; 
4) if and only if E is barrelled; 
5) if and only if E' is quasi-complete for cr(E', E) ; 
6) whenever E is semi-complete (a fortiori, quasi-complete or complete) (III, p. 27, cor. 1); 
7) whenever 6 consists of sets whose closed convex balanced envelope is semi-complete 
(III, p. 27, tho 2). 

When E is a Monte! space, all the preceding homologies are identical. 



CHAPTER V 

Hilbertian spaces! 
(elementary theory) 

Throughout this chapter, K d£!}!otes the field R or the field C. For every complex 
number ~ = cr + i~ (cr, ~ real), ~ denotes the conjugate cr - i~ of ~; in particular, 
we have ~ = ~ if and only if ~ is real. 

§ 1. PREHILBERTIAN SPACES AND HILBERTIAN SPACES 

1. Hermitian forms 

We recall the following definition given in Algebra (A, IX, § 3, No. 1) : 

DEFINITION 1. - Let E be a vector space over the field K. A hermitian form (on the 
left) on E is a map f from E x E into K satisfying the following conditions (for Xl' 

xZ' x, Yl' YZ' Y in E and A, ~ in K) : 

(1) 

(2) 

(3) 

J f(x l + xZ' y) = f(xl' y) + j(xz , y) 

1 f(x, Yl + yz) = f(x, Yl) + f(x, yz) 

1 f("Ax, y) = 'i,J(x, y) 

f(x, ~y) = ~f(x, y) 

f(x, y) = f(y, x) . 

When the field K is R, the notion of hermitian form on E reduces to that of sym­
metric bilinear form on E x E (A, III, § 6, No.3). 

We note that the second condition (1) and the second condition (2) follow from the 
other three. 

1 For the reader specially interested in hilbertian spaces, we point out that only No.7 
of§ 1 and No.8 of § 4 depend on results of chapters III and IV. For this the reader can consult 
« Summary of some important properties of Banach spaces» which appears at the end of this 
volume. The only references to chapters I and II concern the definition of a convex set and of 
a semi-norm (II, p. 1 and p. 7), that of a topological direct sum (I, p. 4), of a total family and 
a topologically independent family (I, p. 12). 
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From (1) and (2) we deduce immediately that 

(4) 

In particular, if E is finite dimensional, and if (e)l ~j~1I is a basis of E, then 
II II 

for x = I ~jej and y = I T]jej' we have, 
j~l j~l 

f(x, y) = I C(jk~jT]k 
j.k 

with the notation C(jk = f(ej' ek); moreover, relation (3) amounts to C(jk = C(kj for 
every pair of indices j. k; this implies in particular that the numbers C(jj are reaL 

From (3), the number Q(x) = f(x, x) is real for all x E E. Moreover, we imme­
diately establish the following formulas, known as polarization formulas 

(5) 

(6) 

4f(x, y) = L sQ(x + sy) if KisR, 
6 2 = 1 

4f(x, y) = L sQ(x + ey) if K is C. 
£4= 1,GEe 

Remark. - We observe that formula (6) is valid for every sesquilinear form on E x E 
(that is to say, for every function f satisfying (1) and (2), but not necessarily (3)). This 
remark shows that, when K = C, a sesquilinear form f such that f(x, x) is real for 
all x E E is necessarily hermitian: relation (6) then gives fey, x) = f(x, y) since we 
have y + eX = e(X + "Ey) and Q(eZ) = Q(z) whenever e4 = 1. 

From the polarisation formulas, we have in particular, 

PROPOSITION 1. - Iff is a hermitian form on E, and M a vector subspace of E such that 
f(x, x) = 0 for all x E M, then we also have f(x, y) = 0 for every pair of points x, y 

in M. 
Let f be a hermitian form on E; the set N of all x E E such that f(x, y) = 0 for 

all y E E is a vector subspace of E. It follows from (3) that, if Xl == Xz (mod. N) and 
YI == yz (mod. N), we have f(x l , YI) = f(x z , yz); hence, on the quotient space 
E/N we define a sesquilinear form f by putting j(x, y) = f(x, y) for all x E X and 
all y E y; it is clear that j is hermitian and that the re!ation «j(x, y) = 0 for all 
y. E E/N » implies x = 0 in E/N, in other words (A, IX) f is separating. We say that 
f is the separating hermitian form associated with f 

2. Positive hermitian forms 

DEFINITION 2. - Let E be a vector space over the field K. A hermitian form f on E 
is said to be positive if f(x, x) ~ 0 for all x E E. 

It is clear that hermitian forms on a vector space E form a vector space over the 
field R (but not over the field C, when K is C) : in this space the positive hermitian 
forms constitute a pOinted convex proper cone (II, p. 10) as a result of def 2 and prop. 1. 
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PROPOSITION 2. - Iff is a positive hermitian form, we have 

(7) If(x, yW ~ f(x, x) fey, y) 

for every x and y in E (Cauchy-Schwarz inequality). 
First assume that we have fey, y) =f. O. For every S E K, we have 

fey, y) f(x + Sy, x + Sy) ~ 0 

which can be written as 

f(x, x) fey, y) - If(x, yW + (Sf(y, y) + f(x, y)) (V(y, y) + f(x, y)) ~ O. 

Replacing S by - f(x, y)lf(y, y) in this inequality, we get (7). If f(x, x) =f. 0, we 
argue similarly. 

Finally, if f(x, x) = fey, y) = 0, we have f(x + Sy, x + Sy) ~ 0 for all S E K, 
which can be written as 

Sf(x, y) + Sf(x, y) ~ O. 

Replacing S by - f(x, y) in this inequality, we get - 2 If(x, yW ~ 0, and therefore 
f(x, y) = 0; we again get (7) in this case. 

COROLLARY 1. - Iff is a positive hermitian form, the set N of all x E E such that 
f(x, x) = 0 coincides with the vector subspace of all x E E such that f(x, y) = 0 for 
all y E E. 

COROLLARY 2. - For a positive hermitian form to be separating, it is necessary and 
sufficient that the relation x =f. 0 implies f(x, x) > O. 

This follows immediately from cor. 1. 
For every positive hermitian form f on E, the separating hermitian form asso­

ciated with f (V, p. 2) is evidently a positive hermitian form on E/N. 

PROPOSITION 3. - Let f be a positive hermitian form on E. Put 

p(x) = f(x, X)1/2 

for all x E E. Then p is a semi-norm on E, and is a norm if and only iff is separating. 
It is enough to prove the inequality p(x + y) ~ p(x) + p(y). But we have 

f(x + y, x + y) = f(x, x) + fey, y) + f(x, y) + f(x, y) 

and, by Cauchy-Schwarz inequality 

(8) f(x + y, x + y) ~ f(x, x) + fey, y) + 2(f(x, x) fey, y))1/2 

= (f(x, X)1/2 + fey, y)1/2)2 . 

Remarks. - 1) Suppose f is positive and separating, and let x, y be two vectors =I o. 
The proof of Cauchy-Schwarz inequality shows that, if the two members of (7) are 
equal, then there exists a scalar ~ such that f(x + ~y, x + ~y) = 0, hence x + ~y = 0, 
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in other words, x and yare linearly dependent; the converse is immediate. The proof 
of inequality (8) shows that the equality p(x + y) = p(x) + p(y) is possible only if 
x and yare linearly dependent; if y = AX, the preceding equality can be written as 
11 + AI = 1 + IAI, and implies that A is real and positive. 

2) Let I be a positive hermitian form on E, and let E be assigned the semi-norm 
X f-> I(x, X)l/Z; if j is the positive, separating hermitian form defined on E/,N asso­
ciated with j, then the normed space obtained by assigning the norm x f-> I(x, X)l/Z 
to E/N is the normed space associated with E (II, p. 5). 

DEFINITION 3. - Let E be a vector space over the field K. A semi-norm p on E is said 
to be prehilbertian if there exists a positive hermitian form f on E such that 
p(x) = f(x, X)1/2 for all x E E. 

Observe that for a semi-norm p on E, there exists at most one positive hermitian 
form f such that p(x) = f(x, X)1/2 for all x E E; this follows from the polarization 
formulas (V, p. 2). 

3. Prehilbertian spaces 

DEFINITION 4. - A prehilbertian space is a set E with the structure of a vector space 
over K and with a positive hermitian form. We say that E is a real (resp. complex) 
prehilbertian space when K is R (resp. K is C). 

Examples. ~ 1) The form (A, I-l) f->):I-l defines a prehilbertian structure on K, said 
to be canonical. When K is considered as a prehilbertian space, we shall always mean, 
unless otherwise mentioned that it has this structure. 

2) Let I be an interval (bounded or not) in R, and let E be the set of regulated func­
tions (FVR, II, p. 4) defined on I with values in C, having compact support. It is clear 

that E is a vector space over C; let I be the sesquilinear form (x, y) f-> f x(t) yet) dt; 
1 

it is immediate that I is a positive hermitian form on E, and hence defines a prehil­
bertian structure on this space. 

3) Let n ~ 0 be an integer. We define a prehilbertian space structure on the space 
Kn, by means of the hermitian form 

(x, y) f-> I XjYj 
j~ 1 

(for x = (xl' ... , xn) andy = (yp ... , Yn)). When K is R, we see that this isjust the scalar 
product of two vectors of Rn (GT, VI, § 2, No.2). 

* 4) Let £z (or fZ(N)) be the set of sequences x = (xn)neN of elements of K such that 
00 • 

L IXnlz is finite. One can show that £z is a vector subspace of KN and define a pre-
n=O 

00 

hilbertian space structure on £z by means of the hermitian form (x, y) f-> L xnYn 
n=O 

(cf V, p. 18). * 
5) Let E be a real prehilbertian space, I the corresponding symmetric bilinear form 

on E. Let E(C) be the vector space complexification of E; we identify E with a subset 
of E(C) by the map x f-> 1 ® x, in such a way that every element of E(C) can be written 
uniquely as Xl + iXz with Xl' X z in E. The map I extends uniquely to a hermitian 
form i;C) on E(c) ; we have, 

i;C)(x l + ixz' Yl + iyz) = I(x p Yl) + I(xz , Yz) + i(f(xp Yz) - I(xz , Yl)) . 
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In particular, we have 

i;C)(xl + ixz , Xl + ixz) = f(x» Xl) + f(x z , xz) ? 0, 

hence i;C) is positive. We say that E(c), with i;C) is the prehilbertian space complexifi­
cation of E. 

Whenever only one prehilbertian space structure on a vector space E is under 
consideration, the value, for a pair (x, y) of points of E, of the hermitian form which 
defines the said structure is denoted by < xIY)E or simply < xIY), if no confusion 
is likely to arise. This number is called the scalar product 1 of x and y (scalar square 
of x if y = x). Two vectors x, yare said to be orthogonal if < xly) = o. The function 
x f--> Ilxll = < xlx)1/2 is a semi-norm on the vector space E (V, p. 3); a prehilbertian 
space is always considered with this semi-norm assigned to it (and consequently 
also with the corresponding topology and uniform structure). 

With these notations, in a prehilbertian space E, the Cauchy-Schwarz inequality 
can be written as 

(9) l<xly)1 ~ Ilxll·llyll· 

Consequently, the scalar product is a continuous sesquilinear form on E x E (II, 
p. 5, prop. 4). 

In order that E be Hausdorlf, it is necessary and sufficient that x f--> Ilxll is a norm 
on E; in other words, that the hermitian form (x, y) f--> < xly) is positive and 
separating; this is equivalent to saying that 0 is the only vector of E, which is ortho­
gonal to itself. 

According to general definitions (S, IV, ~ 1, No.5), an isomorphism from a prehil­
bertian space E onto a prehilbertian space F is a bijective linear mapping u from E 
onto F such that 

(10) < u(x)lu(y) = < xly) 

for every x and yin E. We deduce from this that Ilu(x)11 = Ilxll for all x E E, and u 
is evidently an isomorphism for the topological vector space structures ofE and of F; 
if E and Fare Hausdorlf, u is an isometry from E onto F. Conversely, if u is a bijective 
linear mapping from E onto F, such that II u(x) II = II x II for all x E E, the polarization 
formulas (V, p. 2) show that u is a prehilbertian space isomorphism from E onto F. 

Let E be a complex prehilbertian space, and < xly) the scalar product in E. On 
the set E, we can define a second vector space structure with respect to C, taking 
the same law of the additive group and for the law of external composition (A, x) f--> ~x 
(A, II, ~ 1, No. 13) for this vector space structure, (x, y) f--> < ylx) is a positive hermitian 

1 It may happen sometimes that we write (xIY) for <ylx). Observe that the formula (4) 
of V, p. 2, takes the following equivalent forms: 

(4') 

(4") 

i,j 

(Z: "'ixilI IljyJ = I "'i~j (x.!..)!) . 
i,j 
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form. The prehilbertian space E obtained by assigning this new vector space struc­
ture and the new hermitian form to E, is said to be conjugate to E. An isomorphism 
u from E onto E is a semi-linear mapping from E onto itself (with respect to the 
automorphism ~ f---+~ of C) such that <u(y)lu(x) = <xly) or <u(x)lu(y) = <xly) 
(for x, y in E); such a mapping is said to be a semi-automorphism of the prehilbertian 
space E. 

If E is a prehilbertian space, M a vector subspace of E, the restriction of the scalar 
product < xly) to M x M is a positive hermitian form on M, which then defines 
a prehilbertian space structure on M; we say that this structure is induced by the 
structure of E, or that M is a prehilbertian subspace of E. 

4. Hilbertian spaces 

DEFINITION 5. - A hilbertian ~pace (or Hilbert space) is a prehilbertian space which 
is Hausdorff and complete. We say that a norm on a vector :,pace E (over K) is hilbertian 
if it is prehilhertian, and if the normed space E is complete. 

If E is a hilbertian space and M a closed vector subspace of E, the prehilbertian 
space structure induced on M is in fact a hilbertian space structure. In this case 
we say that M, with the induced structure is a hilbertian subspace of E. 

Examples. - I) The prehilbertian spaces defined in examples I, 3, 4 of V, p. 4, are 
hilbertian spaces. On the other hand, the prehilbertian space defined in example 2 
is neither Hausdorff, nor complete. The complexification of a hilbertian space is a hil­
bertian space. 

* 2) Let X be a Hausdorff topological space and let 11 be a positive measure on X. 
Let L 2(X, 11) be the space consisting of equivalence classes, for 11, of all square Il-inte­
grable functions on X with values in C. This is a complex hilbertian space, whose scalar 
product is given by 

< fig> = Ix f(x) g(x) d~l(X) . * 

* 3) Let n ~ I be an integer and let U be an open set in R". Let 11 be the measure 
on U induced by the Lebesgue measure on R", and put £ 0 = U(U, 11). Let,1/' 1 denote 
the space of all functions f E £ 0 with the following property; for I :::; i :::; n, there 
exists a function gi E £0 such that 

L g/x) hex) dll(x) = - L f(x) Dih(X) dll(X) 

for every function h of class C I with compact support in U. The function Yi is defined 
uniquely up to equivalence with respect to 11), and is denoted by OJ or af/ax. (ith 
partial derivative). By induction on the integer s ~ I, we define ,Yt' as the set ~f all 
functions fE £1 such that DJE ;t{'s-I for 1 :::; i:::; n. We define a scalar product 
on ;t{" by the formula 

<fig) = t , I. fDil ... Dikf.Dil ... Oik9dll. 
k = 0 1:::;; t 1 ~ ... ~ lk ~ n 

Then £s is a complex hilbertian space, called Sobolev space of index s. 
* 4) Let X be a differential variety of class C' (with r ~ 1) pure of finite dimension n. 
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In the vector fibre space A"T(X), let L be the complement of the zero section. For every 
real number A i= 0, the mapping u f-7 Au from A"T(X) into itself leaves L stable. 

Let rx be a complex number. A complex valued function W on L such that 
w(Au) = IAI" w(u) for u ELand any non-zero real number A is called a density of 
order rx on X. We say that a density w of order 1 is locally integrable if there exists an 
open cover (V)iEI of X, and for every i E I a system of coordinates ~i = (~f, ... , ~?) 
on Vi and a complex valued function J; on ~i(V) satisfying the following conditions: 

a) The function J; is locally integrable on the open set ~JV) of Rn with respect 
to the Lebesgue measure ~; 

b) Let x E Vi; if (al,i,X' ... , an,i,x) is the basis of TxX associated to the system of 
coordinates (~;, ... , ~;') in Vi we have 

W(al.i,x /\ ... /\ an,i.x) = f;(~f(x), ... , ~7(x)) . 

Then, there exists one and only one measure & on X such that for every i E I, the image 
under ~i of the restriction of & to Vi is equal to the measure J;. ~ (c.f V AR, R, 10.4.3). 

Let 1/ (resp. %) be the vector space of measurable densities w of order 1/2 such 
that the measure associated with the density Iwll of order I is bounded (resp. null). 
Let WI and W z be in 1/; then w = 001 wl is a density of order I, and the measure & 

associated with w is bounded; the number Ix & depends only on the classes 00 1 and 

ooz of WI and W z modulo % and is denoted by < w1 lwz ) or < 001 1002 ), Then the mapping 
(001 , ooz) f-7 < 00 1 1001 ) assigns a complex hilbert ian space structure to the vector space 
QI~Z(X) = 1//%. * 

5) Let D be the open disc with centre 0 and radius 1 in C. The Hardy space BZ(D) 
consists of all holomorphic functions f: D ---> C for which 

sup II If(R.e(e))i2 de < + 00 . 
O<R<l o 

If fl and fz belong to Bl(D), the limit 

exists; the mapping (fl' fz) f-7 < fllfz) assigns a complex hilbertian space structure 
to the vector space BZ(D). 

For a function f: D --> C to belong to BZ(D), it is necessary and sufficient that there 
00 

exists a sequence (an)nEN of complex numbers such that I lanl l < + 00 and that 
n= 0 

00 

fez) = I anzn 
n= 0 

00 

for all ZED. Then we have Ilflll = I lanl z which gives an isomorphism from Bl(D) 
n=O 

onto the hilbertian space £1 (V, p. 4). * 

Every Hausdorff prehilbertian space is isomorphic to an everywhere dense sub­
space of a hilbertian space determined up to an isomorphism. Precisely: 

PROPOSITION 4. - Let E be a Hausdorff prehilbertian space, E the normed space 
completion ofE(GT, IX, § 3, No.3). The scalar product (x, y) f---* < xly) extends by conti-
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nuity to a positive and separating hermitian form on E, and defines a hilbertian space 
structure on E. 

The existence of the extension of (x, y) ~ <xly) to E x E follows from the conti­
nuity of this sesquilinear form an E x E (GT, Ill, § 6, No.5, tho O. Moreover, this 
extension, which will also be denoted by (x, y) ~ < xly) is a hermitian form and satis­
fies the relation <xix) = Ilx11 2 , by virtue of the principle of extension of identities 
(11xll being the norm on E obtained by extending the norm on E by continuity); 
this proves that the relation < xix) = 0 implies x = 0 in E, hence that the form 
(x, y) ~ < xly) is positive and separating, and consequently defines a hilbertian 
space structure on E. Q.E.D. 

This hilbertian space is said to be the completion of the Hausdorff prehilbertian 
space E. 

* Example 6. ~ Let U be an open subset of Rn (n ;;:. 1). Let'?? t(U) be the vector space 
of all functions of class C1 with compact support in U. We define a Hausdorff prehil­
bertian space structure on '??5(U) whose scalar product is given by 

<fig) = Jl Iv Dd(x).Dig(x) dx. 

This prehilbertian space is not complete. Its completion is called the Dirichlet space 
associated with U. * 

COROLLARY. ~ Let V be a vector space over K and f a positive hermitian form on V. 
a) There exists a Hilbert space E and a linear mapping u: V --+ E such that 

f(x, y) = < u(x)lu(y) > for x, y in V, and such that u(V) is dense in E. 
b) If two pairs (Ei , ui ) satisfy the conditions analogous to a), then there exists a 

unique isomorphism q, from the Hilbert space E1 onto the Hilbert space E2 such that 
u2 = q, 0 u1 . 

Let N be the set of all x E V such that f(x, x) = o. We define a positive and sepa­
rating hermitian form on the space V IN by < xl.y) = f(x, y) for x E X and y E y. Let 
E be the hilbertian space completion of V IN and u the mapping x ~ x + N from 
V into E. Then the conditions of a) are satisfied. 

Under the hypotheses of b), N is equal to the kernel of u1 and to that of u2 . Hence 
there exists a bijective linear mapping q,o from u1(V) onto uiV) such that 
uz(x) "" q,o(ut(x») for all x E V. We verify immediately that q,o is an isomorphism 
of prehilbertian spaces, hence an isometry. Since ui(V) is dense in E j for i = 1, 2, q,o 
extends uniquely to an isometry q, from E1 onto E2 , and b) follows. 

We say that the hilbertian space E is the separated completion of V (for the form j). 

Example 7. ~ Let G be a group (with unit element 1) and 1t a homomorphism from 
G into the group of automorphisms of a complex hilbertian space E; we say that 7t 

is a unitary representation of G in E. Let a € E; We put 

<j>(x) = <al7t(x).a) 

for all x € G. Then <l>: G --+ C is positive definite, in other words satisfies the relation: 
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(PD) For every 1..1' ... , An in C and xl' ... , xn in G, we have 

n 

(11) L: J::;Ajq,(x;- 1 x) ::;:, 0 . 
i,j= 1 

n 

In fact, the first member of (11) is precisely II L: A;rc(xJ. a11 2 . 

i= 1 

TVS V.9 

Conversely, let q, be a positive definite function on G. Let C(G) be the vector space 
of all functions with finite support on G. We define a hermitian form «1> on G by 

(12) «1>(u, v) = L: u(x) v(y) q,(x-1y) 
X,YEG 

and the relation (PD) expresses the fact that «1> is positive. By the corollary of prop. 4, 
there exists a hilbertian space E and a linear mapping p : C(G) ..... E, with a dense image, 
such that 

(13) «1>(u,v) = <p(u)lp(v» for u,v in C(G). 

For every x E G, let Yx be the left translation by x in C(G) defined by yxu(y) = u(x-1y) 
for u E C(G) and y E G. We have «1>(yxu, Yxv) = «1>(u, v). Now apply assertion b) of the 
corollary of prop. 4 to p and po y x : there exists a unique automorphism rc(x) of the 
hilbertian space E such that po Yx = rc(x) 0 p. We see immediately that rc is a homo­
morphism from G into the group of automorphisms of E. 

Let b be the element of C(G) defined by 6(1) = I, 6(x) = 0 for x i= 1 in G. We have 
u = L: u(x). y xb for all u E C(G), and so p(u) = L: u(x) rc(x). a by putting a = pCb). 

XEG XEG 

Formulas (12) and (13) imply that q,(x) = < alrc(x). a) for all x E G. We remark that 
the set of vectors rc(x).a for all x E G, is total in E. 

5. Convex subsets of a prehilbertian space 

If we calculate Ilx - yl12 = <x - ylx - y) and Ilx + yl12 = <x + ylx + y) for 
any two points x, y of a prehilbertian space E, we immediately get the « identity of 
the median» 

(14) 

From this identity we deduce the following proposition 

!(x + y) 

B' 

FIG. 1. 

PROPOSITION 5. ~ Let E be a prehilbertian space. Let d be a real number > 0, 8 a 
real number such that ° ::;; 8 ::;; d. Let Band B' be subsets ofE defined by Ilxll < d, 
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Ilxll ~ d + 8 respectively, and let A be a convex set contained in Bf - B. Then for 

every pair of points x, y of A, we have Ilx - yll ~ J12d8 (fig. 1). 
In fact, we have !(x + y) E A, hence IWx + y)11 ~ d; hence from (14) we get 

the inequality 

11!(x - y)112 = !(llxl12 + Ily112) - IWx + y)112 ~ (d + 8)2 - d 2 ~ 3d8 

from which the proposition follows. 

THEOREM 1. - Let E be a prehilbertian space, and H a non-empty convex subset ofE 
such that H is a Hausdorff and complete uniform subspace ofE. For every x E E, there 

exists a unique point PH(X) in H such that Ilx - PH(X) II = inf Ilx - YII. The element 
YEH 

PH(X) of H is also the unique element a of H satisfying the relation 1 

(15) f!ll<x - aly - a) ~ 0 

for all y E H. 

H-

a + A(y - a).~i~~~ 
x 

FIG. 2. 

Put d = inf II x - y II, and for every integer n > 0, let Hn be the set of points y 
YEH 

of H such that II x - y II ~ d + n - 1. The set Hn is closed in H, is convex and non-
empty, and its diameter is bounded by J12 din for all large enough n, by prop. 5. 
The sequence (Hn)n;. 1 being decreasing, and the set H being Hausdorff and complete 
it follows that the base of the Cauchy filter (Hn)n;. 1 converges to a point PH(X) of H; 
we have {pix)} = n H n , hence pix) is the unique point a of H such that 

n~ 1 

Ilx - all = d. 

1 We recall (GT, VIII, § I, No. I) that ~(z) denotes the real part of the complex number z; 
we have ~(z) = z if z is real. 
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Let Y E H; since H is convex, the point z(A) = PH(X) + A(Y - PH(X)) of E belongs 
to H for every real number A such that 0 < A < l. Hence we have 

which gives 

Conversely, let a be a point of H such that f1ll < x - a I Y - a) ~ 0 for all Y E H. 
F or every Y E H, we have 

Ilx - yI1 2 = Ilx - al1 2 + Ily - al1 2 - 2f1ll<x - aly - a) ;?; Ilx - a11 2 , 

and so II x - a II = d and finally that a = PH(X) follows from the first part of the 
proof. Q.E.D. 

In what follows the mapping PH of E in H will be called the projection from E 
onto H. We remark that PH(X) = x for all x E H. 

The first part of tho 1 is valid under more general hypotheses on the space E (Y, p. 67, 
exerc. 31). 

The proof of tho 1 establishes, among others, the following property : 

COROLLARY l. - Let I be a set directed by afilter lJ and let (Y)iEI be afamily of points 
of H. Let x E E. Suppose that we have 

lim-Ilx - Yill = inf Ilx - zil . 
i,15' ZEH 

Then Yi tends to pix) with respect to the filter lJ. 

COROLLARY 2. - For every x, Y in E, we have 

In particular, the mapping PH from E into H is continuous. 

Let x, y be two points ofE. Put a = PH(X) - x, b = PH(Y) - PH(X), c = Y - PH(Y)' 
By formula (15) (V, p. 10) we have f1ll < alb) ;?; 0 and f1ll < clb) ;?; O. We also have 
a + b + c = Y - x, which gives, 

Ilx - yI1 2 = Iia + b + cl1 2 = IIbl1 2 + Iia + cl1 2 + 2f1ll<alb) + 2f1ll<clb) 

;?; IIbl1 2 = IlpH(X) - PH(Y) 112 . 
This proves corollary 2. 

PROPOSITION 6. - Let E be a prehilbertian space and let <D be a non-empty, directed 
decreasing set of non-empty Hausdorff and complete convex subsets of E. For every 
x E E and every subset H of E, put d(x, H) = inf II x - z II. In order that the inter-

ZEH 



TVS V.12 HILBERTIAN SPACES § 1 

section M of the sets H belonging to <1> be non-empty, it is necessary and sufficient 
that there exists X o in E such that sup d(xo, H) is finite. For every x E E we then have 

HEel> 

PM(X) = lim PH(X) (limit with respect to the directed set <1». 
HE <1> 

If M is non-empty, d(x, H) :::;: d(x, M) for all H E <1> and all x E E. 
Conversely, suppose that there exists a point Xo in E and a real number C ~ 0 

such that d(xo' H) :::;: C for all HE <1>. Let x E E; then 

d(x, H) :::;: II x - Xo II + C for all HE <1> , 

hence the number d = sup d(x, H) is finite. Let B be the set of all Z E E such that 
HEel> 

II x z II :::;: d. Since B is convex and closed in E, the sets H n B, for H ranging 
over <1>, are convex, Hausdorff and complete. Let 8 > 0; there exists a set H E <1> 

such that d(x, H) ~ d - 8, and if 8 < d12, the diameter of H n B is bounded by 
J12 8(d - E) by prop. 5 (Y, p. 9). In other words, for all Ho E <1>, the closed sets 
H n B, for HE <I> and H c Ho, form a base of the Cauchy filter on the Hausdorff 
and complete space Ho. Hence the intersection of the sets H n B (for H E <1» reduces 
to a point y. We get Y E M and II x - y II = d = d(x, M). Since M is closed in H o, 

it is a Hausdorff, convex and complete set in E, and so Y = PM(X). For every HE <1>, 

we have PH(X) E H n B, from which we get that PM(X) = limPH(x). 
HEel> 

PROPOSITION 7. - Let E be a Hausdorffprehilbertian space and let 'P be a non-empty 
directed increasing set of non-empty, convex, complete subsets of E. Put A = U H 

HEtIJ 

and suppose that the closure N of A is complete. Then N is convex and we have 
PN(X) = lim PH(X) for all x E E. 

It is clear that A is convex, hence its closure N is convex (II, p. \3). With the nota­
tions of prop. 6, d(x, N) = inf d(x, H), and consequently d(x, N) is the limit of 

liE'!' 

d(x, H) with respect to the section filter of 'P. Since PIlCX-) E Hand 

lim II x - PH(X) II = lim d(x, H) = d(x, N) , 
HE'!' HE'!' 

it follows from cor. 1 of V, p. 11 that PH(X) tends to the projection PN(X) of x onto 
N with respect to the section filter of 'P. 

6. Vector subspaces and orthoprojectors 

Let E be a prehilbertian space. Recall that two vectors x and y of E are said to 
be orthogonal if < xly) = 0; then 

(16) 

(<< Pythagoras' theorem »). 
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Let A be a subset of E. We say that a vector x in E is orthogonal to A if it is ortho­
gonal to every vector of A. The set of all vectors orthogonal to A is a closed vector 
subspace of A, denoted by A ° and called (by abuse of language) the orthogonal of A. 

Let A and B be two subsets of E. We say that A and B are orthogonal if every 
vector of A is orthogonal to every vector ofB. This is equivalent to saying that A c BO, 
or that B c AO. If E is Hausdorff and if A and B are orthogonal then A n B is empty 
or reduces to 0 since 0 is the only vector of E orthogonal to itself 

THEOREM 2. - Let E be a prehilbertian space and M a vector subspace of E, which 
is Hausdorff and complete. Then E is the topological direct sum of M and of MO the 
subspace orthogonal to M. The projector from E onto M associated with the decom­
position E = M EEl MO is the projection PM from E onto M defined in tho 1 (V, p. 10). 

We first show that x - PM(X) belongs to MO for all x E E. Let y E M. For every 
scalar Ie E K, the vector PM(X) + ley belongs to M; hence by formula 15 (V, p. 10) 
we have, 

for all Ie E K. If, in particular we take Ie = < x - PM(x)ly) we conclude that 
< x - PM(X) Iy > = 0, hence our assertion. 

Since M is Hausdorff, 0 is the only vector of M, orthogonal to itself, hence 
MnMo={O}. For every xEE, we havePM(x)EM and X-PM(X)EMo. Conse­
quently, E is the direct sum of M and M O

, and PM is the projector from E onto M 
with kernel MO. Since PM is a continuous mapping from E into M (V, p. 11, cor. 2), 
if follows from GT, III, § 6, No.2 that E is the topological direct sum ofM and MO. 

COROLLARY. - Let E be a Hausdorff prehilbertian space and M a finite dimensional 
vector subspace of E. Then E is the direct sum of M and MO. 

Since E is Hausdorff, so is M; since M is finite dimensional, it is complete (I, 
p. 13). It is therefore enough to apply tho 2. 

With the notations of tho 2, we say that MO is the orthogonal complement of M 
and that PM is the orthoprojector (or the orthogonal projector, or by abuse oflanguage, 
the projector) from E onto M; if x is a vector of E, the vector PM(X) of M is also 
called the orthogonal projection of x on M. Note that PM is a continuous linear map­
ping from E onto M and that we have IlpM II = 1 by cor. 2 of V, p. 11, except in the 
case when M = {O} in which case PM = O. 

It follows immediately from Pythagoras theorem that the canonical mapping ljJ 
from ElM onto MO deduced from the direct sum decomposition E = M E8 MO is iso­

metric if ElM is assigned the quotient semi-norm from that of E (II, p. 4). We shall 
always assign that prehilbertian structure to ElM for which \jJ is an isomorphism 
of prehilbertian spaces; the quotient semi-norm on ElM is then deduced from this 
prehilbertian structure. 

We shall often use the preceding results when E is a hilbertian space and M a 
closed vector subspace of E. In this case, MO is a closed vector subspace of E, and 
PM' = 1 - PM' and (MO)O = M. 
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PROPOSITION 8. - Let E be a hilbertian space, M a closed vector subspace of E, 
I a non-empty ordered directed set and (M)iEI a family of closed vector subs paces ofE. 

We assume that either the mapping i f--+ Mi is increasing and that M is the closure 

of U Mi or that the mapping i f--+ Mi is decreasing and that M = n Mi. Then 
iEI iEI 

PM(X) = lim PMi(X) for all x E E. 
iEJ 

Prop. 8 follows immediately from props. 6 (V, p. 11) and 7 (V, p. 12). 

PROPOSITION 9. - Let E be a hi/bertian space and M, N two closed vector subs paces 
ofE. 

a) The following conditions are equivalent: 

(i) PMPN = PNPM; 
(ii) if x E M is orthogonal to M n N and if YEN is orthogonal to M n N, then 

x and yare orthogonal; 
(iii) every vector of M orthogonal to l' n N is orthogonal to N; 
(iv) M = (M n N) + (M n N°). 
b) If the equivalent conditions of a) are satisfied, we have PMnN = PMPN' the vector 

subspace M + N of E is closed and we have PM+N = PM + PN - PMPN. 
c) We have PMPN = 0 if and only if M is orthogonal to N. If this is so, then the 

vector subspace M + N of E is closed, and PM + N = PM + PN. 
Put L = M n N, Ml = M n LO and Nl = N n LO. Condition (ii) implies that 

Ml and N 1 are orthogonal, and (iii) implies that Ml and N are orthogonal. Since 
we have N = Nl + Land Ml is orthogonal to L, we have proved the equivalence 
of (ii) and (iii). If condition (iii) is satisfied, we have Ml = M n N° and since 
M = L + M 1 , condition (iv) is satisfied. Conversely, from (iv) we conclude that 
Ml = M n N° since the subspaces M n Nand M n N° of M are orthogonal, 
and so Ml c N°, that is, the relation (iii). 

Assume that condition (iv) is satisfied. It is immediate that PN(y) = hey) for all 
y E M and hence PNP~X) = hP~x) for all x E E. But, for every x E E, the vector 
hPM(X) belongs to L, and the vector 

belongs to MO + U = LO; hence wehavehPM(x) = hex). FinallY,PNPM = PLPM = PL" 
Since condition (ii) is equivalent to (iv) and is symmetric in M and N, we also have 

PMPN = h· Finally we get PMPN = PNPM = PMnN which gives (i). 
Conversely, suppose condition (i) is satisfied. Let x EM; we have 

and so pJx) E M. We conclude that x - pJx) E M, hence x is the sum of an ele­
ment pJx) of M n N and an element x - PN(X) of M n N°, which gives (iv). 

We have proved a) and the first part of b). Assume now that PM andpN commute 
and put q = PM + PN - PMPN; since PM and PN are idem po tents in the algebra 
.P(E), so is q; hence (OT, III, § 6, No.2) the image of q is a closed vector subspace of E. 
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It is clear that the image of q is contained in M + N; however, we have pJx) = x, 
hence q(x) = x for all x EN; since we also have q = PM + PN - PNPM' we get 
q(x) = x for all x EM. We conclude that the image of q is equal to M + N. The 
orthogonal of M + N is equal to MO n N°, and the kernel of q obviously contains 
MO n N°, hence q = PM+N. This proves b). 

We have PMPN = 0 if and only if the image N of PN is contained in the kernel MO 
of PM' that is, if and only if M is orthogonal to N. The rest of the assertion c) is then 
a particular case of b). 

Remark. - Let E be a hilbertian space and M, N two closed vector subspaces of E. 
The relation MeN is equivalent to the orthogonality of M and N°, that is to say, 
to the relation PMPN0 = 0 by prop. 9, c). Since we have Pw = 1 - PN' we conclude 
that the relations MeN and PM = PMPN are equivalent (<< the three perpendicular 
theorem », cf. fig. 3). 

7. Dual of a hilbertian space 

THEOREM 3. - Let E be a hilbertian space. For every x E E, let x* be the continuous 
linear form y f--* < xly-> on E; the mapping x f--* x* is a bijective, semi-linear (for the 
automorphism ~ f--*~) mapping from E onto its dual E', and an isometry from the 
normed space E onto the normed space E'. 

The mapping x f--* x* is semi-linear by (2) (V, p. 1) and by virtue of the Cauchy­
Schwarz inequality, we have Ilx*11 = sup l<xly)1 = Ilxll, hence x f--* x* is an 

II yll < 1 

isometry from E into E', and in particular, is injective. To complete the proof, we 
need to prove that for all x' i= 0 in E', there exists x E E such that x' = x*. But 
the hyperplane H = Ker x' is closed in E; its orthogonal is a line D. Let b be a 
non-zero element of D; the kernel of the linear form.!?* is equal to H and hence 
there exists a scalar A i= 0 such that x' = A. b* = (A. b)*. Q.E.D. 

The mapping x f--* x* from E onto its dual E' is said to be canonical. The inverse 
mapping from E' onto E is also called canonical and is denoted by x' f--* x'*. We 
have 

(17) <xly) = <y, x*), <x, x') = <x'*lx) 

for x, y in E and x' in E'. Also (x*)* = x for x E E. 
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When K is R, the mapping x f-+ x* is linear. We shall transfer the scalar product 
of E to E' by this mapping. When K =: C.!.. we can consider the mapping x f-+ x* 

as an isomorphism from the vector spa.£e E, the conjugate of E onto E' (V, p. 6). 
We shall transfer the scalar product of E to E' by this mapping. 

In the two cases considered, E' is a hilbertian space and we have the formulae 

<x*IY*) = <xly), <x'lx') = IIx'I1 2 

for x, y in E and x' in E'. 

To say that the vector x E E is orthogonal to a vector Y E E is equivalent to saying 
that the linear form x* E E' is orthogonal to y in the sense defined in II, p. 41 (this 
justifies the use of the word « orthogonal» in the two cases). If M is a closed vector 
subspace of E, the subspace MO orthogonal to M in E' (II, p. 44) is the image under 
x f-+ x* of the orthogonal of M in E, defined in V, p. 13 (this justifies the use of the 
notation MO in the two cases). 

CoROLLARY l. - In order that the family (Xi)iEI of points of a hilbertian space E 
be total, it is necessary and sufficient that the relations < Xi Iy) = 0 for y E E and for 

all indices i E I imply that y = O. 
In fact, this says that 0 is the only vector of E' which is orthogonal to all the Xi 

(II, p. 43 and IV, p. 1). 

CoROLLARY 2. - Let E and F be two hilbertian spaces. For u E Y(E; F), x E E 
and y E F, put 

(18) <l>Jy, x) = < ylU(x» . 

The mapping u f-+ <l>u is an isomorphism from the Banach space Y(E; F) onto the 

space of all continuous sesquilinear 1 forms on F x E, endowed with the norm 

(19) Ilfll = sup If(y, x)l· 
xeE,yeF 

Ilxll';; 1,1IY11';; 1 

It is clear that <l>u is sesquilinear and continuous for all u E Y(E; F). Conversely, 
let f be a continuous sesquilinear form on F x E. For every x E E, the mapping 
y f-+ f(y, x) is a continuous linear form on the hilbertian space F. By tho 3, for every 
x E E, there exists a unique element u(x) in F such that f(y, x) = < u(x) Iy) for all 
y E F. The mapping u: x f-+ u(x) from E into F is linear and we have 

Ilfll sup sup If(y, x)1 = sup sup 1< ylU(x» I 
Ilxll';;l lIyll';;l IIxll';;l Ilyll';;l 

sup II u(x) II ; 
IIxll';; 1 

hence u belongs to Y(E; F), f = <l>u and Ilull = Ilfll. This proves cor. 2. 

1 Recall (A, IX, § 1, No.5) tha.t a sesquilinear form (on the left) f on F x E is a mapping 
from F x E into K which satisfies relations (1) and (2) of V, p. 1. 
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The canonical mapping from E into its bidual E" (IV, p. 14) maps E onto E", 
in other words (IV, p. 16), E is a reflexive Banach space. In fact, if E is a real (resp. 
complex) hilbertian space, the canonical mapping <jl from E' onto E is an isomor­
phism from the normed ~ace E' onto E (resp. onto the conjugate space E of E); 
applying tho 3 to E (resp. E), we see that every continuous linear form on the normed 
space E' is of the form x' f---* < <jl(x') Ix > = < x, x' > with x E E, hence our assertion 
follows. 

As a consequence (IV, p. 17, prop. 6) : 

THEOREM 4. ~ In a hilbertian space E, the unit ball is weakly compact. 

PROPOSITION 10. ~ If, in a hilbertian space E, a filter ~ converges weakly to xo, 
and ifmoreover lim\] Ilxll = Ilxoll, then ~ converges to xofor the initial topology ofE. 

In fact, Ilx - xol1 2 = IIxl12 - 2f2ll <xlxo> + Ilxol1 2. Since <xlxo> tends to IIxol12 
with respect to ~ by hypothesis, and Ilxll tends to Ilxoll with respect to ~, Ilx - xoll 
tends to ° with respect to ~, hence the proposition. 

Remark. - If E is a Hausdorff prehilbertian space and E the hilbertian space comple­
tion of E, we know (III, p. 16) that the dual E' of E can be identified with the dual of E; 
it then follows from tho 3 (V, p. 15) that every continuous linear form on E can be written 
in a unique way as x I-> <alx), where a E E. 

§ 2. ORTHOGONAL FAMILIES IN A HILBERTIAN SPACE 

1. External hilbertian sum of hilbertian spaces 

PROPOSITION 1. ~ Let (E)iEI be a family of hilbertian spaces, P the product vector 
space n Ei and E the subset ofP consisting of all families x = (X)iEI such that I II Xi 112 

~ ~ 

is finite. 
a) E is a vector subspace of P. 
b) For every x = (X)iEI and y = (Y)iEI in E, the family «xiIYi»iE[ is summable. 

If we put < xly > = I < Xi IYi >, we define a positive separating hermitian form on E. 
iEI 

c) For the scalar product so defined, E is a hilbertian space; the direct sum S of the 
Ei is dense in E. 

For x = (X)iEI and y = (Y)iE[ in E, we have 

hence x + y = (Xi + Y)iEI belongs to E. This proves a). 
By the Cauchy-Schwarz inequality, we have 

l<x;lYi>1 '-S; IlxJ·lIyill '-S; 1(lIxdl 2 + IIYir) 

hence L l<xdYi>1 < + 00. If X :f- 0, we have <xix) = I IIxdl2 > 0, hence asser-
~ ~ 

tion b) follows. 
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We recall that S is the subspace of P consisting of all families x = (X)iEI such 
that the set of all i E I for which Xi =I- 0 is finite. It follows immediately that S is 
dense in E; hence it remains to prove that E is complete for the topology 51 obtained 
by the norm Ilxll = <XIX)1/2. Let 52 be the topology induced on E by the product 
topology on TI Ei · For every r > 0, let Br be the set of all X E E such that Ilxll ~ r. 

iEI 

This relation implies that we have L IIxil12 ~ r2 for every finite subset J of!, and so 
ieJ 

Br is a closed subset of TI Ei , hence also complete. The fact that E is complete for 
iel 

51 now follows from GT, III, § 3, No.5, cor. 2 to prop. 10. 

DEFINITION 1. - Let (E)iEI be a family of hilbertian spaces. The hilbertian space E 
defined in prop. 1 is called the external hilbertian sum of the family (E)iEI and written 
as CD Ei or EB Ei 1. 

ieI ieI 

Let J; be the mapping from Ei into E which transforms Z E Ei into an element 
(xk ) E E such that Xk = 0 for all k =I- i and Xi = z; it is clear that J; is an isomorphism 
from the hilbertian space Ei onto a closed vector subspace of E. We say that J; is 
the canonical mapping from Ei into E and we shall generally identify Ei with its 
image in E by this isomorphism. With this convention, Ei and Ek are orthogonal 
in E for i =I- k, and E is the closed vector subspace generated by the union of the 
subspaces Ei • 

When I is finite, E is the direct sum of the Ei ; since the canonical projector from 
E onto Ei is continuous for all i E I, E is also the topological direct sum of the Ei 
(GT, III, § 6, No.2, prop. 2). If I = (1, n), we also write E1 EB E2 EB ... EB En instead of 

n 

CD Ei · 
i= 1 

Example. - Let E be a hilbertian space and I a set of indices. Let f~(I) denote the 
external hilbertian sum of the family (Ei)iEI where Ei = E for all i E I. In other words, 
e~(1) is the space of all families x = (X)iEI of elements ofE such that I IIxil12 < +00, 

ieI 

endowed with the scalar product < xly > = I < X;lYi > (space of square summable 
ieI 

families of elements of E indexed by I). We put e2(1) = e~{I). 

2. Hilbertian sum of orthogonal subspaces of a hilbertian space 

DEFINITION 2. - A hilbertian space E is said to be a hilbertian sum of a family (E)iEI 
of closed vector subs paces of E when : 

1) for two distinct indices i, k in I, the subs paces Ei and Ek are orthogonal in E; 
2) the closed vector subspace generated by the union of the Ei is E. 

1 Care must be taken not to confuse this notation with that of the « algebraic» direct 
sum of the spaces E; (A, II, § 1, No.6). 
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THEOREM 1. - Let E be a hilbertian space which is a hilbertian sum of a family (E)iEI 
of closed vector subs paces ofE. There exists an isomorphism f and only one, from E 
onto the external hilbertian sum CD Ei = F of the family (E) such that, for all i E I, 

the restriction of f to E is the canonical mapping 1; from Ei into F. 
Let S c F be the « algebraic» direct sum of the Ei, and let 9 be the linear mapping 

(X)iEI H L Xi from S into E. We shall show that 9 is an isomorphism from the pre-

hilbertian space S onto the (prehilbertian) subspace g(S) of E, generated by the union 

of the Ei : for, for two elements x = (X)iEI' Y = (Y)iEI' we have 

<g(x)lg(y) = <I xiiI Yi) = L <xiIYk)· 
iEI iEI (i.kjEI x I 

But if i =1= k, < Xi IYk) = 0 by hypothesis, hence 

<g(x)lg(y) = L <xiIYi) = <xly); 
iEI 

this proves our assertion. Since S is dense in F and g(S) dense in E, the isomorphism 9 
extends to an isomorphism g from F onto E (V, p. 8, cor.). It is clear that the inverse 
isomorphism f of g is the required mapping; its uniqueness follows from the fact 
that the closed subspace of E generated by the union of the Ei is E itself. 

When E is the hilbertian sum of a family (EJiEI of subspaces, we shall often identify E 
with the external hilbertian sum F of the Ei by means of the isomorphism .f If the set 
I is finite, saying that E is the hilbertian sum of the family (EJiEI means that the Ei are 
two by two orthogonal and that the vector space E is the direct sum of the family (EJiEI 
of subspaces. 

COROLLARY 1. - Let E be a hilbertian space, which is a hilbertian sum of a family 
(E)iEI of closed vector subspaces ofE ; for all i E I, let PE, be the orthoprojector (V, p. 13) 
from E onto E i . 

a) For all x E E, the family (1IpE(X)11 2)iEI is summable in R, the family (PE,(X))iEI 
is summable in E, and we have 

IIxI12 = L II PEi(X) II 2 , X = LPE/X). 
iEI iEI 

b) Conversely, if (X;)iEI is a family of elements of E such that Xi E Ei for all i E I 
and I II Xi 112 < + 00, this family is summable, and the sum x is the only point of E 

iEI 

for which PEi(X) = Xi for all i E I. 
c) For every pair of points x, y of E, we have 

<Xly) = I <PEi(X)lpE/y)· 
iEI 

These properties are in fact obvious for the external hilbertian sum of the Ei, 
and can be transferred to E by isomorphism. 
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COROLLARY 2. - Let E be a HausdorjJprehilbertian space, (E)iEi afamily of complete 
vector subs paces ofE such that, for every pair of distinct indices i, k in I, the subs paces 

Ei and Ek are orthogonal. Let V be the closed vector subspace of E generated by the 
union of the Ei. For every i E I, let PE, be the orthoprojector from E onto Ei. Let x E E. 

1) We have I IlpE,(x)112 :::; Ilx112. 
ieI 

2) The following conditions are equivalent : a) x E V; b) I II PE,(X) 112 = II X 112 ; 
ieI 

c) the family (PE,(X))iEi is summable in E, and we have x = I PE,(X). 
ieI 

3) Suppose V is complete. Then the family (PE,(X))iEi is summable in E, and 

py(X) = IPE'(X) , II py(x)112 = I IIPE,(X) II 2 , 
ieI ieI 

where Pv denotes the orthoprojector from E onto V. 
Let E be the hilbertian space completion of E; we identify E with a dense sub­

space of E; the Ei , being complete, are closed subspaces of E. The closure V of V 
in E is the closed vector subspace ofE generated by the union of the Ei , and V = V Ii E. 
The space E is the hilbertian sum of the Ei and of the subspace W, the orthogonal 
complement of V in E; put Xo = pwCx) and Xi = PE(X) for all i E I. By cor. 1, we 
have IIxI12 = IIxol12 + I Ilxil12, and x = Xo + I Xi i~ E. This implies assertion 1), 

ieI ieI 

and the fact that conditions b) and c) of 2) are equivalent to the condition Xo = 0, 
hence to the condition x E V. Finally, if V is complete, and if we put x' = py(x); 
we have x' - Xi = (x - x) - (x - py(x)), hence x' - Xi is orthogonal to Ei, 
and so Xi = PE,(X') for all i E I; it is now enough to apply property 2) to the vector x'. 

Remark. - Let E be a Hausdorffprehilbertian space. (V)iEI a family of vector subspaces 
of E such that for every pair of distinct indices i. k. the subspaces Vi and V k are ortho­
gonal. Then. for every k E I. the intersection of V k and of the closed vector subspace W k 

generated by the union of the Vi for all i =1= k reduces to 0 for. if x belongs to V k and 
also to Wk. then it is orthogonal to all the Vi for i =1= k. hence to Wk' In particular. 
x is orthogonal to itself. hence is zero. 

PROPOSITION 2. - Let E be a hilbertian space and (V))AEL a family of closed vector 
subspaces of E ; for every A E L, let (W A1JIlEM l be a family of closed vector subs paces 
of VA such that VA is the closed vector subspace generated by the union of this family. 

In order that E is the hilbertian sum of the family (WAIl)AEL.IlEM", it is necessary and 
sujJicient that E is the hilbertian sum of the family (VA)AEL and that, for each A E L, 
V A is the hilbertian sum of the family (W A)IlEMl (<< associativity of the hilbertian sum »). 

To show that the condition is necessary, it is enough to see that V ~ and V pare 
orthogonal if CI. =I p. But, every element of W~1l (ll EM,,) is orthogonal to all the 
W pv (v E Mp), hence to the closed vector subspace V p which they generate; the same 
argument then shows that every element of V p is orthogonal to V ~, being ortho­
gonal to all the W~1l (ll EM,,). 

To show that the condition is sufficient, it is enough to verify that, if it is satisfied, 
E is equal to the closed vector subspace F generated by the union of the WAil (A E L, 
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Il E MI.); but, for each A E L, F contains the closed vector subspace generated by 
the union of the WAJl such that Il E MA, that is, F contains VA; hence F is the closed 
vector subspace generated by the union of the VA' which is E by hypothesis. 

3. Orthonormal families 

DEFINITION 3. - In a prehilbertian space, afamily (e);EI of vectors is said to be ortho­
gonal if ei and ek are orthogonals for all i =I- k, and is said to be orthonormal, if in 
addition II e; II = I for all i E I. 

A subset S of E such that the family defined by the identity mapping from S onto 
itself is orthonormal is said to be an orthonormal set. If (e)iEI is an orthonormal 
family, the mapping i H ei is injective; we can then talk indifferently of an ortho­
normal family or an orthonormal set. 

If (e)iEI is an orthonormal family, the complete one dimensional vector sub­
spaces Di = Ke; are two by two orthogonal. For every x E E, the orthogonal pro­
jection of x on D; is A;e; with < ei Ix - Aiei> = 0, which gives < ei Ix > = A;< e; lei> = Ai' 
The results of No.2 applied to the subspaces D; imply the following propositions: 

PROPOSITION 3. - In a Hausdorff prehilbertian space E, every orthonormal family 
is topologically independent. 

We note that this property immediately follows from the characterization of topo· 
logically independent families (IV, p. 1 and II, p. 43, cor. 2), on account of the identifica· 
tion of the dual ofE with the completion ofE or with the space conjugate to E according 
as K is equal to R or C (V, p. 17, Remark). 

PROPOSITION 4. - Let E be a Hausdorff prehilbertian space, (e)iEI an orthonormal 
family in E, V the closed vector subspace of E generated by the ei. 

1) For every x E E, we have 

(1) L l<e;lx>12 ~ IIxl12 
iEI 

(Bessel's inequality); here the set of all i E I such that < ei Ix > =I- ° is countable. More­
over, the following conditions are equivalent : a) x E V; b) II xl12 = I 1< ei Ix > 12 ; 

ieI 

c) the family < e;lx >. ei is summable in E, and x = I < ei Ix >. ei. 
ieI 

2) If V is complete, then the family of all < e; Ix >. ei is summable in E for all x E E, 

and I < e;lx>.ei = py(x), L 1< eilx>12 = IIpy(x)V 
ieI ieI 

3) Suppose V is complete. For every family (A)iEI of scalars such that I IA; 12 < + 00, 
ieI 

there exists a unique point x E V such that < ei Ix > = Ai for all i E I. If(Il);EI is a second 
family of scalars such that L IIlil2 < + 00, and if y E V is such that < ei Iy > = Ili 

ieI 

for all i E I, then < xly > = L ~illi' 
iEI 
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PROPOSITION 5. - Let (e)iEI be an orthonormal family in a Hausdorff prehilbertian 
space E. The following properties are equivalent: 

a) the family (e) is total; 

b) for every x E E, the family < eJr). ei is summable in E, and we have 

x = L < eilx).ei ; 
ieI 

c) for every x E E, 

(2) IIxl12 = L 1< ei lx)12 
ieI 

(Parseval's relation). 
When E is hilbertian these conditions are also equivalent to 
d) the relations < ei Ix) = 0 for all i E I imply that x = O. 
The equivalence of conditions a), b), c) follows immediately from prop. 4. When 

E is hilbertian, the equivalence of conditions a) and d) follows from cor. 1 of V, 

p. 16. 

DEFINITION 4. - An orthonormal and total family in a Hausdorff prehilbertian space 
E is called an orthonormal basis ofE. 

An orthonormal basis of a Hausdorff prehilbertian space E is also an orthonormal 
basis of the completion of E. 

Let (e)iEI be an orthonormal basis of E; for every x E E, the numbers < ei Ix) 
are called, by abuse of language, the coordinates of x with respect to the basis (eJ 
F or every x and y in E, we have 

(3) <xly) = I <eilx) <eiIY)· 
ieI 

An orthonormal basis of E is not, in general, a basis of E over the field K in the sense 
defined in A, II, p. 25; to avoid any confusion we shall always say that a basis of a 
prehilbertian space E in the sense of lac. cit. is an algebraic basis of E over K. 

Let E and F be two Hausdorff prehilbertian spaces and u a continuous linear 
mapping from E into F. Let (e)iEI (resp. (f)jEJ) be an orthonormal basis ofE (resp. F). 
Put 

uji = <.t;Iu(e) 

for i E I, j E 1. The family (uj)(i.j)EI x J is called the matrix of u with respect to the ortho­
normal bases (e) and (1). Let x E E and y = u(x); if we write ~i = < ei Ix) and 
11· = < .l;ly) for the coordinates of x and y respectively, we get 11j = L Uji~i for 

J ~ 

all j E 1. When (e) is an algebraic basis of E and (.I;) an algebraic basis of F, our 
definition is consistent with that of A, II, § 10, No.4. 

Example. - Let E be the space of all complex valued continuous functions on R, 
such that f(x + n) = f(x) for x E Rand n E Z. We assign to E the scalar product 
defined by 

<fig) = f f(t)g(t)dt. 
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Then E is a Hausdorff prehilbertian space, but is not complete. For every integer 
nEZ, let e.,(x) G' e(nx). It is immediate that the family (e")"EZ is orthonormal in E. 
Moreover, the topology of uniform convergence on E is finer than the topology deduced 
from the norm IIfl12 = <flf)1(2. The family (e")"EZ is total in E for the uniform con­
vergence (G T, X, ~ 4, No.4), and a fortiori in the prehilbertian space E. Hence (en).,EZ is 
an orthonormal basis of E. 

4. Orthonormalisation 

THEOREM 2. - For every orthonormal set L in a hilbertian space E, there exists an 
orthonormal basis B of E containing L. 

In fact, let Tl be the family of all orthonormal subsets of E, linearly ordered by 
inclusion; it is immediate that this family has finite character (S, III, § 4, No.5). Hence 
there exists a maximal family B in Tl containing L, by tho 1 ofS, III, § 4, No.5. It remains 
to prove that B is a total set. If not, there will exist a vector y#-O which is orthogonal 
to all the vectors of B (V, p. 22, prop. 5), and multiplying y by a suitable scalar, we 
can assume that II y II = 1; then, B u {y} will be an orthonormal set distinct from 
B and containing B; this contradicts the definition of B; hence the theorem. 

COROLLARY l. - In every hilbertian space, there exists an orthonormal basis. 

It is enough to apply tho 2 to the case L = 0. 

COROLLARY 2. - Every hilbertian space is isomorphic to a space eZ(1). 
More precisely, let (e)iEI be an orthonormal basis of a hilbertian space E. By 

props. 4 (V, p. 21) and 5 (V, p. 22), the mapping <p defined by 

(4) 

is a hilbertian space isomorphism from E onto fZ(I). The inverse isomorphism ~ 
is defined by 

(5) ~((A)iEI) = I Aiei . 
iEI 

PROPOSITION 6. - Let E be a Hausdorff prehilbertian space, and let (an)nEI (I an 
interval ofN with origin 1) be a countable (finite or not) independent family of vectors 

ofE. There exists an orthonormal family (en)nEI' and only one, in E, with the following 
properties : 

1) for every integer pEl, the vector subspace of E generated by el' ez, ... , ep is 

identical with the vector subspace of E generated by ai' a z, ... , ap; 

2) for every integer pEl, the number < aplep > is real and> O. 
In fact, let Vn be the subspace (of dimension n) generated by al' az, ... , an' If 

n + 1 E I and bn+ 1 = an+ 1 - pVn(an+ 1) (where PVn is the orthoprojector onto the 
complete subspace V n), the line Kbn+ 1 is the orthogonal of Vn in V n+ l' If the en 
satisfy condition 1) of the proposition, we must have en + 1 = Abn + 1; the condition 
Ilen + 1 11 = 1 then implies IAlz Ilbn + 1 1l z = 1 and the condition <an+1Ien+1> > 0 
implies A < an + 11bn + 1 > > 0; this completely determines A, and we have proved 
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that we can determine, by induction, an orthonormal family (ell)IIEI' and only one, 
so as to satisfy conditions 1) and 2) of the proposition. 

The sequence (en)IIEI is said to be obtained by orthonormalisation from the inde­
pendent family (an)IIEI. It is clear that the vector subspace generated by the family 
(en) is identical with the vector subspace generated by the family (an). In particular, 
if (an) is a total sequence, so is (en)' which is then an orthonormal basis of E; hence 
we get: 

COROLLARY. - In every Hausdorff prehilbertian space E satisfying the first axiom 
of counlability, there exists a countable orthonormal basis. 

If E satisfies the first axiom of countability, then there exists a total sequence in E, 
and we can always extract an independent total family from such a sequence (A, II, 
§ 7, No.1, tho 2). 

We can give examples of Hausdorlf prehilbertian spaces not having any orthonormal 
basis (V, p. 70, exerc. 2). 
Example. - Let I be the interval (- I, 1) of Rand E the vector space of real valued 
continuous functions on I. Let x denote the canonical injection from I into R, consi­
dered as an element of E. By the Stone-Weierstrass theorem the sequence (X")nEN is 
total in E for the topology of uniform convergence GT, X, § 4, No.2). 

Consider E as a real Hausdorlf prehilbertian space in which the scalar product is 
given by 

<fIg) = fl J(t) get) dt. 

The sequence (xn)nEN is then total in the prehilbertian space E. Let (IIn)nEN be the sequence 
obtained by the orthonormalisation of the sequence (xn)nEN. We can show that 
lIn = (n + t)1/2Pn, where the Legendre polynomial Pn is defined by 

PROPOSITION 7. - In a hilbertian space E, two orthonormal bases are equipotent. 
Let Band C be two orthonormal bases of E. The case when one of the two sets 

B, C is finite is trivial, since a finite orthonormal basis is an algebraic basis of the 
space. Suppose therefore that Band C are infinite. For every x E B, let Cx be the 
subset of C consisting of all y E C such that < xly > =P O. The set Cx is countable 
(V, p. 21, prop. 4). For every y E C, there exists x E B such that y E Cx' since B is an 
orthonormal basis and y =P 0; in other words C is the union of the countable sets 
Cx as x ranges over B. The cardinality of C is hence less than that of N x B, hence 
less than that of B (S, III, § 6, No.3, cor. 4); similarly, the cardinality of B is less 
than that of C; this completes the proof 

The cardinality of an arbitrary orthonormal basis of a hilbertian space E is called 
the hilbertian dimension of E. 

. COROLLARY 1. - Given two orthonormal bases in a hilbertian space E, there exists 
an automorphism of E transforming the first basis into the second 
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COROLLARY 2. ~ In order that the hilbertian spaces £2(I) and £2(1) be isomorphic, 
it is necessary and sufficient that I and J are equipotent. 

§ 3. TENSOR PRODUCT OF HILBERTIAN SPACES 

1. Tensor product of prehilbertian spaces 

Let El and E2 be two prehilbertian spaces and let F = El ® E2 be the tensor 
product of the vector spaces E j and E2. Let Xl EEl and x2 E E2; since the mapping 
(Yl' Yz) ~ < xllYl > < x 2 1Y2) from El x E2 into K is bilinear, there exists a linear 
form <PXIoX2 on El ® E2 such that 

(1) 

for Yl EEl and Y2 E E2· Let z E F. The mapping (Xl' X 2) ~ <PXIoX,(Z) from El x E2 
/I 

into K is bilinear; this can be seen by writing z in the form z = L Yi.l ® Yi.2 with 
i= j 

Yi.l EEl andYi.2 E E2 for 1 '-'S i '-'S n. Then there exists a 1inearform \j!z on F =El ® E2 
such that 

(2) 

We put <D(z, t) = \j!z(t) for z, t in F. We see immediately that <D is a sesquilinear 
form on El ® E2 characterized by 

(3) 

(cl A, IX, § 1, No. 11). 

PROPOSITION 1. ~ The sesquilinear form <I> on El ® E2 is hermitian and positive, 
hence assigns the structure ofa prehilbertian space to El ® E2 • This space is H ausdorJJ 
irE l and Ez are Hausdorff. 

The formu1a<D(z, t) = <D(t, z) follows from (3) when z = Xl ® x 2 and t = Yl ® Yz. 
The general case is obtained by linearity, hence <I> is hermitian. 

Suppose El and E2 are Hausdorff; we shall prove that the hermitian form <I> is 
n 

positive and separating. Let z = L Xi ® Yi be a non-zero element of F = El ® E2 • 
i= 1 

Let (e l' ... , en) be an orthonormal basis of the subspace of E 1 generated by Xl' ... , Xn 

(V, p. 23, cor. 1). There exist elements fl' ... , fm in E2, not all null, such that 
n 

Z = L ei @ h, hence 
i= 1 

m 

<D(z, z) = L <D(e; ® J;, ej @ .f) 
i.j= 1 

m 

= L <e;lej ) OJ!) = L IIhl1 2 > O. 
i,j i= 1 
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For the general case, we shall now prove that <I> is positive. Let Ei be the Hausdorlf 
prehilbertian space associated with Ei and let 1ti be the canonical mapping from Ei 
onto Ei (i = 1,2). Put 1t = 1t1 (8) 1t2 · Let <I> be the hermitian form on E1 (8) E2 
constructed in the same way as <1>. We have 

<I>(z, t) = <I>(1t(z),1t(t)) (z E F, t E F) , 

and since <I> is positive, so is <1>. Q.E.D. 

The prehilbertian space defined in prop. 1 is called the tensor product of the pre­
hilbertian spaces E1 and E2 and is written as E1 (8) E2. Henceforth we shall write 
< zl t) for <I>(z, t), and therefore by definition 

(4) 

we shall also write IIzl12 or Ilzll for <ZIZ)1/2. From (4), we get 

(5) 

then the bilinear mapping (Xl' X2) H Xl ® x2 from E1 x E2 into E1 ® E2 is 
continuous. 

For i = 1,2 let Fi be a vector subspace of Ei, endowed with the induced prehil­
bertian structure. Then F1 (8) F2 can be identified with a vector subspace ofE1 (8) E2 
(A, II, § 7, No.7). Formula (4) shows that F1 (8) F2 with the prehilbertian space struc­
ture induced by that ofE1 (8)2 E2, is exactly F1 ®2 F 2. We shall henceforth identify 
F1 ®2 F2 with a prehilbertian subspace of E1 (8)2 E2· 

PROPOSITION 2. - For i = 1,2, let Ei and Fi be two Hausdorff prehilbertian spaces 
and let ui E 2(Ei ; FJ The linear mapping u1 ® U 2 from E1 (8)2 E2 into F1 (8)2 F2 
is continuous and we have 

Consider the positive hermitian form on E1 given by 

By prop. 1 (V, p. 25), there exists a positive hermitian form <I> on E1 ® E2 such 
that 

<l>(x1 ® x2' Y1 (8) Yz) = f(x!> Y1) <x2IY2) = 

= II u l 11 2 <Xl (8) x21Y1 ® Yz) - «u1 (8) I)(X1 ® x2)I(u1 (8) I)(Y1 (8) Y2) 

for Xl' Y1 in E1 and x2' Y2 in E2. By linearity we have 

for z, t in E1 (8) E2. Since <I> is positive, we get <l>(z, z) ;;::, 0, that is, II(u1 ® I), Zll2 
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~ II ulll·11 zl12 for z E El @2 E2, or II u l <8> 111 ~ II ulll· Similarly we prove the ine­
quality III <8> u211 ~ II u211, and since ul @ u2 = (u l <8> 1) 0 (1 @ u2 ), we get 

On the other hand, 

sup Ilul(xl)II.lluix2)11 
IlxI11 "'1.I1x211 ",1 

sup !I(ul @ U2 ) (Xl @ x2)112 ~ Ilul <8> u211 . 
II x III '" 1, II X2 II '" 1 

This completes the proof of prop. 2. Q.E.D. 

Let E l , ... , En be prehilbertian spaces (n ~ 2). We define the tensor product 
n 

El @2 ... <8>2 En (also denoted by O2 EJ by induction, by 
i= 1 

Hence, by the definition of scalar product, we have 

n 

(6) <Xl @ ... <8> xnlYl <8> ... <8> Yn) = TI <xiIYi)' 
i= 1 

and in particular 1 

(7) Ilxl <8> ... @ xnl12 = Ilxlll ... Ilxnll , 

for xi' Yi in Ei (1 ~ i ~ n). If the Ei are Hausdorff, then so is El <8>2'" <8>2 En' 
Let F l , ... , Fn be prehilbertian spaces and Ui E .!l'(Ei ; F) for 1 ~ i ~ n. By 

induction on n, prop. 2 implies that Ul @ ... @ Un is a continuous linear mapping 
from El <8>2'" <8>2 En into F J <8>2'" <8>2 Fn and that 

(8) 

Let (J E 6 n be a permutation of the set {I, 2, ... , n}. Because of (6), the linear 
mapping Per from El @2 ... @2 En onto E,,-I(1) <8>2 ... @2 E,,-I(n) characterized by 

(9) 

is a prehilbertian space isomorphism (<< commutativity of tensor product »). 
Similarly, consider a partition of {I, 2, ... , n} into m consecutive intervals 11' ... , In 

with Ik = (ak,ak+ l - 1) for 1 ~ k ~ m. Put 

ak+ 1- 1 

F k = 02 Ei (1 ~ k ~ m) . 
i=ak 

1 Here again we put IIzl12 = (zlz)I/2 for z in El ®2 ... ®2 En' 
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The canonical isomorphism from F 1 ® ... ® F m onto E1 ® ... ® En which trans-
m ak + 1 - 1 

forms ® ® Xi into Xl ® ... ® Xn (A, II, § 3, No.9) is a prehilbertian space iso-
~k=l i=ak 

morphism (<< associativity of the tensor product »). 

2. Hilbertian tensor product of hilbertian spaces 

DEFINITION l. - Let E1, ... , En be hilbertian spaces. The completion of the Hausdorff 

prehilbertian space E1 ®2 ... ®2 En is called the hilbertian tensor product of the E j 

and is denoted by E1 O2 ... O2 En (or ®2 EJ 
1 ~i~n 

Let F l' ... , Fn be hilbertian spaces and ui E 2'(Ei, F) for 1 ~ i ~ n. The continuous 
linear mapping u1 ® ... ® un then extends to a continuous linear mapping 
U1 O2 ... O2 Un from E1 O2 ... O2 En into F1 O2 ... O2 Fn' We have 

(10) 

by formula (8) of V, p. 27. Moreover, if lE denotes the identity mapping of any hil­
bertian space E, we have 

(11) 

Finally, ifG1, ... , Gn are hilbertian spaces and Vi E2'(Fi; G;) for 1 ~ i ~ n, we get 

(12) (v 1 0 u1) O2 ,,, O2 (vn 0 un) = (v 1 O2 ,,, O2 vn) 0 (u1 O2 ,,, O2 un)' 

We leave to the reader the task of formulating the «commutativity» and the 
« associativity » of the hilbertian tensor product, in analogy with what has been 
said above for prehilbertian spaces. 

Remark. - Let El' ... , En be Hausdorff prehilbertian spaces, and El' ... , En their 
t:espective c0!llpletions. Then E l @2 ... @2 En is a prehilbertian s.ubspace .of 
E l @2 ... @2 En' Since the mapping (Xl' ... , Xn) f--> Xl @ ... @ Xn fro!ll E j x ... X Pn 
into E l @2'" @2 En is continuous, E l @2'" @2 En is dense in E l @2'" @2 En' 
1 f;Jrtiori. th~ completion of E l @2 ... @2 En is precisely the hilbertian ~pace 
E j @2 ... @2 En' This completion is sometimes simply written as E l @2'" @2 En 
(or ®2 E;). 

1 ~i!S;n 

PROPOSITION 3. - Let E1, ... , En be hilbertian spaces. Suppose that for 1 ~ i ~ n 
the space E j is ahilbertian sum of a family (Ei,~)~EA(i) of closed vector subspaces. 

ThenE 1 ®2'" ®2 En isa hilbertian sumofthefamilyofsubspacesE1'~1 O2,,, O2 En,~" 
with (C'l1' ... , C'ln) ranging over A(1) x ... x A(n). 

By formula (6) of V, p. 27, the subspaces E1'~1 O2 ,,, O2 En,~n of E1 O2 ,,, O2 En 
are mutually orthogonal. For every integer i between 1 and n, the set U Ei,~ is 

~EA(i) 

total in Ei, and the multilinear mapping (Xl' ... , Xn) f---4 Xl ® ... ® Xn is continuous. 

It follows that the union ofthe subs paces E1 ,~1 O2 ... 0 2 En,~" is total, hence prop. 3. 
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COROLLARY 1. - For 1 ~ i ~ n, let (ei,a)aEA(i) be an orthonormal basis of Ei. Then 
the family of vectors e1 ,al ® ... ® en,an as (ap ... , an) ranges over A(1) x ... x A(n) 
is an orthonormal basis of E 1 @z ... @z En' 

COROLLARY 2. - Let E1 and Ez be two hilbertian spaces, and (e;)iEI an orthonormal 
basis of E 1 . Let (Yi)iEI be a family of elements of Ez, such that I II Yi liZ < + 00. 

iEI 

Then the family (ei ® Y;)iEI is summable in E 1 @z E2 ; moreover, every element of 
E 1 @ Ez can be written uniquely in the form I ei ® Yi with L IIYi liz < + 00. 

iEI iEI 

Let Fi be the line in E1 generated by the ei (i E I). Then E1 is the hilbertian sum 
of the family of subspaces (F)iEI' By prop. 3, the space E1 0 Ez is the hilbertian 
sum of the family of subspaces (Fi 0 z EZ);EI' hence cor. 2 follows. 

Examples. - 1) By cor. 1, the space eZ(I) <8>z £z(1) is canonically isomorphic to 
fZ(I x J), the tensor product x ® y of x = (X)iEI and y = (Y)jEJ can be identified 
with the family (XiY)iEI,jEJ' Similarly, by cor. 2, £Z(I) <8>z E can be identified with 
£~(I), in such a way that we have (X)iEI ® Y = (XiY)iEI for every y in the hilbertian 
space E. 

* 2) Let X be a Hausdorff topological space, and ~ a positive measure on X. 
Let E be a hil~ertian space. We can identify LZ(X,~) <8>z E with L~(X, 11) in a cano­
nical way : if f is the. class of the square integrable scalar function f on X, and if 
a belongs to E, then f ® a is the class of the function x H f(x). a with values in E. 

Let Y be a Hausdorff topological space and v a positive measure on Y. In an 
analogous manner, we can identify the hilbertian spaces U(X, 11) @z U(Y, v) 
and L Z(X x Y, 11 ® v); then j ® g can be identified with the class of the function 
(x, y) H f(x) g(y) on X x Y. * 

3. Symmetric hilbertian powers 

Let E be a hilbertian space, and let n be a positive integer. Let Tn(E) or E®n denote 
the tensor product of n hilbertian spaces each equal to E. In other words, Tn(E) 
is the completion of the space Tn(E) = E ® ... ® E (n factors) for the Hausdorff 
prehilbertian space structure defined by 

n 

<Xl ® ... ® xnlY1 ® ... ® Yn) = TI <xiIYi)' 
i= 1 

If(e)iEI is an orthonormal basis ofE, the family of vectors eh ® ... ® ein for ip ... , in 
in I, is an orthonormal basis of Tn(E) (V, p. 29, cor. 1). We get TO(E) = K. 

Let cr E 6 n be a permutation of the set { 1, 2, ... , n }. By V, p. 27, there exists an 
automorphism Pcr of Tn(E) characterized by 
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We have PaT = PaP, for cr, 't in 6 n, and consequently the endomorphism 

II" = -!, L Pa of the vector space t"(E) is the orthoprojector onto the subspace 
n. aeiSn 

of all elements left invariant by 6". However (A, III, § 6, No.3), II" maps the « alge­
braic» tensor product T"(E) onto the subspace TS"(E) of all symmetric tensors of 
order n. In other words, the image of II" is the completion of the space TS"(E) endowed 
with a scalar product induced by that of T"(E); this completion will be denoted 
by TS"(E). 

Let S"(E) be the nth symmetric power of the vector space E (A, III, § 6, No.1). The 
canonical mapping from T"(E) onto S"(E) defines by restriction an isomorphism 
A" from TS"(E) onto S"(E). We verify immediately that the inverse isomorphism 
is given by 

(13) 

for Xl' ... , X" in E. 
We define a Hausdorff prehilbertian space structure on S"(E) by putting 

(14) 

We then have (compare with formula (29) of A, III,§ 11, No.5) 

" (15) <xl",X"!Yl"'Y") = L n <X;lYa(i) , 
(JEtSn i= 1 

and in particular 

(16) 

Let S"(E) denote the completion of the pre-Hilbertian space S"(E) and SeE) 
the external hilbertian sum of the hilbertian spaces S"(E). We can show (V, p. 73, 
exerc. 1) that the multiplication in the algebra SeE) cannot be extended by conti­
nuity to SeE), unless E is just O. 

PROPOSITION4. - Let (e;)ieI be an orthonormal basis of the hilbertian space E. For 
every r:J. in N(l), put 

(17) Za = n e~i/(r:J.i !)1/2 . 
ieI 

Then (za)aeN(I) is an orthonormal basis of SeE). 
Let Eo be the vector subspace ofE generated by the vectors ei for i ranging over I. 

Then the za form a basis of the vector space S(Eo) (A, III, § 6, No.6). But Eo is dense 
in E, and the multilinear mapping (Xl> ... , x") f--+ Xl ... X" from Ex'" x E into 
SeE) is continuous for all n ? 1; hence S(Eo) is dense in SeE). It is now enough 
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to prove that the family of the z" is orthonormal. First observe that S"(E) and sm(E) 
are orthogonal for n i= m. Hence it is enough to prove the formula 

when IIXI = L lXi and I~I = L ~i are equal to the same integer n. 
ie] ie] 

Consider a partition (P)iEi of the set { 1, 2, ... , n} such that Card Pi = lXi for all 
i E I. Put X k = ei if k belongs to Pi' then Xl ... X" = n e~i. Similarly we define (Qi)iEI 

ieI 

and Yk in such a way that Card Qi = ~i and Yl ... y" = n er i • Since the ei are mu-
;EI 

tually orthogonal, we have < xkIYO"(k) > = 0 except ifthere exists an indice i E I such 
that kEPi and cr(k)EQ;. By formula (15), we then have <xl ... x"IYl ... Y,,> = 0 
unless there exists a permutation cr E 6" such that cr(P) = Qi for all i E I, which 
implies that IX = ~. Then <z"lz~> = 0 for IX i= ~. The same argument proves that 
II Xl··· X" 112 is equal to the number of the cr E 6" such that cr(P) = Pi for all i E I, 
hence equal to nIX;!. We get II z'" II = 1, and the proposition is proved. 

ieI 

COROLLARY. - Suppose that the hilbertian space E is the direct sum of the ortho­
gonal subspaces M and N. The canonical isomorphism 9 from SCM) <8l SeN) onto 
SeE) (A, III, § 6, No.6) extends uniqu~ly to a hilbertian space isomorphism h from 

SCM) ® 2 SeN) onto SeE). 
Let (eJiEI (resp. (f)jEJ) be an orthonormal basis of the hi1bertian space M (resp. N) 

and let Mo (resp. No) be the vector subspace of E generated by the vectors e; (resp. 
f). Put Eo = Mo + No and let 90 be the canonical isomorphism from S(Mo) <8l S(No) 
onto S(Eo). Put 

z" = n e~i/(lXi !)1/2, t~ = njl/(~j !)1/2 
;EI jEJ 

for IX E N(I) and ~ E N(J). By prop. 4, we have thus defined the orthonormal bases 
(Z")"EN(I) for SCM), (t~)~EN(J) for SeN) and (Z"t~)"EN(I).~EN(J) for SeE). Since we have 
z"t~ = 90(z" <8l t~), and since the elements z" <8l t~ form an orthonormal basis of 
SCM) ®2 SeN) (V, p. 29, cor. 1), we see that 90 extends to a hi1bertian space iso­
morphism h : SCM) ® 2 SeN) ~ SeE). By the construction, we have 

for all vectors xl' ... , xm in Mo and Yl' ... , y" in No. By continuity, the same relation 
also holds for the vectors Xl' ... , X" in M and the vectors Yl' ... , y" in N; in other 
words, h extends g. The uniqueness of h is clear. 

Let E and F be two hi1bertian spaces and u E 5t'(E; F). The linear mapping 
t"(u) = u O2 ... ®2 u (n factors) from t"(E) into t"(F) is continuous with norm 
Ilull" (V, p. 28, formula (10)). Moreover, formulas (13) and (14) of V, p. 30, show 
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that there exists an isomorphism <l>n,E from sn(E) onto the subspace fSn(E) of 
tn(E), and only one, such that 

Hence there exists a continuous linear mapping sn(u) from sn(E) into sn(F) and 
only one which makes the following diagram commutative 

S"(E) 
+n,E 

f"(E) • 
sn(u) t t tn(u) 

S"(F) 
+.,F 

f"(F) .. 

We now prove the formula 

(9) 

We clearly have II sn(u) II ~ II tn(u) II = Iluli n. Further, for all x E E, we have 
sn(u) (x") = u(x)n, Ilxnll = (n!)I/21Ixlln and Ilu(x)nll = (n!)1/21Iu(x)lln, which gives 

Ilsn(u)II Ilxll n ~ II u(x) lin ; 

it follows immediately that II sn(u) II ~ Ilull n, hence formula (19). 
It is clear that we have the formulas 

(20) 

(21) 

snOE) = lSn(E) 

sn(V 0 U) = sn(V) 0 sn(u) for v E .!t'(F; G) . 

Finally, 5n(u) coincides on 5 n(E) with the linear mapping 5 n(u) : 5 n(E) -+ 5 n(F) 
defined in A, III, § 6, No.2 since it transforms Xl'" xn into u(xl ) ... u(xn) for every 

Xl' ... , xn in E. 

Examples. - * I) Let d ~ I be an integer and co a positive function on Rd, locally 
integrable with respect to the Lebesgue measure Ji. Let E be the hilbertian space 
L 2(Rd, co. Ji), and let S = S(E), Then S can be identified with the space of all sequences 
f = (fn)n",O' where each 1. is a function on (R~n which is measurable with respect to 
the Lebesgue measure Ji ® ... ® Ji (n factors) and invariant under the permutations 
of the n factors in (R~n, and is such that 

(22) !lfl12 = In! f ... f 1J.(x!, ... , x.)i2 co(x!) ... co(x.) dx! ... dXn 

n=O Rd Rd 

is finite. The norm Ilfll in S is defined by formula (22). The hilbertian space S defined 
above is called the symmetric Fock space corresponding to the weight co * 

* 2) Let X be a Hausdorff topological space, Ji a positive measure of norm I on X 
and E a hilbertian subspace of the real hilbertian space Li(X, Ji), We say that E is a 
gaussian space if the following equivalent conditions are satisfied : 

a) for all fE E, we have f eiJ dJi = exp( -llfI12/2); 
x 
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b) for all fEE with norm 1, the image of the measure Il under f is the measure 

(21t)-t/2 e- x2 / 2dx. 

on R. 
Suppose E is a gaussian space. Let f t , ... , I. be functions whose classes f. belong to E. 

We define a function: f t ... I.: on X (called « Wick's product» of f t , ... , I.) by the for­
mula 

p n 

(23) :it .. '!n: = L (- l)P L TI <ia(2i-t)lfa(2i» TI fa(J)' 
O~2p~n O'EIp i==l j=2p+l 

where Ip is the set of permutations cr of {I, 2, ... , n} such that we have 

cr(1) < cr(2), ... , cr(2p - 1) < cr(2p) 

cr(l) < cr(3) < ... < cr(2p - 1) 

cr(2p + 1) < cr(2p + 2) < ... < cr(n) . 

Then there exists an isomorphism <P from SeE) onto a hilbertian subspace of L~(X, Il) 
which transforms the product h ... i, of h, ... , in, calculated in SeE), into (:/t ".!n :). 
Suppose that X is a Souslin space and that there exists a countable family (I.) of func­
tions whose classes belong to E and which separate the points of X. Then <p is an iso­
morphism from SeE) onto L~(X, Il). * 

4. Exterior hilbertian powers 

Let E be a hilbertian space and n a posItlve integer. For every permutation 

0' E 6 n , let c" denote its signature; put an = ~ L c"P" in 2(1'n(E») (V, p. 29). 
n. uE6n 

It is immediate that an is an orthoprojector, whose image A~(E) is the closure in 
Tn(E) of the space A~(E) of all antisymmetrictensors of order n(A, III, § 7, No.4). There 
exists an isomorphism 1tn from An(E) onto A~(E) which is characterized by 

(24) 

for Xl' ... , xn in E. We can now define a Hausdorff prehilbertian space structure 
on N(E) by putting 

(25) 

More explicitly, we have (compare with formula (30) of A, III, § 11, No.5). 

(26) 

for all Xl' ... , xn and YI' ... , Yn in E. 
Let An(E) denote the completion of the prehilbertian space N(E), and A(E) 

the external hilbertian sum of the hilbertian spaces AnCE). 

Example. - * With the notations of example 1 of V, p. 32, we can identify the hilbertian 
space A(E) with the set of all sequences (J;,)n ~ 0 of measurable functions for which the 
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number Ilfll defined in (22) is finite, and where each function J" is antisymmetric, that 
is, satisfies the relation 

InCxO(1)' ... , xo(n)) = Eoln(x!, ... , xn) 

for every permutation cr E 6 •. The hilbertian space ACE) is called the antisymmetric 
Fock space corresponding to the weight co. * 

PROPOSITION 5. - Let (e;)iEI be an orthonormal basis of the hilbertian space E. 
Endow I with a totally ordered structure. Then the set of all elements eit /\ ... /\ ein 
for il < ... < in is an orthonormal basis of An(E). 

We know (A, III, ~ 7, No.8) that the elements in question form a basis of the vector 
space A n(Eo) where Eo is the vector subspace ofE generated by the vectors ei . Further, 
for il < ... < in' the matrix of scalar products < eikleif ) is the unit matrix of order n; 
by (26), we have Ileit /\ ... /\ ed = 1. Finally, if (ip ... , in) and Up ... ,in) are two 
distinct, strictly increasing sequences of elements of I, then there exists an element if 
distinct from ip ... , in and so we have < eiklej!') = 0 for I ::::; k ::::; n, and by (26), 
< eit /\ ... /\ einleh /\ ... /\ ejn ) = O. In other words, the family of elements 
eit /\ ... /\ ein , for i l < ... < in' is orthonormal. 

But Eo is dense in E, and the mapping (Xl' ... , Xn) H Xl /\ ... /\ xn from Ex··· x E 
into A"(E) is continuous. Consequently, A"(Eo) is dense in A"(E), and proposition 5 
follows. 

COROLLARY. - Suppose that the hilbertian space E is the direct sum of two orthogonal 

subspaces M and N. The canonical isomorphism g from A(M) ® A(N) onto A(E) 
(A. III, ~ 7, No.7) extends in a unique way to a hilbertian space isomorphism from 

A(M)®z A(N) onto A(E). 
The proof is analogous to that of the corollary of prop. 4 (V, p. 31). 
Let E and F be two hilbertian spaces and u E 2'(E; F). We shall show, as in 

the case of symmetric powers S"(E) (V, p. 32) that the linear mapping N(u) from 
N(E) into N(F) (A, III, ~ 7, No.4) extends to a continuous linear mapping A"(u) from 
AnCE) into keF). We have the relations 

(27) 

(28) 

(29) 

An(1E) = lAn(E)' 

A"Cv 0 u) = An(v) 0 An(u) if v belongs to 2'(F; G), 

In general we do not have equality in formula (29) (TS, IV, § 6). Finally, we have 
an isomorphism "'n = "'",E from A neE) onto the subspace A~(E) of tn(E) defined by 

(30) 
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5. Exterior multiplication 

Let E be a hilbertian space. For every integer n ~ 0, let en be the canonical mapping 
from Tn(E) onto I\. n(E); then 

(31) 

for Xl' ... , xn in E. Let p and q be two positive integers; on account of formulas (30) 
and (31) we have 

(32) U 1\ V = ep+q(p !~1/2 "'iu) ® (q !~1/2 "'q(V)) 

for u E I\.P(E) and v E N(E). Since Ilenll ~ (n !)1/2, we get the inequality 

(33) Ilu 1\ vii ~ (p ~ ~)!)1/21Iull.llvll 
p.q. 

for u E I\.P(E) and v E I\.q(E). Consequently, the mapping (u, v) 1--* U 1\ v extends by 
continuity to a bilinear mapping from Ap(E) x Aq(E) into Ap+q(E), with a norm 

( p + q) ')1/2 at most equal to " . (cf V, p.73, exerc. 2). We again denote this by 
p. q. 

(u, v) 1--* U 1\ v. 

PROPOSITION 6. - Let E be a hilbertian space. We have 

(34) Ilx 1\ ull ~ Ilxll·llull 

for x E E and u E A(E). 
It is clearly enough to consider the case Ilxll = 1. 
Let F be the hilbertian subspace of E consisting of all vectors orthogonal to x. 

Since E is the hilbertian sum of F and the line K. x, it follows from the corollary 
of V, p. 34 that the mapping (v, w) 1--* V + X 1\ W is a hilbertian space isomorphism 
from A(F) EEl A(F) onto A(E). If u = v + X 1\ w with v, w in A(F), we have 
x 1\ u = X 1\ v, hence Ilx 1\ ull = Ilvll ~ (11v112 + IlwI12)1/2 = Iluli. 

COROLLARY 1. - a) Let Xl' ... , xn be elements of the hilbertian space E. We have 

(35) 

where equality holds only if one of the Xi is null, or if the sequence (x 1> •.• , x n) is ortho­
gonal. 

b) Let xi' ... , x n' Y l' ... , Y n be elements of the hilbertian space E. We have 

(36) 
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if the vectors Xi and Yi are non-null; equality holds in (36) if and only if(xl' ... , x.) 

and (y l' ... , Y.) are each an orthogonal basis of the same vector subspace of E. 
The inequality (35) follows from prop. 6 by induction on n; the inequality (36) 

can be deduced by applying the Cauchy-Schwarz inequality in An(E) and the for­
mula (26) of V, p. 33. 

Suppose that the sequence (Xl' ... , X.) is orthogonal. Then 

n 

IIXl /\ ... /\ x.112 = det«xilxj ») = n IIxil12 
i= 1 

since < xilxj > = 0 for i #- j. 
Now/suppose that the vectors Xl' ... , Xn are not null and do not form an orthogonal 

sequence. Since Ilxl /\ ... /\ x.11 depends symmetrically on the vectors xl' ... ,xn ' 

we can assume that Xl is notorthogonal to the subspace F ofE generated by X2 , ••• , Xn' 
and that F is not simply O. We can decompose Xl in the form x~ + Y with y#-O 
in F and x~ orthogonal to F; then II x~ II < II xlii. But 

and so 

IIXl /\ ... /\ xnll ~ Ilx~llllx211 ... Ilxnll 

< Ilxlll IIx211 ... Ilxnll· 

Suppose that the vectors Xi and the vectors Yi are not null. The equality in relation 
(36) is equivalent to the conjunction of the equalities 

(37) I<Xl /\ ... /\ XnlYl /\ ... /\ Y.>I = Ilxl /\ ... /\ xnll·IIYl /\ ... /\ Ynll 

(38) Ilxl /\ ... /\ xnll = Ilxlll··· Ilxnll, IIYl /\ ... /\ YIIII = IIY111··· IIYnll· 

By the first part of the proof, the equalities (38) imply that each of the sequences 
(Xl' ... , xn) and (Yl' ... , Yn) is orthogonal, which in tum implies that Xl /\ ... /\ X. #- 0 
and that Yl /\ ... /\ Y. #- O. Under these conditions, relation (37) implies that there 
exists a scalar A#-O such that Yl /\ ... /\ Yn = AXl /\ ... /\ xn (V, p. 3, Remark 1); 
in other words, that (xl' ... , xn) and (Yl' ... , Yn) are bases of the same vector subspace 
of E (A, III,§ 11, No. 13). 

COROLLARY 2. - Let (ai)Hi,j,;;n be a hermitian matrix, with complex elements, and 
with determinant D. Suppose that the inequality 

(39) 
n 

L ailizj ~ 0 
i,j= 1 

holds for all complex numbers Zl' ... , zn' Then 

(40) 
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Suppose D is non-null; the equality D = all ... ann holds if and only if aij = ° for 
all i -# j. 

Let <l> be the hermitian form on the vector space en given by 

n 

<l>(z, z') = I aijzizj 
i,j= 1 

for z = (zl' ... , zn) and z' = (z~, ... , z~) in en. By hypothesis, <l> is positive. 
First assume that <l> is separating, that is, that D is non-null. If (el' ... , en) is the 

canonical basis of en, we have <l>(ep e) = aij' and cor. 2 follows immediately from 
cor. 1, a) by putting Xi = ei • 

Since au = <l>(ep e) ~ 0, we also have inequality (40) if D = 0. 

COROLLARY 3 (<< Hadamard's inequalities »). - Let (ai) 1 ~i,j~n be a matrix with 
complex elements, and with determinant D. Put 

n 

ci = (I laijI2)1/2 for 1 ~ i ~ n, 
j= 1 

and m = sup laijl. Then we have 
i.j 

(41) 

If D -# 0, in order that IDI = c1 ... cn it is necessary and sufficient that the rows 

Yi = (ai)l ~j~n of the matrix (a;) 1 ~i,j~n are two by two orthogonal vectors. 
Let the space en be assigned a scalar product defined by 

n 

<Zlz') = I ZiZ;, 
i=l 

Let (Xl' ... , xn) be the canonical basis of en and Yi the vector with components aij 

for 1 ~ j ~ n. We have Ilxill = 1 and IIYil1 = cJor 1 ~ i ~ n; also <xiIYj) = aji' 
The inequality IDI ~ c1 ... cn and the condition of equality are then particular 
cases of V, p. 35, cor. 1. Obviously we have ci ~ m.n1 /2, hence c1 ... cn ~ mn.nn/2. 

§ 4. SOME CLASSES OF OPERATORS 
IN HILBERTIAN SPACES 

Throughout this paragraph, 1 E denotes the identity mapping of a hilbertian space E. 
The composition v 0 u of two linear mappings will usually be denoted by vu or v. u. 
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1. Adjoint 

PROPOSITION 1. - Let E and F be two hilbertian spaces. For every mapping 
u E 2(E; F), there exists a unique mapping u* E 2(F; E) such that 

(1) <u(x)IY)F = <xlu*(Y)E 

for all x E E and all Y E F. The mapping u H u* from 2(E, F) into 2(F; E) is bijec­
tive, isometric and semi-linear (with respect to the automorphism ~ H ~ of K). 

Let Y'(E, F) be the space of all continuous sesquilinear forms on E x F, endowed 
with the norm 

(2) 11<1>11 = sup 1<1>(x, Y)I· 
Ilxll';;l,llyIIQ 

We define the space Y'(F, E) similarly. We defined (V, p. 16, cor. 2) a Banach space 
isomorphism from 2(E; F) onto Y'(F, E), denoted by u H<1>u and characterized by 

(3) <1>u(Y, x) = < Ylu(x)F (x E E, Y E F) . 

In an analogous way we define an isomorphism from 2(F, E) onto Y'(E, F). Finally 
we define a mapping <1> H <1>* from Y'(F, E) onto Y'(E, F) by 

(4) <1>*(x, y) = <I>(y, x) (x E E, Y E F) . 

This mapping is bijective, semi-linear and isometric. But formula (1) translates as 
<1>u* = (<1>u)*' hence the proposition. 

DEFINITION 1. - Let E and F be two hilbertian spaces. For every continuous linear 
mapping u: E ~ F, the continuous linear mapping from F into E defined by formula (1) 

is called the adjoint of u and is denoted by u*. 
We have 

(5) (u + v)* = u* + v* 

(6) (AU)* = AU* 

(7) (u*)* = u 

(8) (1E)* = IE 

(9) (wu)* = u*w*; 

in all these formulas, u and v belong to 2 (E ; F), A is in K, and w in 2 (F ; G) where 
G is a hilbertian space. Formulas (5) and (6) mean that u H u* is semi-linear. For­
mula (8) is obvious. To prove (7), we take the conjugate of the two members of(1), 
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which gives (u*(Y)lx) = (ylU(x), and this proves that u is the adjoint of u*. Finally, 
with the notations of (9), we have, for all Z E G 

(w(u(x))lz) = (U(x)lw*(z) = (xlu*(w*(z))) , 

hence u*w* is the adjoint of wu. 
Let u: E --+ F be a bijective and continuous linear mapping; then it is also bicon­

tinuous (I, p. 19, cor. I). From (8) and (9) we immediately deduce that u* is bijective 
and bicontinuous and that 

(10) 

PROPOSITION 2. - For every u E J.t'(E; F), we have 

(11) Ilu*ull = Iluu*11 = IIul1 2 = Ilu*112. 

By prop. I, Ilu*11 = Ilull, hence Ilu*ull :'S; Ilu*II.llull :'S; Ilu11 2• On the other hand, 

IIul1 2 = sup IIu(x)112 = sup (U(x)lU(x) = sup (xlu*U(x):'S; Ilu*ull , 
Ilxll';l Ilxll';l Ilxll';l 

hence Ilu*ull = Ilu11 2 . Replacing u by u*, we get Iluu*11 = Ilu*11 2 , hence (11) follows 
since II ull = II u* II· 

Let E1 , ... , En and F l' ... , F n be hilbertian spaces, and for every integer i between I 
and n, let ui be a continuous linear mapping from Ei into Fi. Then 

(12) 

Let v be the continuous linear mapping u1 ® 2 ... O2 Un from 

E = El ®2 ... O2 En into F = Fl O2 ... ®2 Fn 

and w the continuous linear mapping ui ® 2 ... ® 2 u: from F into E. It is enough 
to prove the equality (Ylv(x) = (w(Y)lx) for x E E and Y E F. By linearity and 
continuity, we reduce to the case when x and Y have the following form 

x = Xl (8) ... @ xn' Y = Yl @ ... @ Yn 

with Xi E Ei and Yi E Fi for I :'S; i :'S; n. From the definition of scalar product in a 
tensor product (V, p. 27, formula (6)), we then get 

n n 

(Ylv(x) = f1 (Yilui(X) = f1 (ui(y)lxi ) = (W(Y)lx). 
i= 1 i= 1 

This proves our assertion. 
Let E and F be two hilbertian spaces, u E J.t'(E; F) and n a positive integer. If 

we put u1 = ... = un = u in formula (12) we obtain the result that the continuous 
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linear mapping Tn(u*) from Tn(F) into Tn(E) is the adjoint of the continuous linear 
mapping Tn(u) from Tn(E) into Tn(F). The formulas 

(13) 

can be established in the same way as formula (12), on account of the definition of 
the scalar product in 5n(E) (V, p. 30, formula(15)) and in An(E) (V, p. 33, formula (26)). 

Remark 1. ~ Suppose the hilbertian space E does not reduce to O. We identify it'(K; E) 
with E by the mapping u H u(1); in other words, the vector x of E is identified with the 
mapping AHA. x from K into E. Then the adjoint of x is the mapping x* : E --+ K 
given by x*(y) = (xly). In other words, x H x* is the canonical semi-linear mapping 
from E onto its dual (V, p. 15). 

Similarly, we identify the number A E K with the endomorphism A. 1 E of E. Then A * 
is precisely the conjugate of A. 

With these identifications, we can define a product 11 ... In where each ti is, either 
a number in K, or a vector in E, or a linear form belonging to E', or an element of 
it' (E), provided that there are never two consecutive factors Ii and Ii + 1 of one of the 
following types : 

• xy where x, yare both in E, or both in E' ; 
• xA or Ax' with A E it'(E), x E E and x' E E'. 
We have the following rules of composition : 

a) associativity; 
b) every element of K commutes with all the other factors; 
c) we have (tl ... In)* = r: ... Ii ; in other words, the adjoint of a product is the product 
of the adjoints taken in the reverse order. Also t** = I. 

For example, let x, y be in E and let A be in it'(E). Then x*y represents the scalar 
product (xly) and x*Ay represents the scalar product (xIAy). We also have 
(A*x)* = x*A** = x*A, hence (A*x)*y = x*Ay, which can be interpreted as 

(A*xly) = (xIAy) 

in conformity with the definition of the adjoint We observe that yx* is the endo­
morphism Z H Y (xlz) of E, since yx*z can be interpreted as y(x*z) by associativity, 
or as y.(xlz). 

Following Dirac 1, in most works of Mathematical Physics, the elements of E 
are represented by the symbol Ix), those of E' by (II. The scalar product is written as 
(x Iy) = (xl.ly) and the first rule of interdiction in the products excludes the combi­
nations of the signs) I and 1(, for example Ix) Iy). 

PROPOSITION 3. - Let E and F be two hilbertian spaces and u E .P(E; F). The fol­
lowing conditions are equivalent : 

(i) u is a topological vector space isomorphism, with an inverse equal to u*; 
(ii) u is surjective and u*u = IE; 
(iii) u is injective and uu* = 1 F ; 

(iv) u is an isomorphism of normcd spaces; 
(v) u is a hilbertian space isomorphism. 
Condition (1) means that we have u*u = IE and uu* = IF. Hence the equivalence 

of (i), (ii) and (iii) follows from E, II, § 3, ~o. 8, prop. 8. We have already seen theequiva­
lenee of (iv) and (v) (V, p. 5). Finally, the relation u*u = IE is equivalent to 

1 See P. A. M. DIRAC, Quantum Mechanics, Oxford University Press, New York, 1935. 
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(xlu*u(y» = (xly), that is, to(u(x)lu(y» = (xly) for all x, y in E, and evidently 
implies that u is injective; this proves the equivalence of (ii) and (v). 

An automorphism of the hilbertian space E is also called a unitary operator, 
that is, an operator u E .P(E) satisfying uu* = u*u = IE' 

Remark 2. - The relation u*u = IE does not characterize all the automorphisms of 
the hilbertian space E. For example, let E = f2(N) and let u be defined by u(xn) = Xn- I 

for n ~ 1 and u(x)o = O. We have Ilu(x) II = Ilxll for all x E E, that is, u*u = IE' but u 
is not surjective. 
Remark 3. - The definition (1) of the adjoint u* can also be written as 

< ylu(x) = < u*(y)lx) , 

or, by Y, p. 15, as 

<u(X), y*) = <x, (u*(y))*). 

But we also have < u(x), y*) = < x, 'u(y*), hence we can express the adjoint in terms 
of the transpose, 

(u*(y»)* = tu(y*) . 

2. Partially isometric linear mappings 

DEFINITION 2. - Let E and F be two hitbertian spaces and u E .P(E; F). The ortho­
gonal of the kernel of u in E is said to be the initial subspace of u and the closure of 
the image ofu in F is called the final subspace ofu. The orthoprojector from E (resp. F) 
onto the initial (resp. final) subspace of u is called the initial (resp. final) orthoprojector 
ofu. 

Let P be the initial subspace of u. Since E is the direct sum of P and of the kernel 
of u, we have u(P) = u(E). 

PROPOSITION 4. - (i) The initial (resp. final) subspace of u* is equal to the final 
(resp. initial) subspace of u. 

(ii) Suppose that E = F. Let M be a closed vector subspace ofE and MO its ortho­
gonal. The relations u(M) c M and u*(MO) c MO are equivalent. 

Let Q = u(E) be the final subspace of u. The orthogonal QO of Q in F consists 
of all vectors y such that (u(x)ly ) = 0 for all x E E; this is equivalent to : (xlu*(y» = 0 
for all x E E, or to u*(y) = O. Hence we have QO = Ker u*, and Q is the initial 
subspace of u*. Since u is the adjoint of u*, the final subspace of u* is also the initial 
subspace of u. This proves (i). 

The relation u(M) c M implies that u(M) is orthogonal to MO, and the rela­
tion u*(MO) c MO implies that u*(MO) is orthogonal to M. But we have 
(u(x)ly) = (u*(Y)lx) for all x EM and y E MO; hence (ii) follows. 

We remark that prop. 4 can be deduced from the general properties of the transpose 
(II, p. 51, cor. 2) in view of remark 3, Y, p. 41. 

DEFINITION 3. - Let E and F be two hitbertian spaces. A mapping u E .P(E; F) is 
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said to be partially isometric if II U(X) II = .llxll for all x belonging to the initial subspace 
ofu. 

Let u E .,;t(E; F) and let N be its kernel and I its image. To say that u is partially 
isometric is the same as saying that the linear mapping i1: E/N --+ I deduced from u 
is isometric (V, p. l3). Then the subspace I of F is complete, hence closed, and is 
the final subspace of u. Consequently, u induces a hilbertian space isomorphism 
from the initial subspace of u onto its final subspace. 

PROPOSITION 5. - Let u E .,;t(E; F), let P be its initial subspace and Q be the final 
subspace. Let p (resp. q) denote the initial (resp. final) orthoprojector of u. Assume that 
u is partially isometric. 

(i) The mapping u* E .,;t(F; E) is partially isometric, with initial subspace Q and 
final subspace P. The isomorphism from Ponto Q induced by u is then the inverse of 
the isomorphism from Q onto P induced by u*. 

(ii) We have u*u = p and uu* = q. 
On account of prop. 4 (i), assertion (i) is a consequence of (ii). 
We now prove (ii). Since P contains the image of u*, the mapping u*u maps E 

into P. Let x E E and YEP, then 

< u*u(x)ly) = < u(x)lu(y) . 

If x belongs to P, then < u(x)lu(y) = < xly) by the definition of a partially isometric 
mapping; if x belongs to the kernel N of u, then u(x) = 0, hence < u(x)lu(y) = 0 
and < xly) = 0 since Nand P are orthogonal. Since E = P EB N, we have 
< u*u(x) - xly) = 0 in all the cases, and so u*u is the orthoprojector p from E 
onto P. That uu* = q follows by interchanging u and u* in the above. 

PROPOSITION 6. - For every u E .,;t(E; F), the following conditions are equivalent: 

(i) u is partially isometric; 
(ii) u* is partially isometric; 

(iii) u*u is an orthoprojector; 
(iv) uu* is an orthoprojector; 
(v) uu*u = u; 

(vi) u*uu* = u*. 

By prop. 5, (i) is equivalent to (ii). 
(i) => (v) : Suppose u is partially isometric. Then u*u is the initial orthoprojector 

of u by prop. 5. Hence for every x E E, u*u(x) - x belongs to the kernel of u, that is, 
uu*u(x) = u(x). 

(v) => (iii) : Suppose that uu*u = u and let p = u*u; then p = p* and p2 = p. 
Let M (resp. N) be the image (resp. the kernel) of p. For x EM and YEN, we have 
< xly) = <p(x)ly) = < xlp*(y) = < xlp(y) = O. Since M and N are orthogonal, 
p is the orthoprojector from E onto M. 

(iii) => (i) : Suppose p = u*u is an orthoprojector with image M and kernel N. 
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For all x E E, we have 

Ilu(x)11 2 = <u*u(x)lx) = <p(x)lx). 

Hence u(x) = 0 for x E Nand Ilu(x) II = Ilxll for x EM, and so u is partially isometric 
with kernel N and initial subspace M. 

We have proved the equivalence of (i), (iii) and (v). Replacing u by u*, we can 
deduce the equivalence of (ii), (iv) and (vi). This proves prop. 6. 

3. Normal endomorphisms 

DEFINITION 4. - Let E be a hilbertian space and u E 2(E). We say that u is normal 
if it commutes with its adjoint u*. 

For example, every automorphism u of the hilbertian space E is normal since 
we have uu* = u*u = IE' 

PROPOSITION 7. - For u E 2(E) to be normal, it is necessary and sufficient that 

IIu(x)11 = II u*(x) II for all x E E. 
We define a hermitian form <l> on E by 

<l>(x,y) = <uu*(x)IY) - <u*u(x)ly)· 

For u to be normal, it is necessary and sufficient that <l> = O. By the polarization 
formulas (V, p. 2), this is equivalent to <I>(x, x) = 0 for all x E E. The proposition 
now follows since 

<l>(x, x) = Ilu*(x)112 - Ilu(x)112 . 

PROPOSITION 8. - Suppose that u E 2(E) is normal. Let N be the kernel ofu and M 
the orthogonal of N in E; let m and n be two positive integers such that m + n ~ l. 
Then N is the kernel of If''(u*)n and M is both the initial and the final subspace of 
If''(u*)n. In particular, M is both the initial and the final subspace of u and of u*, and 
is stable under u and u*. 

Prop. 7 shows that u and u* have the same kernel N. By prop. 4, (ii) of V, p. 41, 
the subspace M of E is stable under u and u* since this is so for N = MD, since 
M n N = {O}, the endomorphisms of M induced by u and u* are injective. Let 
v = um(u*)n; the preceding argument shows that the restriction of v to M (resp. N) 
is injective (resp. null), hence N is the kernel of v. Consequently, M = N° is the 
initial subspace of v. By prop. 4, (i) of V, p. 41, the final subspace of v is equal to 
the'initial subspace of v*. But v* = u"(u*)m and so the initial subspace of v* is equal 
to M by the preceding. 

COROLLARY. - Let Ie E K. The following subs paces ofE are equal: 
a) the eigen subspace of u relative to Ie; 
b) the eigen subspace of u* relative to )::; 
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c) the primary subspace of u relative to A (in other words, by LIE, VII, § 1, No.1, 
the set of all vectors x of E for which there exists an integer n ~ 0 such that 
(u - A.IEt (x) = 0); 

d) the primary subspace of u* relative to ~. 
It is clear that w = u - ~.lE is a normal endomorphism of E, hence the endo­

morphisms w, w* = u* - A.I E , wn and (w*)n ofE have the same kernel by prop. 8. 

4. Hermitian endomorphisms 

DEFINITION 5. - Let E be a hilbertian space and let u E 2(E). We say that u is her­
mitian if u* = u. 

Let J'l'(E) denote the set of all hermitian elements of 2(E); this is a vector sub­
space of the vector space 2(E)[R] over R which is deduced from 2(E) by restricting 
the scalars. 

To each u E 2(E), we associated (V, p. 16, cor. 2) a sesquilinear form 
<1>u :(x, y) ~ <xlu(y) on E x E. We have 

(14) <1>u.(x, y) = <1>U<y, x) (x, y in E); 

consequently, u is hermitian if and only if the form <1>u is hermitian. When K is C, 
it is enough to assume that <1>u(x, x) = < xlU(x) is real for all x E E (V, p. 2, Remark). 

Let u E 2(E). We have seen (V, p. 16, cor. 2) that the norm of u can be calculated 
by the formula 

(15) lIuli = sup l<1>u(x, Y)I· 
IlxIIG,llyll"'l 

When u is hermitian, we have the following result : 

PROPOSITION 9. - For every hermitian endomorphism u of E, we have 

(16) lIuli = sup I<xlu(x) I· 
Ilx II'" 1 

Put <1> = <1>u and c = sup 1<1>(x, x)l, then evidently c :oS; lIuli. Let x, y be in E 
Ilxll '" 1 

such that IIxll :oS; 1, lIyll:oS; 1. Then 

<1>(x + y, x + y)= <1>(x, x) + <1>(y, y) + 2~<1>(x, y) , 
hence 

4~<1>(x, y) = <1>(x + y, x + y) - <1>(x - y, x - y); 

but 1<1>(t, t) 1 :oS; cll t 112 for all tEE, thus 

41~<1>(x, y)1 :oS; c(lIx + yll2 + IIx - Y1l2) = 2c(lIxll2 + IIYIl2) :oS; 4c. 

Let a = <1>(x, y); there exists a complex number A with absolute value 1 such that 
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'Aa = lal. Replacing y by 'Ay in the preceding inequality, we get 1<l>(x,y)1 :( c. By 
(15), Ilull :( c and the proposition follows. Q.E.D. 

Evidently every hermitian endomorphism is normal. Conversely : 

PROPOSITION 10. - Suppose K is C. Let u E 2(E). Then there exists a unique pair 
(h1, hz) of hermitian endomorphisms of E, such that u = h1 + ihz . In order that u 
is normal, it is necessary and sufficient that h1 and hz commute. 

For, the relation « u = h1 + ihz, hi = h1' hi = h2 » is equivalent to 

1 i 
«h1 = 2 (u + u*) and h2 = 2 (u* - u) » . 

In addition, we have h1 h2 - hzh1 = 4 (uu* - u*u). This proves prop. 10. 

PROPOSITION 11. - Let p E 2(E). In order that p is the orthoprojector from E onto 
a closed vector subspace of E, it is necessary and sufficient that p2 = P = p*. 

Suppose pZ = p. Let M be the image of p and N its kernel. E is the topological 
direct sum of M and N. In order thap p is an orthoprojector, it is necessary and 
sufficient that M is orthogonal to N, that is to say that we have (p(x)ly - p(y) > = 0 
for all x, y in E. This latter relation is equivalent to p = p*p, and implies that 
p* = (p*p)* = p*p = p; conversely if p* = p, we have p = p2 = p*p. 

5. Positive endomorphisms 

DEFINITION 6. - Let E be a hilbertian space and u E 2(E). We say that u is positive, 
and write u ? 0, if u is hermitian and if (xju(x) > ? 0 for all x E E. 

When K is equal to C, the relation 

(xlu(x) > ? 0 for all x E E 

implies that u is hermitian (V, p. 2, Remark), hence positive. 
Let 2 +(E) denote the set of all positive elements of 2(E); this is a proper pointed 

convex cone in the real vector space 2(E)[R) underlying 2(E). In order that u is 
positive, it is necessary and sufficient that the sesquilinear form <l>u on E x E asso­
ciated with u is positive hermitian. Given u and v in 2(E), the relation u - v ~ 0 
can also be written as u ? v or v :( u; this is an order relation on 2(E)[R] compa­
tible with its real vector space structure. 

PROPOSITION 12. - Let u be a hermitian (resp. positive) element of 2(E) and let v 
be a continuous linear mapping from E into a hilbertian space F. Then vuv* is a her­
mitian (resp. positive) element of 2(F). 

For, we have (vuv*)* = v**u*v* = vuv*. On the other hand, if u ? 0, we have 

(Ylvuv*(y) > = (v*(y)lu(v*(y» > ~ 0 

for all y E F, hence vuv* ? O. 
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Prop. 12 shows, in particular, that vv* is positive for all v E 2'(E; F). Since, in 
particular, an orthoprojector p satisfies p = p2 = pp*, it is positive. 

Remarks. - 1) For every hermitian u in £'(E), put m(u) = inf < xlu(x», 
Ilxll ~ 1 

M(u) = sup < xlu(x». If E is not just 0, m(u) and M(u) are finite; moreover, M(u) 
Ilx!1 ~ 1 

is the smallest real number A such that u :;;:; A. 1 E and m(u) the largest real number ~ 
such that u ~ ~.IE' Clearly we have m( - u) = - M(u) and M( - u) = - m(u). It 
is clear that 

sup (Im(u)l, IM(u)l) = sup l<xlu(x»1 
Ilxll ~ 1 

and prop. 9 (Y, p. 44) implies (for E i= {O}) that 

(17) !iull = sup (lm(u)l. IM(u)I)· 

* For another proof of this formula when K is C, see prop. 14 of TS. I. § 6, No.8. * 
2) Let M and N be two closed vector subspaces of E, and PM (resp. PN) the ortho­

projector from E onto M (resp. N). Then M c: N if and only if PM :;;:; PN' For, we have 
P~PM = PM. hence 

for all x E E. The relation PM :;;:; PN is therefore equivalent to « IlpM(x) II :;;:; IIp:-.;(x) II for 
all x E E ». If M c: N. we have P. = PMPN. hence II PM(X) II :;;:; II PN(X) II since II PM II :;;:; 1. 
Conversely, if IlpM(x) II :;;:; II PN(X)] for all x E E, the kernel of PM contains the kernel 
of PN. that is, that MO :::J N C

• which implies that M c: N. 

PROPOSITION 13. - Let £,(E) be the set of all continuous hermitian endomorph isms 
of the hilbertian space E. Let .fF be a non-empty, directed increasing and bounded 
subset of £' (E). 

(i) The set ff has an upper bound Uo in £,(E); we have 

(18) <xluo(x» = sup <xlu(x» for all x E E. 
UE§ 

(ii) The filter of sections of.fF converges to Uo in the space 2'(E) endowed with the 
topology of simple convergence. 

Let L be the filter of sections of .'!F; for every u E £'(E), let <l>u be the continuous 
hermitian form on E defined by 

<l>u(X, y) = < xlu(y» . 
Let 

for u E £'(E) and x E E. By the polarization formulas (V, p. 2), we have 

(19) 4<1>Jx, y) = \fu(x+y)-\fu(x-y) 

(20) 4<1>u(x,y) = \fJx+y)-\fu(x-y)-i\fJx+iy)+i\fJx-iy) 

if K = R 

if K=C. 
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For every x E E, the mapping u I----> 'PuCx) from into R is increasing and bound­
ed, hence has a limit with respect to L. By the preceding formulas, the limit 

lim <l>u(x, y) = <I>(x, y) 
u,1: 

exists for every pair (x, y) of elements ofE. It is clear that <I> is a hermitian form on E. 
If Vi E:?F and V2 isa bound of :?F, the hermitian forms jl = <I> - <I> v 1 andj2 = <l>v2-<I> 
are positive; there exists a real number M ~ 0 such that 

hence 

consequently the semi-norms XI----> hex, X)1/2 are continuous on E. Since 

we conclude that x I----> <l>(x, x) is a continuous function on E, and by formulas (19) 
and (20), that <I> is continuous on E x E. Therefore there exists (V, p. 16, cor. 2) an 
element Uo of J'l'(E) such that <I> = <l>uo' Formula (18) is evidently satisfied, hence 
Uo is the upper bound of :?F in J'l'(E). This proves (i). 

We have, by construction 

(21) lim < xl(uo - u) (x) = 0 for all x E E . 
u,1: 

Let Vi E :?F; given a u E :?F such that u ~ Vi' let V = Uo - u. If we apply the Cauchy­
Schwarz inequality to the positive hermitian form <l>v on E, we get 

II vex) 114 = l<I>vCv(x), x)j2 ~ <l>v(V(X), v(x)).<I>v(x, x) 

= <v(x)lv2 (x) <xlv(x) ~ IIvl1 3 IIxl1 2 <xlv(x) 

~ Iluo - vl 11 3 IIxl1 2 <xlv(x) , 

since Ilvll ~ Iluo - viii by V, p. 44, prop. 9. Then by (21) we get lim II(uo -u)(x)11 =0 
u,1: 

for all x E E; which proves assertion (ii). Q.E.D. 
In particular, prop. 13 can be applied to the case of an increasing and bounded 

sequence (Un)nEN of elements of J'l'(E). Then there exists an element V of J'l'(E) cha­
racterized by 

< xlv(x) = lim < xlunCx) = sup < xlunCx) (x E E), 
n~oo 

and we have vex) = lim u/x) for all x E E. Moreover, v is the upper bound of the 
n~oo 

set of the Un in J'l'(E). 
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6. Trace of an endomorphism 

Let E and F be two hilbertian spaces. Conforming to the conventions of V, p. 40, 
we let ba*, for a in E and b in F, denote the continuous linear mapping x H b < alx) 
from E into F. 

Lemma 1. - There exists an isomorphism e from the vector space F (8) E' onto the 
space 2 IE; F) of all finite rank continuous linear mappings from E into F, charac­
terized by e(b ® a*) = ba* for a E E, bE F. 

By A, II, § 4, No.2, there exists an injective linear mapping e from F ® E' into 
2(E; F) and only one such, which transforms b (8) a' into the linear mapping 
x H ba'(x) for a' E E', bE F. Evidently e(b (8) a*) = ba*, and the image ofe is contain­
ed in 2 j (E; F). However, let u E 2 j (E; F) and let (e l , ... , en) be an orthonormal basis 
of the image of u in F. Let I; = u*(e) for 1 :( i :( n. For every x E E, we have 

n n 

u(x) = I <eilu(x).ei = I <l;lx).ei , 
i= 1 i= 1 

n n 

hence u = L eil;* = e( I ei ® 1;*). Therefore the image of e is equal to 2 IE; F). 
i= 1 i= 1 

We shall henceforth assume that E = F, and we set 2 IE) = 2 IE; E). By 
lemma 1, there exists a unique linear form, on 2 IE), such that ,(e(a (8) a')) = a'(a) 
for a E E, a' E E'; in other words, we have 

(22) ,(ba*) = <alb) for a, b in E. 

When E is finite dimensional, we have 2 IE) = 2(E) and ,(u) is the trace of the 
endomorphism u of E (A, II, § 4, No.3). 

Lemma 2. - Let (e)iE[ be an orthonormal basis of E. Then 

,(u) = I < eilu(e) 
iEI 

for all u E 2 IE). 
It is enough to consider the case when u = ba* with a, b in E. Then 

and lemma 2 follows from formula (22) and formula (3) of V, p. 22. 

Lemma 3. - Let u be a continuous and positive endomorphism of E, and :F the set 
of all finite !!!nk orthoprojectors on E. Then for every orthonormal basis (e)iE[ of E, 
we have (in R +) the equality 

L < eilu(ei) = sup ,(pup) . 
iEI PE:F 
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For every finite subset J of I, put PJ = I eief ; this is the orthoprojector from E 
iEJ 

onto the vector subspace generated by the vectors ei , where i ranges over J. We have 

PJuPJ = I < eilu(e) eiej , 
iEJ,jEJ 

hence ,(PJuPJ) = L < eilu(e;). Since PJ E ff', 
ieJ 

I < eilu(e;) ~ sup 'r(pup); 
ieJ PE~ 

and so we conclude that 

I < eilu(ei) = sup I < e;lu(ei) ~ sup ,(pup) . 
iEI J iEJ PE~ 

Let v be a finite rank continuous and positive endomorphism of E and let P E ff'. 
By tho 2 of V, p. 23 there exists an orthonormal basis U;,)a.EA of E and a finite subset 
B of A such that (J;,)a.EB is an orthonormal basis of the image of p. Then we have 
P = L fafa*, and so, as above, the relation ,(pvp) = I <.I;, 1 v([a.». By lemma 2 

!XEB (XED 

(V, p. 48) we have ,(v) = I < fa 1 v(fa.) ), which gives the formula 
a.EA 

I < falv(fa.) ~ 't(v) . 
<XEB 

Applying this inequality to the case where v = PJ. uPJ and where J is a finite subset 
of I, we get 

(23) I < pi fa) lupifa) ) ~ I < edu(e;) . 
a.EB iEJ 

For every x E E, we have pix) = I < eilx) ep and so x = lim pix) with respect 
iEJ J 

to the ordered directed set of finite subsets J of I. Passing to the limit over J in (23), 
we get 

,(pup) = I < .I;, 1 u(fa.) ) ~ I < eilu(e) , 
(XeB ieI 

and this completes the proof of lemma 3. 

DEFINITION 7. - Let u be a continuous and positive endomorphism of the hilbertian 
space E. Let 

(24) Tr(u) = sup ,(pup) 
pefii 

(upper bound in R+), where ff' is the set of all finite rank orthoprojectors on E. We 
say that Tr(u) is the trace of u. 
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Let p be the orthoprojector from E onto a finite dimensional vector subspace of E, 
and let (Xl' ... , xm) be an orthonormal basis of F. We have established the relation 

m 

.(pup) = I <xilu(x). Consequently, we can define the trace by the formula 
i= 1 

m 

(24') Tr(u) = sup I < xilu(x) , 
x b ... ,Xnt i= 1 

where (Xl' ... , Xm) ranges over the set of all finite orthonormal sequences of vectors 
ofE. 

By lemma 3 (V, p. 48), we have 

(25) Tr(u) = I < eilu(eJ) 
iEI 

for every orthonormal basis (e)iEI of E. From this, we deduce 

(26) 

(27) 

Tr(u + v) = Tr(u) + Tr(v) 

Tr(Au) = A. Tr(u) 

for all continuous and positive endomorphisms u and v of E and for every real 
number A ? 0 (we make the convention 0.( + ex)) = 0 in (27)). Let <I> be an isomor­
phism from E onto a hilbertian space F; since <I> transforms every orthonormal 
basis of E into an orthonormal basis of F, we get from (25) that 

(28) Tr(<I>u<l>-l) = Tr(u). 

Let (U~)~EA be a non-empty directed increasing and bounded famity of continuous 
and positive endomorphisms of E; let u = sup ua ' then <xlu(x) = sup <xluix) 

~ 0 

for all x E E (V, p. 46, prop. 13). We have Tr(u) = sup I < eilu(e;», where J ranges 
J cI iEJ 

over all finite subsets of I, hence 

(29) Tr(u) = sup Tr(uJ for u = sup ua • 
~ , 

Let PF be the orthoprojector from E onto the hilbertian subspace F; there exists 
an orthonormal basis (eJiEI of E and a subset J of I, such that (ei)iEJ is an orthonor­
mal basis of F. We have Tr(PFuPF) = I < eilu(eJ). This formula has two conse-

iEJ 

quences : firstly. we have Tr(pF uPF) ~ Tr(u); secondly, taking u = I E, we get 

(30) {
dim F if F is finite dimensional 

Tr(PF) = . 
+x if not. 
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DEFINITION 8. - Let E be a complex hilbertian space. We write 2 l(E) for the vector 
subspace of 2(E) generated by all continuous, positive endomorph isms of E with 
finite trace. 

By formula (25) of V, p. 50, the trace extends to a linear form on 2 1(E), again 
denoted by Tr, and satisfying the relation Tr(u) = I <edu(e) for all u in 21(E) 

iEI 

and for every orthonormal basis (ei)iEI of E. For every u E 2 1 (E), we ha ve u* E 21 (E) 
and Tr(u*) = Tr(u). Formula (28) of V, p. 50 extends to the case where u belongs 
to 2 1(E). Let F be a hilbertian subspace of E; by formula (30), the orthoprojector 
PF belongs to 21(E) if and only if F is finite dimensional. For every a and b in E, 
we have 4ab* = I c(a + cb) (a + cb)* and cc* is a positive operator with finite 

£4= 1 

trace for all c E E; consequently, if u is a finite rank, continuous endomorphism of E, 
then u E 21(E) and Tr(u) = 't(u). 

Let E be a real hilbertian space, and let E(C) be its complexification (V, p. 5). We 
identify E with a subset of E(C). Then 2(E) can be identified with a real vector sub­
space of 2(E(C» consisting of all continuous linear mappings u from E(C) into E(C) 
such that u(E) c E. In this case we write 21(E) = 2(E) (l 2 1(E(C». For every 
u E 2 1(E), the trace Tr(u) is real and is equal to Tr(u*). Formulas (25) and (28) 
are again valid, 2/(E) c 21(E) and Tr(u) = 't(u) for all u E 2 f (E). Finally, a closed 
vector subspace F of E is finite dimensional if and only if PF belongs to 2' 1 (E). 

* Remark 1. - We shall later define the notion of a nuclear mapping from a Banach 
space E into a Banach space F. We shall show that when !£ll(E) consists of all nuclear 
mappings from E into E, then E is a real or complex hilbertian space. * 

PROPOSITION 14. - Let E 1, ... , En be hilbertian spaces, E = E1 O2 •.• O2 En' and 
ui a continuous endomorphism of Ei for I ::::; i ::::; n. If u 1 , .•. , Un are positive, then so 
is u = U1 O2 •.. O2 Un' and 

n 

(31) Tr(u) = n Tr(u). 
i= 1 

If Ui E 2 l(Ei) for all 1 ::::; i ::::; n, then u E 21(E) and formula (31) is again valid in 
this case. 

Proceeding by induction on n, we immediately reduce to the case n = 2. 
For i = I, 2, we define a sesquilinear form <l>i on Ei by the formula <l>;(x, y) = <xlu;(y» 

for x, Y in E i . If ul and U2 are positive, the forms <1>1 and <1>2 are hermitian and posi­
tive. By prop. 1 of V, p. 25 there exists a positive hermitian form <1> on the vector 
space El ® E2 such that 

<l>(Xl ® x2' Yl ® Y2) = <1>l(Xl' Yl)·<1>ix2' Y2) 

for Xl' Yl in E1 and x2' Y2 in E 2 · We verify immediately the relation <l>(z, t)=<zlu(t» 
for z and tin E1 ® E 2 . Since <1> is positive, we have < zlu(z» ~ ° for all z in E1 ® E 2 . 

Since u is continuous and E1 ® E2 is dense in the hilbertian space E = El O2 E 2 , 

we conclude that u is a continuous and positive endomorphism of E. 
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Let (e)ieI be an orthonormal basis of El and Uj)jeJ an orthonormal basis of E2 ; 
then the family (ei ® J;)ieI,jeJ is an orthonormal basis of E and we have 

Tr(u) = L L < ei ® fjlu(ei ® fj) 
ieI jeJ 

= L L < edul(e). <fjluifj) 
ieI jeJ 

In particular, if U l and U2 are positive endomorphisms with finite trace, then so 
is u. By linearity, we deduce that u belongs to .!l'l(E) when K = C and that the 
U i belong to .!l'l(Ei) for i = 1, 2; formula (31) extends to this case by linearity. 
Finally, the case when K = R and the ui E .!l'l(Ei) reduces to the complex case by 
extension of the scalars. 

Remark 2. - Let E be a hilbertian space, which is the hilbertian sum of a family (EJiEI 
of hilbertian subspaces. Let u be an element of 2(E) such that u(Ej) c Ei for all i E I; 
let ui be the element of 2(E) which coincides with u on Ei . Then Tr(u) = L Tr(u) 

ieI 
when u is positive, or belongs to 21(E); this relation follows from formula (25) of V, 
p. 50 applied to an orthonormal basis of E which is the union of orthonormal bases 
of each of the Ei . 

7. Hilbert-Schmidt mappings 

DEFINITION 9. - Let E and F be two hilbertian spaces. A continuous linear mapping 
u from E into F is called a Hilbert-Schmidt mapping if the trace of the positive endo­
morphism u*u of E is finite. The set of all Hilbert-Schmidt mappings from E into F 
is denoted by .!l' 2(E, F). 

When E = F, we write .!l' 2(E) for .!l' 2(E; E). 
For every uE.!l'(E,F), let IIull2 = Tr(u*u)l!2, so that u belongs to .!l'2(E;F) 

if and only if II u 112 is finite. By the definition of the trace, we get 

m 

(32) Ilull~ = sup L Ilu(x;)112 
Xl, ... ,Xm i=l 

where (Xl' ... , Xm) range over the set of finite orthonormal sequences in E. In parti­
cular, taking m = 1 in formula (32), we have 

(33) 

Let (e)ieI be an orthonormal basis of E and (fj)jeJ an orthonormal basis of F. 
By formula (25) of V, p. 50 and the Parseval's relation (V, p. 22), we have 

(34) Ilull~ = L II u(ei) 112 = L I<fjlu(ei) 12 . 
ieI i,j 
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Since 1 <fjl u(ei» 1 = 1< e;lu*(fj» I, formula (34) implies that 

(35) IIu*II 2 = IIull ; 

hence, the adjoint of a Hilbert-Schmidt mapping is a Hilbert-Schmidt mapping. 
Let E 1 , F 1 be hilbertian spaces and v: El -> E, w: F -> F 1 continuous linear map­
pings. From (32), we deduce immediately that 

(36) 

By (35), (36) and the relation uv = (v*u*)*, we get 

(37) 

In particular, if u belongs to !£ 2(E, F) then wuv belongs to !£2(E1, F 1). 

THEOREM 1. - Let E and F be two hilbertian spaces. 
(i) The set !£2(E, F) is a vector subspace of !£(E; F) and u f-> II ull z is a hilbertian 

norm (V, p. 6) on !£Z(E; F). 

(ii) The isomorphism efrom F ® E' onto !£f(E; F) characterized by e(y ® x*) = yx* 
extends to an isomorphism e from F ®z E' onto !£2(E ; F). In particular, 2 f (E; F) 
is dense in 2 2(E; F). 

Let (e;)iEI (resp. (fj) jEJ) be an orthonormal basis ofE (resp. F). For every U E 2 (E ; F), 
let A(u) be the matrix of u with respect to chosen orthonormal bases for E and F 
(V, p. 22). Let II a liz denote the norm of an element a of the hilbertian space e2 (J x I). 
By formula (34), A is a mapping from 2 2(E; F) into fZ(J x I) such that IIA(u) 112 = II ull ; 
it is clear that A is injective. To prove (i), it is enough to prove that A is surjective. 
Let a = (aji) be an element of e2 (J x I); by Cauchy-Schwarz inequality, we have 

for every; = (0 in f2(I) and 11 = (11) in e2 (1). Then there exists a continuous ses­
quilinear form <l> on F x E such that <l>(y, x) = L lljaji~i for x = L ~iei in E and 

j,i i 

Y = I lljj in F. Let u E 2(E; F) be such that <l>(y, x) = <ylu(x) > (V, p. 16, cor. 2). 
j 

We get 

hence a = A(u). 
Since A is a hilbertian space isomorphism from 22(E; F) onto e2 (J x I) and 

since (fj ® en is an orthonormal basis of F 0 z E', there exists an isomorphism {) 
from F O2 E' onto 2Z(E; F) such that 

<fjI8(t) e) = <fj ® e1lt) 



TVS V.54 HlLBERTIAN SPACES §4 

for every i E I, j E I and t E F <8>2 E'. In particular, for t = Y ® x*, we find 

hence e(y ® x*) = yx*. This proves (ii). Q.E.D. 

Examples. - 1) Let I and J be two sets. By the proof given above, in order that a 
mapping u from £2(1) into f2(J) be a Hilbert-Schmidt mapping, it is necessary and 
sufficient that there exists a matrix (aj ) in f2(J x I) such that U@j = L aji~i for 

iEI 

all ~ = (0 in £2(1). 
* 2) Let X and Y be two Hausdorff topological spaces, endowed respectively 

with positive measures ~ and v. We can show that the Hilbert-Schmidt mappings 
from 22(X) into 22(y) correspond bijectively to classes of square integrable 
functions on Y x X; to the class of a function N E 22 (Y X X, v ® ~) corresponds 
the mapping UN given by 

(38) (UN!) (y) = Ix N(y, x)f(x) d~(x) 

for v-almost all y E Y and f E 22(X, ~). We have 

(39) II uNII~ = Ix Iv IN(y, x)i2 d~(x) dv(y) . * 

Remarks. -1) Suppose K = C. Let U and v be in 22(E; F). We have the relation 
4 u*v = L e(u + EV)* (u + EV), hence u*v belongs to 21(E). The scalar product 

£4= 1 

in the hilbertian space 2 2(E ; F) is given by 

(40) <ulv) = Tr(u*v) 

since this formula defines a hermitian form on 22 (E ; F) and we get < u I u) = II u II ~ . 
If u E 22(E; F) and v E 22(F; E), then vu belongs to 21(E) and uv to 21(F) 

by the preceding; moreover, we have 

(41) Tr(uv) = Tr(vu) . 

By linearity and continuity, it is enough to verify this formula when u = y 1 xi 
and v = x2yi (with Xl' x2 in E, Y1' Y2 in F); but then uv is the mapping 
YHY1<x 1Ix 2> <Y2Iy) and vu the mapping xHx2<Y2IY1)<x1Ix), and (41) 
follows from formula (22) of V, p. 48. 

Consequently, if u1 ' u2 are two elements of 2 2(E ; F), we have, in the hilbertian 
space 22(F; E), 

(42) <uilui) = Tr(u1ui) = Tr(uiu1) = <u2Iu 1) = <u1Iu2); 

in other words, u H u* is an isomorphism from the hilbertian space 22(E; F) 
onto the conjugate (V, p. 6) of the hilbertian space 2 2(F; E). If we identify this 



No.8 SOME CLASSES OF OPERATORS IN HILBERTIAN SPACES TVS V.55 

conjugate with the dual of ~2(F; E) (V, p. 15), we see that ~2(E; F) can be iden­
tified with the dual of ~ 2(F ; E), the canonical bilinear form (v, u) H < v, u> being 
identified with (v, u) H Tr(vu). 

2) Suppose K = R. We leave it to the reader to verify that formulas (40) and 
(41) are again valid, and to show that ~ 2(E; F) can be identified with the dual of 
~ 2(F; E) by means of the bilinear form (u, v) H Tr(uv). 

8. Diagonalization of Hilbert-Schmidt mappings 

THEOREM 2. - Let E and F be two hilbertian spaces and u a Hilbert-Schmidt map­
ping from E into F. There exists an orthonormal basis (e)iEI of E which is transformed 
by u into an orthogonal family in F. 

Let B denote the (closed) unit ball of E, with the weakened topology assigned 
to it; this is a compact space (V, p. 17). We put Q(x) = II u(x) 112 for all x E B. Finally 
let P denote the set of all vectors x in E satisfying the following property ; 

(H) For every y E E orthogonal to x, the element u(y) of E is orthogonal to u(x). 

Lemma 4. - The function Q: B --+ R is continuous. 

Let Uj)jEJ be an orthonormal basis of F. Put Aj = II u*(fj) 112 for all j E J. Since 
u belongs to ~ 2(E; F) we have u* E ~ 2(F ; E), hence I Aj < + 00. Further, we 

j 

have 

(43) Q(x) = Ilu(x)112 = II<u*(fj)lx>1 2 
j 

by Parseval's formula (V, p. 22) and the definition of the adjoint (V, p. 38). For 
every xEB, l<u*(fj)lx>1 2 :::; Aj by Cauchy-Schwarz inequality; consequently, the 
convergence of the sum in formula (43) is uniform on B, hence lemma 4 (GT, X, 
§ 1, No.6). 

Lemma 5. - Let El be a closed vector subspace of E, stable under u*u. If El #- {O}, 
then there exists a vector of norm 1 in El n P. 

Since B is weakly compact, so is the weakly closed subspace B n El of B. Hence 
there exists (GT, IV, § 6, No.1, tho 1) a point Xo in B n El such that Q(xo ~ Q(x) for all 
x E B n E 1 . If Q(xo) = 0, we have Q(x) = ° and so u(x) = ° for all x E B n E 1 . 

Thus El c P and lemma 5 follows in this case. 
Suppose now that Q(xo) > 0, then Xo #- 0. Since the vector II Xo 11- 1 .xo belongs 

to B n E 1 , we have 

i.e. II Xo II = 1. We shall prove that Xo belongs to P; let y E E be orthogonal to xo. 
It is enough to prove that u(y) is orthogonal to u(xo). But since y is the sum of a 
vector ofE I and a vector orthogonal to E1, and both orthogonal to Xo (since Xo EEl)' 
it is enough to consider the following two cases : 



TVS V.56 HlLBERTIAN SPACES §4 

a) Y is orthogonal to E1 : since E1 is stable under u*u, u*u(xo) E E1, hence 
o = <ylu*u(xo) = <u(Y)lu(xo). 

b) Y belongs to E1 : for all teR, the vector x(t) = (xo + tY)/llxo + tyll belongs 
to B (\ E 1 • We have Q(xt) = f(t)/g(t) with 

f(t) = Ilu(xo)112 + 2tBl<u(xo)lu(y) + t2I1u(y)1I2 

get) = 1 + t211yI12 . 

In view of the definition of xo' we have Q(x(O)) ~ Q(x(t)) for all real t, hence 

dl Q(x(t)) is zero for t = O. But f(O) = II u(xo) 11 2 , g(O) = 1, 1'(0) = 2Bl <u(xo)lu(y), 
ct 
g'(O) = O. Since 

~ Q(x(t)) = 1'(t) get) - f(t) g'(t) 
dt g(t)2' 

we conclude that 1'(0) = 0, that is, Bl < u(xo)lu(y) = 0. When K = R, u(xo) is 
orthogonal to u(y), when K = C, the vector iy belongs to E1 and is orthogonal 
to xo, hence <~ <u(xo)lu(y) = -:!ll <u(xo)lu(iy) = 0, and finally u(xo) is ortho­
gonal to u(y). This proves lemma 5. 

Now we prove tho 2. Applyingth. 1 ofS, III, §4, No.5 we see, as in V, p. 23, that there 
exists a set S which is maximal among the orthonormal subsets of E contained 
in P. Let E1 be the set of all vectors orthogonal to S. Let y E E1 ; if XES, the vectors 
x and yare orthogonal, and since S c P, we conclude that u(x) and u(y) are ortho­
gonal; then 

< xlu*u(y) = < u(x)lu(y) = ° 
and u*u(y) is orthogonal to S. Hence E1 is stable under u*u. If we had E1 =F {O}, 
there would exist a vector x of norm 1 in E1 (\ P (lemma 5) and S u {x} would 
be an orthonormal subset of E contained in P. This would contradict the maximal 
character of S. Hence E1 = {O} and S is an orthonormal basis of E. Q.E.D. 

COROLLARY 1. - Let v be a continuous, positive endomorphism with finite trace of 
the hilbertian space E. There exists an orthonormal basis (e)iEI of E and a summable 
family of positive real numbers (A.)iEI such that vee) = A.iei for all i E 1. 

Let <l>(x, y) = < xl v(y) for x, y in E. Then <l> is a positive hermitian form on E. 
There exists (V, p. 8, corollary) a hilbertian space F and a continuous linear mapping 
u from E into F such that <l>(x, y) = < u(x)lu(y) for x, y in E. In other words, we 
have v = u*u. By virtue of def. 9 (V, p. 52), u is a Hilbert-Schmidt mapping from E 
into F. By tho 2, there exists an orthonormal basis (e)ieI of E such that the vectors 
u(ei ) are two by two orthogonal. Let i E I; for every j =F i in I, we have 
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hence vee) is proportional to ei and is of the form Aiei, where Ai = < edv(e) ; 
then 

Ai ;;:, 0 and I Ai = Tr(v) < + 00. 
iEI 

COROLLARY 2. - Let E be a hilbertian space. Then 2'1(E) c 2'2(E). 
The real case reduces to the complex case by the extension of scalars; we can 

therefore assume that K = C. 
Since 2' 2(E) is a vector subspace of 2' (E), it is enough to prove that every conti­

nuous and positive endomorphism v of E with finite trace belongs to 2' 2(E). With 
the notations of cor. 1, we have 

I Ilv(eJl12 = IAf ~ (IAY < + 00. 
iEI iEI i 

COROLLARY 3. - Let v be a continuous positive endomorphism of the hilbertian space 
E with a finite trace. There exists a positive Hilbert-Schmidt endomorphism w of E 
such that v = w2 and such that v commutes with w. 

With the notations of cor. 1, it is enough to consider the endomorphism w which 
transforms the vector I ~iei into the vector I AlI2~iei· 

iEI i 

Remark. - With the notations of tho 2, let J be the set of all i E I such that u(eJ # o. 
For all i El, letAi = II u(eJ II and J; = lei- 1 u(eJ Then (eJiEJ (resp. (J;)iEJ) is an orthonormal 
basis of the initial (resp. final) subspace of u, we have u(eJ = Ie); tor all i E J and 
I Ie? = II u II ~ is finite. 
iEJ 

9. Trace of a quadratic form with respect to another 

In this section, E will denote a real vector space and Q, H two positive quadratic 

forms on E. There exist two symmetric bilinear forms (x, Y) H < xIY)Q and 
(x, y) H <XIY)H on E x E, characterized by 

for all x E E. 
We call the trace of Q with respect to H, and write Tr(Q/H), a real positive num­

ber, finite or not, defined as follows : 
a) If there exists x E E with H(x) = ° and Q(x) #- 0, we put Tr(Q/H) = + 00. 

b) Otherwise, Tr(Q/H) is the upper bound of the set of all numbers of the form 
m 

I Q(xJ where (Xl' ... , X m) range over the set of finite sequences of elements of E 
i= I 

such that < XdXj)H = 8ij (Kronecker's symbol). 

Remarks. - 1) For every subspace F of E, let QF denote the restriction of Q to F 
and HF that of H. We have Tr(QF/HF) !( Tr(Q/H) and Tr(Q/H) is the upper bound 
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of the set of all numbers Tr(QF/HF) where F ranges over the family of all finite dimen­
sional vector subspaces of E. 

2) Let E1 be a real vector space, Q1 and H1 two positive quadratic forms on E1 
and 1t: E -> E1 a surjective linear mapping. If Q = Q1 o1t and H = H1 0 1t, then 
Tr(Q/H) = Tr(QdH1)' 

PROPOSITION 15. - Suppose that there exists a real hilbertian space structure on E 
such that H(x) = II X 112 for all x E E. For Tr(Q/H) to be finite, it is necessary and 
sufficient that there exists a continuous and positive endomorphism u of E with finite 
trace, such that Q(x) = < xlu(x) for all x E E; this endomorphism u is unique, and 
we have 

(44) Tr(u) = Tr(Q/H) = L Q(e) 
iEI 

for every orthonormal bases (ei)iEI of E. 
Suppose that Tr(Q/H) is finite. For every x E E of norm 1, we have H(x) = 1, 

hence Q(x) :::;; Tr(Q/H). Therefore, Q(x) :::;; Tr(Q/H).llxI1 2 for all x E E, and 

1< xly )QI :::;; Q(x)1/2Q(y)1/2 :::;; Tr(Q/H)·llxll·IIYII 

by the Cauchy-Schwarz inequality. Consequently, the bilinear form (x, y) ~ < xIY)Q 
on E x E is continuous. There exists (V, p. 16, cor. 2) a mapping u E 2(E) such 
that < xIY)Q = < xlu(y). We have < xIY)Q = < ylx)Q for x, Y in E, hence u is hermi­
tian; and < xlu(x) = Q(x) ~ 0, hence u is positive. 

Conversely, let u be a continuous and positive endomorphism of E such that 
Q(x) = < xlu(x) for all x E E. Then 

< xlu(y) = !(Q(x + y) - Q(x) - Q(y)) = < xIY)Q' 

which gives the uniqueness of u. By formula (24') (V, p. 50), we get 

m m 

Tr(u) = sup L < xdU(xi) = sup L Q(xi) , 
Xl,,,.,Xm i=l Xl, ... ,Xm i=l 

where (Xl' ... , X m) range over the set of all finite orthonormal sequences of elements 
ofE. By the definition of Tr(Q/H), we get Tr(u) = Tr(Q/H). Finally, for every ortho­
normal basis (e)iEI of E, we have Tr(u) = L < eilu(e) by formula (25) of V, p. 50, 

iEI 

hence Tr(u) = L Q(eJ Q.E.D. 
iEI 

Remarks. - 3) Let E and F be two hilbertian spaces and v a linear, not necessarily 
continuous mapping from E into F. Let H(x) = II X 112 and Q(x) = II v(x) 112 for all 
x E E. It follows from prop. 15 that v is a Hilbert-Schmidt mapping ifand only ifTr(Q/H) 
is finite, and then Tr(Q/H) = II v II ~. 

4) Suppose E is finite dimensional. When the quadratic form H is invertible, prop. 15 
applies. Let (el' ... , en) be a basis of E. Put qij = < eilej)Q and hij = < eilej)H and intro­
duce the matrices q = (qij) and h = (hij)' Let U be an endomorphism of E such that 
Q(x) = <xlu(x»H for all XEE. We have 

<xIY)Q = <xlu(Y»H (x,YEE), 
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and hence the matrix of u with respect to the basis (el' ... , en) of E is equal ~o h-1q. 
By prop. 15, we have 

(45) 

If the basis (e l , ... , en) is orthonormal for H, then h is the unit matrix of order n, and 
we get 

n 

Tr(Q/H) = Tr(q) = L: Q(eJ; 
i= 1 

so that we get formula (44) in this case. 
Now suppose that the quadratic form H is not invertible. Let N be the kernel of H, 

and let 1t be the canonical mapping from E onto E/N. Therc cxists an invertible qua­
dratic form HI on E/N such that H = HI 0 1t. Let (el' ... , en) be a sequence of elements 
of E such that the sequence (n(e l ), ... , 1t(em») is a basis of E/N, which is orthonormal 
for HI' Let (e l , ... , en) be a basis of N. Then (e l , ... , en) is a basis of E and we have 

(46) 

for all real numbers SI' ... , Sn' 
Suppose that for all x E E, the relation H(x) = 0 implies Q(x) = 0: in other words, 

suppose that there exists a quadratic form QI on E/N such that Q = Q I 01t. By 
remark 2 and prop. 15, we have, 

(47) 



Exercises 

§ 1 

1) Let E be a complex normed space and f a symmetric bilinear form on the underlying 
real vector space Eo, such that f(x, x) = II X 112 for all x E E. Show that there exists one and 
only one hermitian sesquilinear form 9 on E such that f(x, y) = ~g(x, y) (prove that 
f(x, iy) = - f(ix, y) by using formula (5) of V, p. 2), hence g(x, x) = II X 112. 

2) Let E be a real or complex normed space. Suppose that for every 2-dimensional vector 
subspace P (over R) in E, there exists a symmetric bilinear form fp defined on P x P, such 
that fp(x, x) = II X 112 for all x E P. Show that fp is defined unambiguously and that there 
exists a hermitian sesquilinear form 9 on E x E such that, for every real plane PeE, we 
have fp(x, y) = ~g(x, y), hence g(x, x) = Ilx112. (If E is a real vector space, observe that we 
have II x - y 112 + II x + y 112 = 2(11 X 112 + II y 112) for every pair of points of E, and deduce the 
identity 

Ilx + y + zl12 - Ilx + yl12 - Ily + zl12 - liz + xl12 + IIxl12 + IIyl12 + IIzl12 = 0; 

if E is a complex vector space, apply exerc. 1.) 

~ 3) Let E be a real finite dimensional vector space with dimension n,f a positive and sepa­
rating symmetric bilinear form on E, and B f the bounded convex set defined by the relation 
f(x, x) ~ 1. If a = (a 1 , ... , an) is a basis of E and A the discriminant of f with respect to this 
basis, we call the volume of B f with respect to a the number va(f) = YnIAI-1/2, where 

Yn = nnl2/rG + 1). If b = (bi' ... , bn) is a second basis of E, and if 

we have vb(f) = 181 va(f). 
a) Show that, if f and 9 are two positive, separating symmetric bilinear forms such that 
B f c Bg (which is equivalent to 9 ~ f), then va(f) ~ va(g) (consider a basis for E which is 
orthogonal for both f and for g). 
b) Let A be a symmetric compact convex set in E, with 0 as an interior point. Show that 
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among all positive, separating symmetric bilinear forms f on E such that A c B J' there 
exists one and only one for which the volume of B J (with respect to the given basis of E) is 
the smallest possible. (To show uniqueness observe that if A is contained in B J and Bg , it is 
in BU+g)/2 and that we have v.(U + g)/2) :( !(v.U) + v.(g») for every basis a of E which is 
orthogonal for both f and g.) 
c) Let A be a symmetric compact convex set in E, with 0 as an interior point, and let f be 
the positive, separating, symmetric bilinear form such that A c BJ and that BJ has the 
smallest possible volume with respect to a given basis of E. Show that there exist points 
Xl' ... , X n• U 1 ' ... , Un in E with the following properties : 

IX) For every k. we have Xk E A and f(x k, xk) = 1. 
~) The sequence (u 1 , .... un) is an orthonormal basis of E for f 

n 

y) If we put xk = I akpj for 1 :( k :( n, we have akj = 0 for k < j and a~k ? (n - k + l)/n. 
j~ 1 

(Argue by induction on k. Suppose Xl' ... , X k, Up ... , Uk have been constructed, let Pk be the 
orthoprojector (for f) from E onto the subspace generated by u1 ' ... , Uk; for every E > 0, 
consider the bilinear form J; defined by 

and prove that A ¢ B f,' using b). For every integer p ? I choose a point Yp in A not belonging 
to BJ liP; take for X k + 1 a limit point of the sequence (Yp) such that 

k J (Xk+l - Pk X k+l' Xk+l - P k Xk+l)? (n - k)f(Pk X k+l' P k X k + 1 ); 

next choose uk+ 1') 
d) Prove the analogues of b) and c) for the positive separating symmetric bilinear forms such 
that B J c A and for which the volume of B J (with respect to a given bases of E) is the largest 
possible. 

~ 4) a) Let E be a real or complex normed space. of dimension? 2, having the following 
property: the relation II X II = II y II implies the inequality 

Show that the norm on E is prehilbertian. (Reduce to the case when E is real and of dimension 2, 
by means of exerc. 1 and 2 of V. p. 60. In this case, let A be the unit ball of E, and let f be 
the positive, separating, symmetric bilinear form such that A c B J and such that the volume 
of B J with respect to a given basis is the smallest possible. Let Xl. x2 be the two points 
constructed in exerc. 3, c). Show that the points of intersection of the circle f(z, z) = 1 and 
the bisectors of the two vectors Xl' x2 also belong to A, and conclude, by iteration, that 
A = Bf') 
b) Let E be a real or complex normed space, of dimension? 2, having the following property: 
the relation II X + y II = II X - y II implies II X + y 112 = II X 112 + II y 112. Show that the norm on 
E is prehilbertian (reduce to a». 
c) Prove the analogue of a) when we assume that the relation II X II = II y II implies the inequality 

(use exerc. 3, d». 
5) Let E be a real or complex vector space, of dimension ? 2. Suppose a mapping X ~ II X II 
from E into R+ is given, satisfying: II Ax II = 1)"'1.11 X II for every scalar )"" that II X II = 0 implies 
X = 0 and that we have the « ptolemaic inequality» 

II a - c 11.11 b - d II :( II a - b 11.11 c - d II + II b - c 11.11 a - d II 

for every a, b, c, d in E. 
a) Show that II X II is a norm on E (replace d by 0 and b by - a). 
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b) Show that the norm on E is prehilbertian. (From the ptolemaic inequality deduce the 
inequality II x + y liz + II x - y 112 ? 411 x 11.11 y II and use exerc. 4, c).) Prove the converse 
(show that in a hilbertian space, if we put d = al II a liz, b' = bl II b 112, we have the equality 
lid - b'll = Iia - bll/llall·llbll)· If Iiall = Ilbll = Ilcll = Ildll and if the four vectors a, b, c, d 
are in the same plane, the two members of the ptolemaic inequality are equal. 

~ 6) a) Let E be a real or complex normed space, of dimension ? 2. Show that for every 
x oF 0 in E and every real number rt > 0, there exists an element y in E such that II y II = rt 
and Ilx + yliZ = Ilxlll + Ilyllz. 
b) Suppose that if the vectors x, y in E satisfy the relation Ilx + yliZ = IlxliZ + Ily112, then 
we also have Ilx - yliZ = IlxliZ + Ily112. Show that the norm on E is prehilbertian. (Using a), 
reduce to the case in exerc. 4 : restricting to the case where E is 2-bidimensional, we prove 
that if IlxI11 = Ilxzll = 1, y = ~(XI - xz) and if ZE E is such that IlyliZ + Ilzllz = Ily + zllz= 1, 
then z = ~(XI + Xl) or z = - ~(Xl + xz)') 
c) Suppose that, for every vector x # 0 in E, the set H of all vectors y satisfying 
Ilx - yl12 = Ilxllz + IlyliZ is stable under addition. Show that the conclusion of b) holds. 
(Reduce to the case where E is real and of dimension 2. Using a) and the compactness of the 
unit ball in E, show that H is a closed set containing at least two distinct half-lines with ori­
gin 0; prove that these two half lines are opposite to each other by observing that, if not, 
the convex set which they generate would be contained in H and will contain either x or 
- x.) 

7) Let E be a real or complex normed space, with dimension? 2, having the following pro­
perty : there exists a real number y distinct from 0 and from ± 1, such that the relation 
Ilx + yll = Ilx - yll implies Ilx + yyll = Ilx - yyll· 
a) Show that if Ilx + yll = Ilx - yll, the convex mapping ¢:~ H Ilx + ~yll from R into R 
is not constant on any interval. (Argue by reductio ad absurdum; let (rt. ~) be the largest inter­
val on which ¢ is constant, show that there exists 8 > P close enough to ~ and such that 
¢(8) = ¢(~). by observing that if Ilu + vii = Ilu - vii. then Ilu + ynvll = Ilu - ynvll for 
every rational integer n.) 
b) Show that if Ilx + yll = Ilx- yll, then Ilx + ~yll = Ilx - ~yll for every real number ~. 
(With the notations of a), observe that ¢ has a relative minimum at the point ~ = O. using 
the fact that ¢(yn) = ¢( - yn) for every rational integer n; deduce that we have ¢(~) = ¢( - ~) 
identically, for, otherwise, we get ¢(A) = ¢(I1) for two numbers A, 11 such that A + 11 oF 0 
and that in this case ¢ has a relative minimum at the point ~(A + 11).) 
c) Deduce from b) that the norm on E is prehilbertian (show first that if Ilxll = IIYII, we have 
II rtX + Pyll = II px + 2yll for every pair of real numbers rt, P and that the equality II x + yll = Ilx - yll 
implies IlrtX + Pyll = IlrtX - Pyll for every pair of real numbers rt, p. Next, show that if 
II xii = IIYII = 1 and II x + yll = II x - yll, we have the relation II(rtZ - PZ) x + 2rtpyll = rtZ + pz 
by using the preceding results, and deduce the conclusion). 

8) Let E be a real or complex normed space, having the following property : if x, y, x', y' 
are four vectors in E such that 

Ilxll = Ilx'll, Ilyll = 11y'11, Ilx + yll = Ilx' + y'11 , 

then Ilx - yll = Ilx' - y'll· Show that the norm on E is prehilbertian (use exerc. 7). 

9) Let E be a real hilbertian space, f a continuous linear form on E. Show that on every closed 
convex subset A ofE, the function x H II xll z - f(x) is bounded below and attains its minimum 
at a unique point of A. 

10) Let E be a real hilbertian space, B a bilinear form on E x E, cI ' Cz two numbers> 0 such 
that 

IB(x, y)1 :S; c11lxll.llyll for every x, yin E; 

IB(x,x)l? czllxllz foreveryxEE. 
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Show that for every continuous linear form f on E, there exists a unique element x fEE (resp. 
Yf E E) such that f(x) = B(xf , x) (resp. f(x) = B(x, Yf)) for every x E E. 

11) Let E be a hilbertian space, and (xn) be a sequence of points of E which converges weakly 
to a point a. For every Y E E, we put 

d(y) = lim.inf Ilxn - yll and D(y) = lim.sup Ilxn - yll . 
n----t n-t Cf) 

Show that d(y)Z = d(a)Z + Ily - al1 2 and D(y)2 = D(a)2 + Ily - all z. If Cl and ~ are two 
real numbers such that 0 ::,; Cl ::,; ~, give examples where d(a) = Cl and D(a) = ~. 

d\T 12) a) Show that there exists a number Co > 0 such that, for every real normed vector 
space E of dimension n and every integer k ::,; can, there exists a hilbertian norm x I--> Ilxllz 
on E such that IIxl12 ::,; Ilxll for all x E E, as well as an orthonormal system (X)I"'Vk ofk ele­
ments of E (for the hilbertian structure) with norms Ilxjll ::,; 2. (Use exerc. 3 of V, p. 60.) 
b) Let n, m be two integers > 0 such that n ::,; com. Let E be a real normed vector space of 
dimension m. Show that there exists a vector subspace F of E, of dimension n, a positive and 
separating symmetric bilinear form (x, y) I--> < xly) on F and an orthonormal basis 
{al' a2 , ... , an} of F such that 

t sup I<ajlx) ::,; Ilxll ::,; IIxl12 
] 

(where II xii ~ = < x Ix») for all x E F. (Apply a) to the dual E' of E.) 

13) a) Let (xn)nEN be an infinite sequence in a Banach space E. Show that, in order that the 
family (xn) be summable, it is necessary and sufficient that, for every sequence (en) of numbers 
equal to I or to - I, the series with the general term (enxn) is convergent (use GT, III, § 5, 
exerc. 4). 
b) Let (X)I "'j"'n be a finite sequence of points in a hilbertian space E show that 

2- n I (II I ejXJ2) = I IIXjI12, 
(£j) j~1 j~1 

where (e) ranges over the set of 2n sequences of numbers equal to 1 or to - 1 (use the identity 
of the median, cf V, p. 9, formula (14)). 
c) Deduce from b) that if (X)iEI is a summable family in a hilbertian space E, the family (II Xi 112)iEI 
is summable in R. 

d\T 14) Let E be an infinite dimensional Banach space. 
a) Show that for every integer N, there exists a sequence (b) 1 "'j"'N ofN vectors in E, of norm 1, 
such that, for every sequence (~)I "'j"'N of N scalars, we have 

N N 

II I ~jbJ2 ::,; 4 I l~jlZ 
j~1 j~1 

(use exerc. 12, b)). 
b) For every sequence (An)n;, 1 of numbers ~ 0 such that I A; < + 00, show that there exists 

n 

a sequence (xn)n;, 1 of points of E such that Ilxnll = An for all n, and that the series (xn) is sum­
mabie. (Use a) of exerc. 13, a).) 
c) Deduce from b) that in every infinite dimensional Banach space, there exists a commuta­
tively convergent series, that is not absolutely convergent (Dvoretzky-Rogers th.). 

15) Let E be a complex hilbertian space, El' Ez two closed vector subspaces of E, PI' P Z 

the orthoprojectors from E onto E 1 , E2 respectively. 
a) Show that, in order that PI and P z commute, it is necessary and sufficient that E is the 
hilbertian sum of the four subspaces El n E2, E~ n E~, E~ n E2, EI n E~ (where MO denotes 
the orthogonal complement of a vector subspace M of E). 
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b) Show that ifEI is finite dimensional and IIP1 - P 211 < 1, then E2 has the same dimension 
as El (consider the intersection E~ 1\ E2)· 
c) Show that the endomorphism T = (PI - P 2)2 of E commutes with PI and P 2' and that 
the eigen subspace of T corresponding to the eigenvalue 0 (resp. 1) is the direct sum of the 
orthogonal subspaces El 1\ E2 and E~ 1\ E~ (resp. E~ 1\ E2 and El 1\ E~). 
d) Suppose E is finite dimensional and that T = AI with A # o. Then A > 0 and E is the 
hilbertian sum of subs paces of dimension ~ 2, each of which is stable under PI and P2 (observe 
that PI - P 2 is hermitian and deduce that E is the hilbertian sum oftwo subspaces E +, E-
such that P1 .x - P2 .x = ,j).x in E+ and P1 .x - P2 .x = - ,j).x in E-; then show that 

1+,j). 1-,j).._ 
for xEE+, we have P 1 .x = 2 x + z and P2 ·x = 2 x + z, with zEE ). 

* e) Suppose that El and E2 are finite dimensional. Show that there exists a family (F')'EA 
of subspaces of E of dimension ~ 2 such that E, El and E2 are respectively the hilbertian 
sums of the families (F.).EA' (F. 1\ E1).EA and (F. 1\ E2).EA (use c) to reduce to the case when E 
is finite dimensional, then apply d». * 

16) Let E be a hilbertian space, and P be a continuous projector on E, i.e. a continuous endo­
morphism of E such that p 2 = P. Show that for P to be an orthoprojector, it is necessary 
and sufficient that liP II ~ 1. (To see that the condition is sufficient, consider a vector x ortho­
gonal to the kernel of I - P.) 

If P has finite rank, show that there exists a closed subspace F of E, with finite codimension, 
containing P(E) and such that the restriction of P to F is an orthoprojector. 

17) a) Let E be a real hilbertian space of dimension 2, PI, P 2 two orthoprojectors from E 
onto the lines D I , D2 respectively, assumed distinct. Show that for every x E E such that 
Ilxll = 1, we have II(PI - P2).xll = sin e, where e is the angle between DI and D2 lying 
between 0 and n12, and that for every y # 0 in E, there exists x # 0 such that (PI - P2).x 
is collinear with y. 
b) Let E be a real hilbertian space, PI' P 2 two orthoprojectors on E, with respective images 
E1, E2. Show that liP I - P 211 is the lower bound of the numbers sin e, where e is the angle, 
between 0 and nl2 of the two lines D1, D2 such that DI eEl' D2 c E2, DI and D2 being 
orthogonal to EI n E2. 
c) Let QI' Q2 be two continuous projectors on E, with images El' E2, and let PI' P 2 be the 
orthoprojectors onto EI and E2 respectively. Show that IIP2 - Pili ~ IIQ2 - QIII. (Observe 
that (Q2 - QI) P2 = (l - QI) (P2 - PI) and use a) and b).) 

~ 18) Let E be a real normed space of dimension;;:. 3. Suppose that there exists a decreasing 
bijective mapping ro from the set m of closed vector subspaces of E onto itself, such that 
ro(ro(M») = M and M 1\ ro(M) = {O} for every ME m. 
a) Show that there exists a linear mapping u from E onto its dual E' defined upto a scalar 
factor and such that u(M) = (ro(MW for all M E m. (Considering the case where M is 1 dimen­
sional, apply the fundamental tho of projective geometry (A, II, § 9, exerc. 16) by observing 
that the only automorphism of the field R is the identity mapping (GT, IV, § 3, exerc. 3). 
b) If we put < xly) = < x, u(y», show that < xix) # 0 for all x # 0 and that the relations 
<xly) = 0 and <ylx) = 0 are equivalent. Deduce that <ylx) = <xly) for every pair of 
points x, y of E (consider a number A E R such that <AX + ylx) = 0). 
c) Show that < x Ix) has the same sign on the set of all x # 0; replacing u by - u if necessary, 
we can then assume that <xly) is a positive, separating symmetric bilinear form on E x E. 
d) Let:Yo be the initial topology of E. Show that the topology :Y on E, defined by the norm 
< xix )1/2 is finer than the topology :Yo (observe that the dual of E for :Y contains the dual E' 
of E for :Yo). 
e) Show that u is a continuous mapping from E onto its dual E', for the topologies cr(E, E') 
and cr(E', E). Deduce that if E is complete for the initial topology :Yo, then u is continuous 
for :Yo and for the strong topology /3(E', E) (observe that u transforms every set bounded 
for cr(E, E') into a bounded set for cr(E', E»). Deduce that then the topologies :Y and :Yo are 
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identical, and w(M) is the orthogonal complement of M for the hilbertian space structure 
defined on E by the form < x Iy > (cf I, p. 17, tho 1). 
f) Show that in the space fl(N), with the norm induced by that of fOO(N) assigned to it, there 
exists a bijective mapping M H w(M) from 9Jl onto itself, having the properties mentioned 
above (IV, p. 47, exerc. 1). 

~ 19) Let E be an infinite dimensional complex normed space. Suppose that there exists a 
bijective mapping w from the set 9Jl of closed vector subspaces of E onto itself, having the 
properties listed in exerc. 18. 
a) Show that there exists a semi-linear mapping u from E onto its dual E' (for the automor­
phism ~ H ~ of C) defined up to a scalar factor and such that u(M) = (w(M)t for every M E 9Jl. 
(Proceed as in exerc. 18; using IV, p. 65, exerc. 16, show that u is a semi-linear mapping relative 
to the identity automorphism of C or to the automorphism ~ H ~; finally prove that the 
first case cannot occur since < x, u(x) > =1= 0 for x =1= 0.) 
b) If we put <ylx> = <x, u(y», show that <xly> = <ylx> and that <xix> has the same 
sign on the set of all x =1= 0 (same method as in exerc. 18). 
c) Finally show that the topology defined by the norm < x Ix> 1 (2 is finer than the initial topo­
logy :Yo on E, and that these two topologies are identical when E is complete for :Yo; in the 
latter case, w(M) is the orthogonal complement of M in the hilbertian space E. 

20) Let E be a real finite dimensional vector space, and <p be a bijective linear mapping from E 
onto its dual E*. Let A be a symmetric compact convex set in E, with 0 as an interior point; 
assume that for every x in the boundary of A, the hyperplane with equation < y - x, <p(x) > = 0 
is a support hyperplane for A. 
a) Let f(x) = 1< x, <p(x) > I, and let a be a boundary point of A where f(x) attains its minimum. 
Show that for every point b such that < b, <p(a) > = 0, we also have < a, <p(b) > = O. (Observe 
that < x, <p(x) > =1= 0 for x =1= 0, and so we can assume that f(x) = < x, <p(x) > ~ 0 ; use the 
fact that every support hyperplane of A at the point a is also a support hyperplane of the set 
defined by f(x) :( f(a).) 
b) Show that (x, y) H < x, <p(y) > is a symmetric bilinear form, and that A is identical with the 
set of all points x such that f(x) :( y for a suitable constant y. (Argue by induction on the 
dimension of E; with the notations of a), consider the hyperplane with the equation 
< x, <p(a) > = 0.) 

21) Let E be a finite dimensional complex vector space, and let <p be a bijective semi-linear 
(relative to the automorphism ~ H ~ of C) mapping from E onto its dual E*. Let Ilxll be a 
norm on E such that, for all xEE, we have I<x, <p(x) >1 = Ilxll.II<p(x)ll. Show that 
(y, x) H < x, <p(y) > is, up to a constant factor, a positive separating hermitian form and that 
<x, <p(x) > = yllxl1 2 (y constant). (Argue as in exerc. 20.) 

~ 22) Let E be a real normed space of dimension ~ 3, such that, for every homogeneous 
plane P in E, there exists a continuous projector from E onto P, of norm 1. Show that the 
norm on E is prehilbertian. With the help of V, p. 60, exerc. 2, reduce to the case where E 
is of dimension 3, and establish successively the following propositions. 
a) For every homogeneous plane P in E, there exists a unique continuous projector from E 
onto P, with norm 1, and the kernel of this projection is a homogeneous line D(P) such that 
P H D(P) is a continuous bijection from the space of homogeneous planes of E into the 
space of homogeneous lines of E (GT, VI, ~ 3, No.5). 
b) Every point ofthe sphere D: Ilxll = 1 in E is extremal in the ball B ofE defined by Ilxll :( 1. 
(First show that if XES is not extremal, its section F x in B (II, p. 87, exerc. 3) will be 2-dimen­
sional, by considering all the homogeneous planes P passing through x, next prove that this 
hypothesis is contradictory, by proceeding similarly at a point in F x where there exists only 
one support line of F x in the plane generated by F x; the existence of such a point can be esta­
blished by using II, p. 88, exerc. 7 and p. 88, exerc. 8). 
c) Every point of the sphere S' with equation Ilx'll = 1 in the dual E' of E is extremal in the 
ball B' of E' defined by Ilx'll :( 1. (First observe that for every homogeneous line D' of E', 
there exists a unique homogeneous plane P'(D') in E' such that for every point in S' n P'(D'), 
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the support plane of B' at this point (unique by a)) is parallel to D'; moreover, the mapping 
D' I-> P'(D') is continuous. Deduce that if x' E S' were not an extremal point in B', its section 
F x' in B' would be of dimension at least 2; for this consider all the homogeneous lines D' 
parallel to the support plane of B' at the point x'. Next show that this hypothesis implies a 
contradiction, by considering a point of strict convexity y' of F x' (II, p. 88, exerc. 8), and the 
unique homogeneous line D~ parallel to the support line of F x' at the point y' in the plane 
generated by F x' , and prove that the function D' I-> P'(D') would not be continuous for D' = D~.) 
d) Show that, if three homogeneous planes P l' P 2' P 3 in E contain the same line ~, then 
the three lines D(P 1)' D(P 2)' D(P 3) are in the same homogeneous plane 1t(~) (consider the 
unique support plane of B at a point of intersection of ~ and of S). Applying the fundamental 
theorem of projective geometry (A, II, § 9, exerc. 16) deduce that there exists a bijective linear 
mapping <j> from E' onto E such that, for all x' E E', the point <j>(x') belongs to the line D(P), 
where P is the plane with the equation < y, x') = O. Show that for every point x' E S', the 
plane with the equation < <j>(x'), y' - x') = 0 is the support plane of B' at this point, and 
conclude by applying Y, p. 65, exerc. 20. 

~ 23) Let E be a complex normed vector space of dimension? 3, such that for every (com­
plex) homogeneous plane P in E, there exists a continuous projector from E onto P with 
norm 1. Show that the norm on E is prehilbertian. Using Y, p. 60, exerc. 2 reduce to the case 
where E is of dimension 3 over C, and proceed as in exerc. 22. (For part b) of the proof, consider, 
for every x' E E' such that Ilx'll = 1, the convex set Gx ' of all XES such that <x, x') = 1, 
show that if G x ' is not simply 0, it would have dimension at least 3 over R; then in the real 
affine linear variety generated by G x" consider a boundary point of G x', where there exists 
only one support hyperplane (real) of G x " Similarly, for part c) of the proof, consider, for 
all XES, the set G~ of all x' E S' such that < x, x') = 1 and show that G~ reduces to a point; 
for this, prove that, if not, the real affine linear variety generated by G~ will have dimension 
at least 2 over R, and will contain two linearly independent vectors over C. Conclude using Y, 
p. 65, exerc. 21.) 

-r 24) In a real normed space E of dimension ? 3, we say that a vector y is quaSi-normal 
to a vector x, if for every scalar Ie, we have II x + ley II ? II x II. 
a) Show that, if the relation «y is quasi-normal to x }) is symmetric in x, y, then the norm 
on E is prehilbertian (show that the condition of Y, p. 65, exerc. 22 is satisfied). 
b) Show that the same conclusion holds, if for every closed homogeneous hyperplane H 
in E, there exists a vector =1= 0 which is quasi-normal to all the vectors of H. (Same method, 
apply tho 2 ofE, III, § 2, No.4 to the continuous projectors of norm 1 from the vector subspaces 
containing P onto a homogeneous plane P, these projections being linearly ordered by the 
relation of extension.) 
c) Show that the same conclusion holds if for every vector x =1= 0 in E, there exists a closed 
hyperplane H such that x is quasi-normal to all the vectors of H. (Reduce to the case where E 
is of dimension 3, and apply Y, p. 65, exerc. 22 to the dual of E). 
d) Show that the same conclusion holds if, when z is quasi-normal to x and y, then z is quasi­
normal to x + y (apply Y, p. 65, exerc. 22). 

25) a) Let E be a real normed space and x' =1= 0 a vector in the dual E' of E. Show that for 
every vector y in the hyperplane X,-I(O) to be quasi-normal to x (exerc. 24), it is necessary 
and sufficient that < x, x') = II x 11.11 x' II. 
b) Deduce from a) that for all x =1= 0 in E, there exists a closed homogeneous hyperplane H 
of E such that every vector y E H is quasi-normal to x. 
c) If x, yare two points in E and x =1= 0, then there exists a scalar ct. such that ct.x + y is quasi­
normal to X. 

26) A real normed space E is said to be smooth if all the points of the unit sphere in E are 
points of smoothness (II, p. 87, exerc. 6) of the unit ball. For this to be so, it is necessary and 
sufficient that there exists a unique positively homogeneous mapping f from E - {O} into 
E' - {O}, such that Ilf(x)11 = 1 for Ilxll = 1, and that <x, f(x) = Ilxll.llf(x)ll. Show that 
the following properties are equivalent 

ct.) E is smooth. 
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[3) For all x oft 0 in E and all y E E, there exists a unique scalar a such that ax + y is quasi­
normal to x. 

y) For every x E E, if y and z are quasi-normal to x, y + z is quasi-normal to x. 
(To see that y) implies [3), observe that if ax + Y and [3x + yare quasi-normal to x, then 
(a - [3) x is quasi-normal to x.) 

27) A real normed space E is said to be strictly convex if all the points of the unit sphere are 
points of strict convexity (II, p. 87, exerc. 6) of the unit ball. Show that, for E to be strictly 
convex, it is necessary and sufficient that for all x oft 0 in E and for all y E E, there exists a 
unique scalar a such that x is quasi-normal to x + y. (Observe that the mapping t I--> II tx + yll 
is convex in R.) 

28) Let E be a normed space, E' its dual. 
a) Show that if E' is smooth (V, p. 66, exerc. 26), E is strictly convex (if x and yare such that 
x oft y, Ilxll = Ilyll = IIt{x + y)11 = 1, consider an x' E E' such that Ilx'll = 1 and 

<t(x + y), x') = 1). 

b) Show that if E' is strictly convex, E is smooth. 

~ 29) Let E be a normed space, E' its dual. A mapping f from E - {O} into E' - {O} is 
said to be a support mapping if it is positively homogeneous, and if for every x E E such that 
Ilxll = 1, we have II f(x) II = 1 and <x, f(x» = 1. For E to be smooth (Y, p. 66, exerc. 26), 
it is necessary and sufficient that there exists a unique support mapping from E - {O} into 
E' - {O}. 

Let S be the unit sphere in E, S' the unit sphere in E', and let Xo E S. The following con­
ditions are equivalent : 

a) Xo is a point of smoothness of the unit ball in E, 
[3) There exists a support mapping f whose restriction to S is continuous at the point Xo 

when S is assigned the norm topology, and S' the weak topology a(E', E). 
y) For every y E E, the mapping t I--> Ilxo + tyll has a derivative at the point t = O. 

(To see that a) implies [3), argue by reductio ad absurdum, using the weak compactness of the 
unit ball in E'. To see that [3) implies y), reduce to the case where E is 2-dimensional and use 
the fact that t I--> Ilxo + tyll is convex.) 

Then every support mapping is continuous at the point xo' 

30) Let E be a Banach space, E' its strong dual, E" the strong dual of E', E'" the strong dual 
of E", EIV the strong dual of E"'. 
a) Suppose that E is non-reflexive; then there exists x' E E' such that Ilx'll = 1, but that we 
do not have < x, x') = 1 for any x E E with Ilxll = 1 (IV, p. 57, exerc. 25). On the other hand, 
there exists a sequence (x~) of points of E' such that Ilx~11 = 1, tending strongly to x', and 
a sequence (xn ) of points ofE such that Ilxnll = 1 and < x n ' x~) = 1 for all n (II, p. 77, exerc. 4). 
Show that in E", the sequence (xn) does not converge to any point for the topology a(E", E"') 
(observe that otherwise it would converge to a point x E E for which < x, x') = 1). 
b) Show that it is not possible that x' and x~ are points of smoothness ofthe unit sphere in E'" 
(observe that x n , considered as an element of EIV will be the unique element x~v E EIV such 
that Ilx~vll = 1 and < x~, x~v) = 1 and use exerc. 29). 
c) Conclude that if E'" is smooth, or if EIV is strictly convex, then E is necessarily reflexive. 

31) A normed space E (real or complex) is said to be uniformly convex if, for every E such 
that 0 < E < 2, there exists 0 > 0 such that the relations Ilxll :( 1, Ilyll :( 1, Ilx - yll ~ E 
in E imply Ilt(x + y) II :( 1 - o. A uniformly convex space is strictly convex (Y, p. 67, exerc. 27). 
We say that E is uniformly smooth if, for every E > 0, there exists 11 > 0 such that the rela­
tions Ilxll ~ 1, lIyll ~ 1, Ilx - yll :( 11 imply the inequality Ilx+yll ~ Ilxll + lIyll-Ellx- YII· 
This is equivalent to : for every E > 0, there exists p > 0 such that the relations Ilxll = 1, 
Ilyll :( p imply the inequality 

Ilx + yll + IIx - yll :( 2 + Ellyll . 

A uniformly smooth space is smooth (Y, p.66, exerc. 26). 
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a) Show that if E is uniformly convex, its strong dual E' is uniformly smooth, and that if E 
is uniformly smooth, then E' is uniformly convex; the restriction ofthe unique support mapping 
(V, p. 67. exerc. 29) to the unit sphere S of E is a mapping from S into the unit sphere S' of E', 
which is continuous for the norm topologies of E and E'. 
b) Show that if E is uniformly convex, and, if a filter 3' on E converges to Xo for the topology 
cr(E, E') and is such that limw II x II = II Xo II, then 3' converges to Xo for the initial topology 
of E. 
c) Show that a Banach space which is uniformly convex or uniformly smooth is reflexive 
(use b) and c) and also IV, p. 60. exerc. 12). (ei V, p.72, exerc. 14.) 
d) Generalize the first part of tho 1 of V, p. 10, and also cor. 1 and 2 of V, p. 11 to uniformly 
convex Banach spaces. 

32) Let E be a normed space (real or complex) of dimension ~ 2, such that, for every 8 such 
that 0 < 8 < 2, the relations Ilxll = 1, Ilyll = 1, Ilx - yll ~ 8 in E imply the inequality 

lit(x + y)ll:::.; 1 - 4 . Show that the norm on E is prehilbertian. (Reduce to the case ( 8211/2 

when E is real and 2- imensional, and argue as in V, p. 61 ; exerc. 4, a).) 

-If 33) Let E be a uniformly convex Banach space (V, p. 67. exerc. 31). Then there exists a 
number 8 such that ~:::.; 8 < 1 and such that the relation Ilx-yll ~ tsup(llxll, Ilyll) in E 
implies lit(x + y)11 :::.; 8 sup (IIxll, Ilyll)· 
a) Let (xn) be a sequence of points of E such that II xn II :::.; M and such that the sequence tends 
to 0 for cr(E, E'). Show that, if for an index p, II xp II ~ t M, then there exists q > p such that 
II xp - Xq II > t M, and consequently II t(xp + xq) II :::.; 8M (argue by reductio ad absurdum, 
by observing that for all x' EO E' such that II x' II = 1, we have < x p' x' > = lim < xp - xn, x' ». 

n~oc 

Deduce that there exists a strictly increasing mapping e from N into itself such that 
Ilt(XI'(2n) + xl'(2n+ 1)11 :::.; M8, and such that if x~1) = t(XI'(2n) + xl'(2n+ I»)' the sequence (x~l)) 
tends to 0 for cr(E, E') and that II x~1) II :::.; M8 for all n. 
b) Show that there exists a sequence (xnJ extracted from (xn) such that, if we put y(k) = x nk ' 
we have the following property: for every integer p > 1, every integer q < p and every inte­
ger i such that 1 :::.; i :::.; 2P - q, 

Ily((i - 1) 2q + 1) + y((i - 1) 2q + 2) + ... + y(i2q ) II :::.; M8q • 

(Iterate the procedure of a) by constructing a sequence (X~k+I») from the sequence (X~k») in the 
same way as (X~l») is constructed from (xn); then use a suitable « method of diagonalization ».) 
c) Let rand q be two integers > 1. Deduce from b) that if r2q :::.; k :::.; (r + 1) 2q, then 

Ilxn! + xn2 + ... + xnJ :::.; (2 q - 1) M + 2qM + (r - 1) 2qM8q 

(decompose the sum on the left into several subsets, by varying h from 1 to 2q , then from 
(j - 1) 2q + 1 to j2q for 2 :::.; j :::.; r, then from r2q + 1 to k). 
d) Show that for every bounded sequence (xn) in E, there exists an extracted sequence (xnJ 
such that the sequence of the averages (xn! + ... + xnJ/k converges for the initial topology 
of E (the Banach-Saks-Kakutani theorem). (Using the fact that E is reflexive, reduce to the 
case when the sequence (xn) converges to 0 for cr(E, E'), and use c) for q and r large enough.) 

34) Let E be a Banach space and K be a convex, bounded subset that is closed for cr(E, E'). 
Suppose that for every sequence (xn) in K, t~ere exists an extracted sequence (xnJ such that 
the sequence of averages (xn! + ... + xnJ/k IS convergent for cr(E, E'). Show that for every 
continuous linear form x' on E, there exists an element x of K such that < x, x' > = sup < y, x' > 

YEK 

(apply the hypothesis to a sequence (xn) of points of K such that < xn , x' > tends to sup < y, x' ». 
YEK 

Deduce that if E has the property of exerc. 33, d), then E is a reflexive space (cf IV, p. 57, 
exerc. 25). 

* 35) Let E denote a real, finite dimensional hilbertian space of dimension n, S the unit sphere 
of E and m the unique positive measure of norm 1 on S which is invariant under the group 
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of automorphisms of E. Consider S as a metric space in which the distance is defined by 
d(x, y) = Arc cos < xIY). For every XES and r ~ 0, let B(x, r) denote the set of all points y 
in S such that d(x, y) (; r; for every subset A of S and every real number r ~ 0, let A, be the 
set of all points x in S such that d(x, A) (; r. 
a) Given two closed subsets A and B of S, let 8(A, B) be the lower bound of the set of all real 
numbers r ~ 0 such that A c B, and B c A,. Show that 8 is a distance on the set g; of all 
closed subsets of S, and that g; is a compact metric space for this distance. Show that the 
mapping A f-> meA) from .'F into R is upper semi-continuous. 
b) Let Xo be a point in S, let H be the hyperplane in E orthogonal to xo, Xl a point in Hand 
y the arc of the circle joining Xo to - xo, passing through Xl' i.e. the set of all points in S of 
the form Xo sin 8 + Xl cos 8 with 181 (; rc/2. For every y E y, let Hy = H + Y and Sy = S n Hy ; 
let m denote the unique positive measure of norm 1 on Sy which is invariant under the group 
of al{ automorphisms of E which leave Xo fixed. 

Let A be a closed subset of Sand y' the set of all points in y such that A n Sp is non-empty. 
For every y E y', there exists a unique real number r(y) such that 0 (; r(y) (; rc and such that 
m/A n S) = my(B(y, r(y» n S); let siA) be the union of the sets B(y, r(y») n Sy as y ranges 
over y'. Prove that siA) is closed and that meA) = m(siA»). 
c) For every closed subset A of S, the infimum rCA) of the set of all real numbers r ~ 0 for 
which there exists an XES with A c B(x, r) is called the radius of A. Let M(A) denote the 
set of all closed subsets C of S such that m(C) = meA) and m(CE) (; m(AE) for every e > O. 
Show that the following conditions are equivalent for every pair (A, B) of closed subsets 
of S : 

(i) meA) = m(B) and B is of the form B(x, r) with XES and r ~ 0; 
(ii) BE M(A) and r(B) (; r(C) for every subset C of A belonging to M(A). (Arguing by 

induction on n, we deduce from b) that sy(A) belongs to M(A) for every closed subset A of S ; 
if r > 0 is such that A c B(xp r) show that every point of the boundary ofB(xp r) in S which 
belongs to s/A) also belongs to A.) * 

* 36) The notations are the same as in exerc. 35. 
a) Let a be a vector of norm 1 in E, KE the set of all XES such that 1< xla) 1 :( sin e and LE 
the set of all XES such that d(x, Sa) ~ e (where Sa is the set of all points of S orthogonal to a). 
Show that for e > 0 small enough, we have m(KJ ~ 4e-nE2/2 and m(LE) (; 4e-nE2/2 (we observe 
that the image ofthe measure m under the mapping X f-> < xla) from S into the interval (-1, 1) 
of R is of the form cn(1 - t 2 )(n- 3)/2 dt with a suitable constant Cn > 0). 
b) Let f be a continuous mapping from S into Rand M(f) a real number such that the set 
of all XES for which f(x) (; M(f) (resp. f(x) ~ M(f») has a measure ~ t for m. Let B be 
the set of all XES such that f(x) = M(f). Deduce from a) that, for every e > 0 small enough, 
the set of all XES such that d(x, B) ~ e, has a measure for m at most equal to 4e-nE2/2. 

c) For every e > 0, let hen, e) be the smallest integer h ~ I for which there exist points Xl' ... , xh 
h 

in S such that S = U B(xi' e) show that lim (log hen, e»)/llog el = n. 
i = 1 E----j.O 

d) Recall that E is a real hilbertian space of dimension n. Let k be a positive integer and e, e' 
two strictly positive numbers such that 4h(k, e) < enE·2/2. Let f be a mapping from S into R 
such that If(x) - f(y)1 (; Ilx - yll for all x, y in S, and M(f) a real number satisfying the 
relation stated in b). Show that there exists a vector subspace F of E, of dimension k, satisfying 
the following condition: for every x E F n S, there exists a point yin F n S such that Ilx - yll < e 
and If(y) - M(.f)1 (; e'. * 
* 37) Let E be a real hilbertian space of dimension n and let y be a positive measure on E 

such that f ei(xIY)dy(y) = exp( - rcllx112/2) for all x E E (INT, IX, § 6, No.5). Let m be the 
E 

unique positive measure of norm I on the unit sphere S of E which is invariant under the 
group of automorphisms of E. 
a) Let p be a continuous function on E, satisfying p(t.x) = t.p(x) for all XES and all real 

positive t. Show that f pdy = Cn f pdm with cn = rc I/2 r(n/2)/r«n + 1)12). 
E S 
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b) Show that there exists a constant C > 0, independent of n, such that 

f 1 ~~~n 1< xlei > Idy(x) ~ c.(log n)1/2 
E 

for every orthonormal basis (e1' ... , en) ofE. 

§2 

c) Let E > 0 and let k be a positive integer. Deduce from b) and exercises 12 (V, p. (3) and 
36, d) that if n is large enough, then for even real normed space V of dimension n, there exists 
a vector subspace W of V, of dimension k, satisfying the following property: there exists a 
real hilbertian space W t' of dimension k, and a bijective linear mapping u from W onto W 1 
such that sup (Ilull, Ilu- II):S; 1+ E. 

§ 2 

1) Let B be an orthonormal basis in an infinite dimensional hilbertian space E. 
a) Show that every everywhere dense subset in E has a cardinality at least equal to that of B, 
and that there exists an everywhere dense set iri E which is equipotent to B. 
b) Show that Card(E) = Card(BN ) (to see that Card(E) :S; Card(BN ) use a»). 
c) Show that if Card(B) :S; Card(R), then the cardinality of every algebraic basis of E is equal 
to Card(R) = 2~o (use II, p. 80, exerc. 24, c»; however, if Card(B) > Card(R), then every 
algebraic basis ofE is equipotent to BN (use b) and A, II, ~ 7, exere. 3, d». 

~ 2) a) Let E J , Ez be two hilbertian spaces whose respective hilbertian dimensions are 
two cardinals 111 and n such that 11t < n :S; m~o. Let E = E J EB E2 be the hilbertian sum 
of E l' Ez and let (b))'EL be an orthonormal basis of E2. Show that there exists an algebraically 
independent system (a,hEL in E1 (cf exere. I, c»; let H be the subspace of E generated (alge­
braically) by the family (a, + b,hEL' Show that the hilbertian dimension of II is equal to H 
(observe that the orthogonal projection from H onto E2 is everywhere dense, and use exerc. 1, 
a». If S is an orthonormal subset of H, show that S n Ez = 0 ; and deduce that Card(S) :S; m 
(observe that every element of an orthonormal basis of E1 is orthogonal to every element of 
S except at most to a countably infinite subset). 
b) Let E3 be a hilbertian space with hilbertian dimension p ~ n, and let F be the hilbertian 
sum E EB Ey Let G be the subspace H + E3 of F. Show that the hilbertian dimension of 
G is p. If T is an orthonormal subset of G, show that T n (Ez + E3) c E3 ; deduce that 
the cardinality of the orthogonal projection from Tonto Ez is at most m (argue as in a». 
Conclude from this that G does not have an orthonormal basis, by observing that the ortho­
gonal projection from G onto E2 is everywhere dense in E2. 

3) Show that, in every Hausdorff and non complete prehilbertian space E, there exists a 
closed hyperplane whose orthogonal subspace in E reduces to O. Deduce that if E satisfies 
the first axiom of countability, then there exists a non total orthonormal family in E which 
is not contained in any orthonormal basis. 

4) Let E be a Hausdorff prehilbertian space, (EJiEI a family of complete vector subspaces 
of E, well-ordered by inclusion, such that the union of all Ei is everywhere dense in E. Show 
that there exists an orthonormal basis (eJ'EA in E with the following property : for-every 
i E 1, the set of all e. belonging to E; is an orthonormal basis of Ei. (Consider the set of all 
orthonormal subsets S in E such that, for every i E T, every vector of S not belonging to E;, 
is orthogonal to Ep and take a maximal element of this set.) From this, deduce a new proof 
of the corollary of V, p. 24. 

5) Show that for a hilbertian space E with an infinite hilbertian dimension, there exists an 
isomorphism from E onto a closed vector subspace of E which is distinct from E. 
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6) Let E be a hilbertian space and (e)iEI an orthonormal basis of E. Show that if (a)iEI is a 
topologically independent family in E such that l: II ei - ai 112 < + 00, then the family (a) 

iEI 

is total. (Let J be a finite subset of I; show that there is a continuous linear mapping u from E 
into itself such that u(eJ = ei for i E J, u(eJ = a i for i rf J, and that the norm of u - IE can 
be made arbitrarily small by a suitable choice of J; then use IV, p. 65, exerc. 17.) 

7) Given n points Xi (1 :S; i:S; n) in a Hausdorffprehilbertian space E, we mean by the Gram's 
determinant of these n points the determinant 

G(Xl , ... , xn) = det«xilxj »). 

a) Show that G(Xl' ... , xn) ;;0, 0 and that for Xl' ... , Xn to form an independent system, it is 
necessary and sufficient that G(Xl , ... , Xn) # 0 (assuming that dim (E) ;;0, n, consider an ortho­
normal basis of an n-dimensional subspace containing Xl' ... , xn)' 
b) Show that if Xl' ... , xn is an independent system in E, the distance from a point X E E to 
the vector subspace V generated by Xl' ... , xn is equal to (G(x, Xl' ... , XJ/G(Xl' ... , xnW/ 2 

(find the expression for the orthogonal projection of X on V). 
c) Let (xn) be an infinite sequence of points in E. For the family (xn) to be topologically inde­
pendent, it is necessary and sufficient that, for every integer p > 0, 

(use b». 
8) Let E be a hilbert ian space which has a countably infinite orthonormal basis (en)n;, l' 

Let A be the closed convex envelope in E of the set consisting of the points (1 - ~) en for 

all n ;;0, 1. Show that there does not exist any pair of points x, y in A whose distance is equal 
to the diameter of A (compare with IV, p. 54, exerc. 12). 

9) a) Let E be an infinite dimensional real hilbertian space satisfying the first axiom of counta­
bility. Let (an)n;'O be a free family of points in E, such that each of the two families (a 2n) and 
(a 2n + 1) is total in E (II, p. 80, exerc. 26, a». Let F and G be two vector subspaces of E for which 
(a 2n) and (a 2n + 1) are respectively (algebraic) bases. The spaces F and G are put in separating 
duality by the bilinearform <ylz). Show that ifB denotes the unit ball in E, then in the space F, 
endowed with the topology cr(F, G), the convex set F II B is closed, but does not have any 
closed support hyperplane. 
b) Let (bn)n,q be an everywhere dense set in B, and for every X E E, let u(x) be the sequence 
« bk I X )/k)k;' 1 . Show that u is an injective, continuous linear mapping from E into the hilbertian 
space i'~(N) and that u(B) is compact. Show that, in the normed subspace L = u(F) of i'~(N). 
the set u(B II F) is closed, convex and precompact, but does not have any closed support 
hyperplane (observe that if f is a continuous linear form on L, then f 0 u is a continuous 
linear form on F for the topology cr(F, G»). 

10) Let E be an infinite dimensional real hilbertian space satisfying the first axiom of counta­
bility, and (en)n;'l an orthonormal basis of E. 
a) Let A be the closed convex balanced envelope of the set of all points en/n in E. Show that 
A is compact and that there does not exist any closed supporting hyperplane of A at the point 0, 
but that there exist lines D passing through 0 such that D II A = {O}. 
b) Let F be the hilbertian sum E EB R, eo a vector which, with the en (for n ;;0, 1) forms an 
orthonormal basis of F. If B is the closed convex envelope of { eo} u A, show that there exists 
a closed segment L with mid-point 0 in F, such that L II B = {O}, but there does not exist 
any closed hyperplane passing through 0 which separates Land B (even though there exists 
a closed supporting hyperplane of B at 0). 

11) Let E l , E2 be two infinite dimensional real hilbertian spaces satisfying the first axiom 
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of countability, and E the hilbertian sum El EB E2 (which we shall identify with the product 
E1 x E 2), Let (en)n" 1 be an orthonormal basis of El ; in E 2 , let A be a compact convex set 
containing 0, and D a line passing through 0, such that DnA = {O} and suppose there 
exists no closed supporting hyperplane of A at the point 0 (exerc, 10), Let (an)' (Pn) be two 
sequences of numbers;;:> 0 such that lim Pn = 0 and I an-I < L Let P be the set of all points 

n---> 'ij 

I ~"en of EI such that 0 ,;::; ~n ,;::; a" for every n ;;:> 1, Finally, let Q be the closed convex envelope 

in E of the set of all points (a,/,,,. x + Pna), where n ~ 1. a # 0 is a fixed point in 0 and x 
ranges over A. 
a) Show that P n Q = 0 and that there exists no closed hyperplane in E separating P 
and Q, 
b) Let F be the hilbertian sum E EB R, and let c be an arbitrary point of F not contained 
in E. Show that the pointed convex cones PI' Ql with vertex c, generated by P and Q respec­
tively, are closed in F and that there exists no elosed hyperplane in F separating PI and Ql 
(to see that PI and 0 1 are closed, prove that neither P nor Q contain the half-line), 

12) Let E be an infinite dimensional real hilbertian space. Show that there exist infinitely 
many complex hilbertian space structures on E for which E is the real locally convex space 
underlying these complex hilbertian spaces (11, p. 61), (To prove the existence of the auto­
morphisms u of the topological vector space structure of E. such that u2 (x) = - X, use an 
orthonormal basis of E; then apply V, p. 60, exerc, 1.) Give an example to show that the pro­
position does not extend to Hausdorff non complete prehilbertian spaces (consider an every­
where dense hyperplane in such a space). 

13) Let E be an infinite dimensional hilbertian space satisfying the first axiom of counta­
bility and (en)nEZ an orthonormal basis of E whose set of indices is the set of rational integers. 
Let u denote the isometry from E onto itself such that u(en) = en+ 1 for all nEZ, and put 

f(x) = W - Ilxll) "0 + u(x). 

a) Let B be th;c unit ball and S the unit sphere in E. Show that the restriction of f to B is a 
homeomorphism from B onto itself(observe that the restriction of u to S is a homeomorphism 
from S onto itself), and that there does not exist any point Xo E B such that f(x o) = Xo (express 
Xo in terms of its coordinates with respect to (en»)' 
b) For every x E B, let g(x) be the point of intersection of S with the half-line with origin I(x) 
passing through x. Show that 9 is a continuous mapping from B onto S, such that g(x) = x 
for all XES (compare with GT. VI, ~ 2, exerc. 8), Deduce that there exists Xo E S and a 
continuous mapping h from S x (0, 1) onto S such that /z(x, 0) = Xo and hex, 1) = x for 
all XES. 

14) a) Let (En)n"O be an infinite sequence of real Banach spaces, E the vector subspace of 
", 

the product F = n En consisting of all sequences x = (xn ) such that I II Xn 112 < + 00. 
n=Q 

Show that the function Ilxll = (I IlxnI12)t/2 on E, is a norm, and that E is complete for this 

norm: we say that E is the hifbertilln sum of the Banach spaces En' 
b) Show that the strong dual E' of E can be identified with the hilbertian sum of the strong 
duals E~ of the spaces En. and that if x' = (x~) E E', then <x, x') = I <Xn , x~) (ifuis a conti-

nuous linear form on E, Un its restriction to En considered as a subspace of E, and an a point 
of En such that II an ',I = 1, show that, for every sequence (An) of real numbers such that 
I A; < + CD the series with the general term Anun(an) is convergent, and deduce that 
n 

I (un (an»)2 < + 00, using Banach-Steinhaus theorem for E2(N), for example). 

c) Deduce from b) that when each of the En is reflexive, then E is reflexive. In particular, if 
for En we take the space Rn endowed with the norm Ilxll = sup I~il for x = (~Jt"i"n' show 

1 ~i~n 
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that E is reflexive, but there does not exist any norm compatible with the topology of E and 
for which E is uniformly convex (V, p. 67, exerc. 31) . 

.,,-r 15) a) For every integer n > 0, let d n) be the double sequence defined in IV, p. 63, exerc. 8. 
Let E be the vector space of double sequences x = (xij) of real numbers such that, for every 
integern > O,wehavePn(x) = (Ia?plx il)1/2 < + 00. ShowthatthePn are semi-norms on E, 

i,j 

and that E endowed with the topology defined by these semi-norms is a Frechet space and a 
Montel space (argue as in IV, p. 60, exerc. 11). 
b) Show that the dual of E can be identified with the space E' of all double sequences x' = (x;) 
such that, for at least one index n, we have I (a~j)-1 Ix;l < + 00. 

i,j 

CD CfJ 

c) For every x = (Xi) E E, show that I (I Ixil) < + 00 (use Cauchy-Schwarz inequa­
j::= 1 i = 1 

en 

lity); for every j ;? 1, put Yj = I xij; the sequence u(x) = (y) then belongs to the hilbertian 
i= 1 

space [2(N). Show that u is a strict surjective morphism from E onto £2(N); deduce that 
there exists weakly compact sets in f2(N) which are not the images under u of a bounded set 
in E (argue as in IV, p. 63, exerc. 8). 

~ 16) a) Let A be the set of increasing mappings A:N -> R!; for every integer n;? 0, and 
every A E A, let <Pn(A) = A(n). Let E be the set of all mappings x: A -> C such that, for every 
n E N, we have Pn(x) = (I IX(A)1 2<pn(A»)1/2 < + 00. Show that E is a vector space on which 

A.EA 

the Pn are the semi-norms defining a reflexive Frechet space structure. 
b) Let B be a bounded set in E, and let rxn = sup Pn(x); let Ao be an element of A such that 

XEB 

lim Ao(n)-lrx; = O. Show that X(Ao) = 0 for all x E B, and hence that the set B is not total 

in E. 
c) Let (Un) be a countable fundamental system of convex and balanced neighbourhoods 
of 0 in E; ifU~ is metrizable for the strong topology on E', then there exists a sequence (Bnm)m;:,O 
of bounded sets in E such that the sets B~m n U~ form a fundamental system ofneigt'lbourhoods 
of 0 in U~ for the strong topology. Deduce from b) that there exists an integer n such that 
U~ is not metrizable for the strong topology (use exerc. 5 of III, p. 38). 

§ 3 

1) Let E be a hilbertian space. Show that the bilinear mapping (u, v) f-> uv from sm(E) x sn(E) 

into sm+n(E) is continuous and that its norm is equal to ((m ;- ~)!)1/2. (To see that this norm 
m. n. 

is bounded by ,,', argue as in the case of the exterior algebra (V, p. 35). Deduce ( (m + n) ')1/2 
m. n. 

that the multiplication in S(E) cannot be extended to S(E) by continuity when E is not simply O. 

2) Let E be an infinite dimensional hilbertian space, and let P, q be two integers;? 1; let 

p' = [~] q' = [~J (integral parts). Show that the norm of the bilinear mapping (u, v) f-> u 1\ V 

from JV(E) x J\q(E) into J\p+q(E) is at least equal to P q. . (When P = 2p' and A A A (( '+ ') ')1/2 
p'! q'! 

q = 2q' are even, consider a 2n-dimensional subspace En in E, with an orthonormal basis 
(e)l "'jOn; let ej = e2j - 1 1\ e2j for 1 ,;;; j ,;;; n; consider the product u 1\ v, where u = I eiJ, 

H 
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v = I ei<: where H (resp. K) range over the set of all subsets ofp' (resp. q') elements of {1, 2, ... , n} 
K 

~nd e~ = e;,. J\ ... J\ e;p (resp. ei<: = e'" J\ ... J\ e"q) if i1 < ... < ip' (re.sp .. jl. < ... < jq.) 
IS the mcreasmg sequence, of elements of H (resp. K). Deduce that the muluplicatlOn in A(E) 
cannot be extended to A(E) by continuity.) 

§4 

1) Let E and F be two infinite dimensional Hilbert spaces satisfying the first axiom of counta­
bility, (an) an orthonormal basis of E, and (bn) an orthonormal basis of F. 
a) Let u be a continuous linear mapping from E into F; let u(an) = I ctmnbm. Show that 

I Ictmnl2 ~ II ul1 2 and I Ictmn l2 ~ II ul1 2 for every m and n. 
m 

b) Give an example of a double sequence (ctmn) such that I Ictmn l2 ~ 1 for all n and I Ictm.12 ~ 1 
• 

for all m, but such that there does not exist any continuous linear mapping u from E into F 
such that < u(an)lbm ) = ctmn for every pair of integers (m, n). (Show that if leN is a set of p 
integers, and if V p (resp. W p) is the subspace of E (resp. F) generated by the an (resp. b.) such 

that n E I, then there exists a linear mapping up from V ponto W p such that < up(an)lbm ) = )p 
for mEl and n E I, and that Ilupll ;;;, .)p.) 

~ 2) Let A = (ctmn)(m,n)ENxN be a double sequence of complex numbers, which we also call 
an infinite matrix. For every point x = (xn) ofthe direct sum space e(N), the sums Ym = I ctm.x. 

n 

are defined; let A.x be the point (Ym) ofthe product space eN, then x I-> A.x is a linear mapping 
from e(N) into eN, and every linear mapping from e(N) into eN is of this form. Let E. denote 
the subspace of e(N) generated by the first n vectors of the canonical basis, Pn ·the canonical 
projection from eN onto En ; when En is assigned the norm induced by that of the space f~(N), 
II ull denotes the norm of the linear mapping u from the finite dimensional hilbertian space En 
into itself. 
a) In order that the image ofe(N) under the mapping x I-> A.x be contained inf~(N) and that 
this mapping extend to a continuous linear mapping from f~(N) into itself, it is necessary 
and sufficient that the norms II P nAP n II are bounded. This implies that the rows and the columns 
of A belong to f~(N) (exerc. 1). 
b) Let A * denote the infinite matrix (ct;"n), where ct;"n = ~.m' If the columns of A belong to 
f~(N) (in other words, if x I-> A.x maps e(N) into e~(N»), then the series 13mn = I ~pmctp. are 

p 

absolutely convergent, and we put A * A = (13mn)' Show that for x I-> A.x to extend to a con­
tinuous linear mapping u from f~(N) into itself, it is necessary and sufficient that the norms 
IIPn(A*A)Pnll are bounded (we have <P.(A*A)Pn.xlx) = IIAPf x l12 for all xEE.). Then 
x I-> A * A.x extends to a positive hermitian mapping u*u from fdN) into itself. 
c) For two infinite matrices X = (~mn)' y = (11mn), we say that the product XY is defined 
if the series ~mn = I ~mp11pn are absolutely convergent, and then we put XY = (~m.)' We say 

p 

that a power X k (k integer> 1) is defined if X k - 1 and X k - 1 X are defined and then we put 
X k = X k - 1 X; in this case, xpxq = X k for every pair of integers p, q such that p + q = k. 
If A is an infinite matrix whose columns are in f~(N) and if the product (A * A)2 is defined, 
show that for all x E En' we have < (PnA * AP.)2 .xlx) ~ < Pn(A * A)2 Pn.xlx), and deduce that 
IIP.A*APnI1 2 ~ IIP.(A*A)2P.II· 
d) In order that an infinite matrix A be such that the image of e(N) under x I-> A.x is con­
tained in f~(N) and that x I-> A.x extends to a continuous linear mapping from f~(N) into 
itself, it is necessary and sufficient that the following three conditions are satisfied : 

(i) the rows and columns of A are in e~(N) ; 
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(ii) the powers (A * A)k are defined for every integer k > 1 ; 
(iii) we have 

sup(supl«A * A);;'m)l/nl) < + OCJ 
n m 

TVS V.75 

where (A * A);;'m denotes the term with indices (m, m) of the matrix (A * A)n. (Observe that if 
C is the matrix, with respect to the canonical basis of En' ofa positive hermitian endomorphism 
of En' then IICII ~ n sup IC;;!, by considering the trace of C and by diagonalizing C. Using 

1 ~i~n 

the inequality proved in c), show that 

IlPnA*APnll ~ n2 - k sup 1«A*A)~kW-k 
1 ~i::Sn 

for every integer k > 1, if conditions (i), (ii) and (iii) are satisfied.) 

~ 3) Let (ai)(i.j)EI xl be a countably infinite double family of complex numbers. Assume that 
there exist two numbers p > 0, y > 0, and a family (P)iEI of numbers> 0 satisfying the 
relations 

for all i, j in 1. 
a) Show that there exists a continuous endomorphism u from f~(I), with norm ~ (py)1/2, 
such that for all x = (X)iEI in f~(I), we have u(x) = y, where y = (y) is given by Yi = L aUxj 

j 

(for x = (x) and y = (y) in e(l), put vij = IXil (p)a;)/py/2, wij = Iy) (Pilai)/pYI2, and find 
a bound for L V;jW;). 

i,j 

b) For I, take the set of all integers ? 1, and let aij = (i + j) - I. Show that the conditions (*) 
are satisfied withp; = i -1/2 and P = y = 11: (these being the best possible constants) (compare 
the series in (*) with an integral). In an analogous manner, treat the case where J = Nand 
aij = (i + j + 1)-1 (<< Hilbert's matrix »). 

oc 

* c) Let Yf' = H2(D) be the Hardy space, consisting of all functions fez) = L a"z", ana-
n=O 

lytic in the open disc D : Izl < 1 and such that IIfl12 = L la,,1 2 < + OCJ; then II fll is a norm 
" on Yf', for which Yf' is isomorphic to e~(N). Given two functions f; g in Yf', show that the 

function t f-4 f(t) get) of the real variable t is integrable on (0, 1) with respect to the Lebesgue 

measure and that the formula B(f, g) = r f(t) get) dt defines a continuous bilinear form 

on Yf' x Yf' (consider B(f, f) = r f(t)2 dt for a function f E Yf' of the form fez) = ,,~o anz" 

with an ? 0 for 0 ~ n ~ N; use Cauchy's theorem to establish the relation 

II f(t)2dt = - i In f(e ie)2 ei9 d8 
- 1 0 

from which we get BU; f) ~ t fn If(e i8Wd8 = 11: Ilf112. In this way, get the result of b), 

according to which the Hilbert's matrix defines an endomorphism of norm ~ 11: of the hil­
bertian space e~(N).) * 

4) Let E be a complex hilbertian space of finite dimension d. 
a) For every u ? 0 in £l(E) (V, p. 45), prove that there exists a unique v ? 0 in £l(E) such 
that u = v2 (diagonalize u); we write v = U l/2 . 
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b) For every u E 2'(E), put abs(u) = (u*u)1/2. Show that u and abs(u) have the same norm 
and that we have abs(J\"(u») = J\"(abs(u») for every integer n ~ d. 
c) Let Sl (u) ~ '2(U) ~ ... ~ siu) ~ 0 be the sequence of eigenvalues of abs(u) counted 
with their order of multiplicity. Show that II ull = Sl (u) and that for every integer n ~ d, 
II J\"(u) II = Sl (u) '2(U) ... sn(u). In order that II J\"(u) II = Ilull" for all n such that 1 ~ n ~ d, 
it is necessary and sufficient that u*u is a homothety, in other words, that u is a scalar multiple 
of a unitary operator. 

5) Let E, F be two Hilbert spaces, and u a continuous linear mapping from E into F. Let 
feu) denote the set of all x E E such that Ilu(x)11 = Ilull.!lxIi-
a) Show that feu) is the closed vector subspace of E which is the kernel of u*u - iiu1121E' 
and is orthogonal to the kernel of u. ' 
b) Show that the restriction of u to feu) is a bijection from feu) onto £(u*), whose inverse bijec­
tion is the restriction of II ull- 2. u* to f(u*) ; moreover the image of the orthogonal complement 
(e(u)t under u is contained in (£(u*)r. If u1 is the restriction of u to (C(u»)O, considered as a 
mapping from (f(u)t into (f(u*)t, the adjoint ui is the restriction of u* to (e(u*)t ; if feu) # E, 
let < u), called the sub-norm of u, denote the norm II u1 11 ; if feu) = E, we put < u) = O. Then 
<u*) = <u). 

-0 6) Let E be a hilbertian space, M,N two closed subspaces of E and Me, N° their respective 
orthogonal complements: let PM' PN denote the orthogonal projections on M and N respective­
ly, such that 1 j - PM' IE - fiN are the orthogonal projections on M S and N respectively. 
Put UNM = (IE - P'I) PM and oeM, N) = IluNMII; we have oeM, N) = o(N, M O

) ~ 1; the 
relation oeM, N) < 1 implies M n N° = {O}. 
a) Let M denote the orthogonal complement in M ofM n N C

, and let elM, N) = oeM. N). Show 
that (with the notations of exerc. 5) f(uNM) = M n N S and deduce that e(M, N) = < UNM ) ~ 
oeM, N); moreover, ifM n N° = {O} (and in particular if oeM, N)< 1), then e(M, N) = oeM, N). 
b) For a continuous linear mapping u from E into itself, we designate by conorm of u the 
number c(u) = inf Ilu(x)ll/llxll, where x ranges over the set of all vectors # 0 orthogonal 
to u- 1(0) (if u = 0, put c(u). = 1). For u(E) to be closed in E, it is necessary and sufficient that 
c(u) > 0 (I, p. 17, tho 1). We have c(u*) = c(u). 
c) Let VNM = Pr;PM' Show that 

e(M, N)2 + C(VNM)2 = 

(observethatlluNM(x)!!2 + IlvNM (x)11 2 = IlpM.xI12, and that the kernel ofvNMis M +(MnN°) 
and deduce that < UI'M)2 ~ 1 - c(VNM)2). 
d) Deduce from h) and c) that e(N, M) = e(M, N) and, using a), that dM. N°) = e(M, N). 
e) Put geM, N) = IlpM - P'III (Cl V, p. 64, exerc. 17). Show that 

geM, N) = sup(o(M, N), o(N. M») 

(observe that PM - PN = (IE - PN ) PM - PN(lE - PM»); deduce that e(M, N) ~ geM, N). 
If M n N" = N n MO = {O}, we have the relation elM, N) = oeM, N) = Ii(N, M) = geM, N). 
If q(M, N) < 1, then M n N° = N n MO = {O}. 
f) Let QM' QN be two continuous projections in E, with respective images M and N ; give 
another proof of the relation geM, N) ~ Ii Qr:/ - QNII (V, p. 64, exerc. 17). (Note that for all 
x E E, we have II(1E - QM).xI1 2 + 11 Qr.";.xll = Ilxl:2 + II(QM - Q~).xI12, and apply this 
relation to x = (PM - PN)'Y' observing the relations (1E - QM) (PM - PN) = (QM - Q'I) PN 
and (PM - PN) Q\1 = (lE - PN) (QM - QN)·) 

-0 7) a) With the notations of ex ere. 6, show that, for M + N S to be closed. it is necessary 
and sufficient that M + N° = (M O n Nt. 
b) Show that the following properties are equivalent: 

ex) elM, N) < 1 : 
B) M + N° is closed in E; 
y) If M is the orthogonal complement of M n N° in M and (N°)- that of M n N° in N°, 

then E is the direct sum of MO n N, M n N°, M and (N°) - . Moreover, if Rand S are respective­
ly the projections from E onto M and (N G

)- corresponding to this decomposition, then 
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IIRII = IISII = (1 - c2(M, N))1/2. (To see that IX) implies ~) observe first that if x EM and 
yE (N G

)-, then l<xly)1 ~ c(M, N) Ilxll.llyll; then, let u = x + Y + t be the decom­
position of an element u E M + N° with x E M, Y E (N°) - and t E M n N°, deduce that 
Ilxll ~ (1 - c2(M, N)tl/2 Ilull, Ilyll ~ (1 - c2 (M, N)t 1/2 Ilull and Iltll ~ Iluli. To prove that 
y) implies IX), consider the decomposition v = VI + V 2 for a v EM, where v, is the orthogonal 
projection of v onto N, the orthogonal complement of N n MO in N; we have R. VI = v, and if 
we had E(M, N) = 1, there would exist a sequence (vn) E M such that II vnll = 1 and such that II(vn)111 
tends to O. Next show that the restriction RI of R to N is a bijection from N onto M; to cal­
culate IIRII, show that IIR1-III ~ (1 - cl(M, N))1/2.) 
c) Deduce from b) that if M + N° is closed, then so is MO + N. 

8) a) Let E be a hilbertian space, and let T be a continuous linear mapping from E into itself 
such that II TIl ~ 1. Show that the relations T.x = x, <T.xlx) = Ilxll, T*.x = x are equi­
valent, and that the kernel of IE - T and the closure of the image of IE - T are the ortho­
gonal complements. 
b) Let T be a continuous linear mapping from E into itself, satisfying the inequality 

(1) 

for all x E E. Then liT. x II < II x II for all x such that T. x i= x; for every x E E, the sequence 
(Tn .x) converges to a point P .x, and P is the orthogonal projector onto the kernel of 1 E - T. 
c) Let PI' ... , P, be orthoprojectors on E. Show that the product T = P I P2 ... P, satisfies 
relation (1) (argue by induction on r); hence the orthoprojector P is the orthogonal projector 
onto the intersection of the images of the projectors Pj (note that if liPrxll < Ilxll for an indexj, 
then II T .xll < Ilxll)· 
~ 9) Let E be a hilbertian space and (Pj)jEN be a sequence of orthoprojectors an E, such that, 
for all j E N, there exists an nj E N such that for all kEN, at least one of the orthoprojectors 
Pk , Pk+ I' ... , Pk+n is equal to Pj . Put Rs = P Ps- I ... Po for all sEN. 
a) For every x E E, let Xs = R,.x. Show that 2= Ilxs - I - Xsll2 ~ Ilx11 2 , and deduce that for 

s 

every integer r ~ 1, x s +, - Xs tends to 0 as s tends to + 00. 

b) Let (x,) be a sequence extracted from (x,) which tends to a limit Y weakly; then every 
sequence (xsk +r ) also tends to y weakly. Deduce that y belongs to each of the subspaces 
M j = Pj(E). (For each j, there exists rk such that 0 ~ rk ~ nj and Sk + rk = j; show that 
the sequence (XSk +,) tends to y weakly.) 
c) Show that the sequence (x s) converges weakly to the orthogonal projection from x onto 
the intersection M of the M j . (Reduce to the case where M = { 0 }, and use b) and the weak 
compactness of every closed ball in E.) 

~ 10) Let E be a hilbertian space, u a positive endomorphism of E. 
a) Show that for all x E E, we have 

Ilu(x)i12 ~ Ilull·<u(x)lx) 
(observe that < u(x)lu(x)2 ~ < u(x)lx) < u2(x)lu(x», by Y, p. 3, prop. 2). 
b) Let M be a closed vector subspace of E, MO its orthogonal complement. Let x E M, and let 
f(x) be the lower bound of <u(x + y)lx + y) as y ranges over MO. For every c > 0, let 
E(x, c) be the set of all y E MO such that < u(x + y)lx + y) ~ f(x) + c. Show that E(x, E) 
is convex and that for all z E M O

, we have 

(*) <u(x+Y)lz)l~c<u(z)lz) for YE E(x,c) 

(consider the function g : t f-> < u(x + y + tz)lx + y + tz) of the real variable t, which attains 
its minimum at a point to and note that g(to) ~ f(x) and g(O) ~ f(x) + E). 
c) For every integer n ~ 1, let Yn E E(x, lin); show that the sequence (u(x + Yn)) tends to 
a limit XI belonging to M, and that the sequence «u(Yn)lyn») is bounded (find a bound for 
the numbers < u(Yn - Ym)IYn - Ym) for m ~ nand 1< u(x + yn)lz)1 for z E M G using ine­
quality (*)). 
d) Let (y~) be a sequence of points of MO such that < u(y~ - Y~)IY~ - y~) is arbitrarily small 
when m and n are large enough, and such that the sequence (u(x + y~)) has a limit x~ EM; 
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show that X'I = Xl' (Let Q(z) = (u(z)lz); first show that the number Q((Yp-Y~)-(Yq-y'») 
is arbitrarily small as soon as P and q are large enough, and deduce tliat the sequen~e 
(Q(Yn - y~») is bounded; using the fact that (x~ - xllYp - Y~) = 0 for all P, show that the 
sequence (Q(Yn - y~» tends to 0 and use a).) 
e) Deduce from d) that the point Xl does not depend on the choice of the Yn E E(x, lin), 
and that if we put ul (x) = Xl' then ul is a linear mapping from M into itself. Show that 
o :( (u l (x)lx) :( (u(x)lx) for all X E M and consequently that ul is continuous and is an 
endomorphism of M which is?: O. (Observe that (u(x + Yn)IYn) tends to 0 and (u(x + yn)lx + Yn) 
tends to f(x).) 
.f) Let PM be the orthoprojector with image M, and let Uo = U I 0 PM' We have 0 :( Uo :( u, 
and M is stable under uo' and the restriction of U o to MO is null. Show that Uo is the largest 
element in the family of all endomorphisms v ?: 0 such that v :( u, that M is stable under 
v and is such that the restriction of v to MO is null. 

11) Let E and F be two hilbertian spaces. Show that for every element u in E @2 F, there 
exists an orthonormal sequence (en) in E, an orthonormal sequence (J,,) in F and a sequence 
(An) of numbers?: 0 such that I A~ < + 00 and that u = I Anen @ J,,; then Ilull~ = I A~ 

(cf Y, p. 55, tho 2 and p. 53, tho 1). 

~ 12) Let E be a real hilbertian space and Y be a closed convex cone in E, with vertex 0, 
let yo be the polar cone of Y (in E, identified canonically with its dual). 
a) Show that every point X E E can be written uniquely in the form X = x+ - x_ where 
x+ E Y and x_ E yo, and (x+lx_) = O. 
b) For every facet F ofY (II, p. 87, exerc. 3), F is either the point 0 or is a convex cone with 
vertex 0; the set of all Y E yo which are orthogonal to F is a closed facet F' of yo (but this is 
not the « dual facet» of F in the sense of II, p. 87, exerc. 6, the latter being empty). 
c) Take for E the set of all Hilbert-Schmidt endomorphisms of a real hilbertian space, and 
for Y the set of positive elements in E. Show that we have yo = Y and in this case interpret 
the result of a) (to see that Y c yo, use cor. 1 of Y, p. 56). 
d) Under the hypothesis of c), let v E Y; the set L of all X E H such that (v(x)lx) = 0, or, 
which is the same, such that vex) = 0 (Y, p. 77, exerc. 10) is a closed vector subspace of H, 
and the facet F of v in Y is the closed set of all u E Y such that u(x) = 0 for all X E L; it can 
be identified with the cone of all positive Hilbert-Schmidt endomorphisms of the hilbertian 
space L". Deduce that the projection from E onto the convex set F (Y, p. 11) is identical with 
the orthogonal projector from E onto the closed vector subspace of E generated by F. 

~ 13) Let E be a hilbertian space, G a subgroup of the group of all automorphisms of the 
hilbertian space structure of E. Let EG be the closed vector subspace of E consisting of all 
vectors invariant under G, and P the orthoprojector from E onto EG . 

a) Show that the orthogonal complement of EG in E is the closed vector subspace generated 
by the vectors S.X - x, where s ranges over G and X E E. 
b) Let H be a non-empty closed convex subset of E which is stable under G. Show that the 
projection of 0 onto H belongs to EG. 
c) Suppose that H is the closed convex envelope of the orbit of a point x of E, and let a be 
the projection of 0 onto H. Show that a = p(x) and that H n EG reduces to the point a (<< Bir­
khojf~Alaoglu tho »). (Observe that x - a is contained in the orthogonal complement of EG.) 

d) Suppose G is generated by an automorphism u of E. Show that p(x) = !~~ n ~ 1 jt uj(x) 

for all x E E (if Yn = _1-1 f uj(x), note that the sequence (Yn) has a weak limit point a, 
n + j~O 

and that u(a) = a, then use c»). 
e) Suppose G is the image of a homomorphism t I--> u, from R onto the group of automor­
phisms of E, such that for all x E E, t I--> U,.X is a continuous mapping from R into E. Show 

1 IT that p(x) = lim T u,.x dt for all x E E. 
T-4 OCJ 0 
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f) Suppose that there exists an element x =1= 0 of E and a number a such that 0 < a < 1 
and Ils.x - xii,,;: allxll for all s E G. Show that EG =1= {O} (use c)). 

14) Let E be a complex hilbertian space. and T a Hilbert-Schmidt endomorphism of E. 
a) Let Rand L be positive Hilbert-Schmidt endomorphisms such that R 2 = T * T and 
U = TT* (V, p. 57, cor. 3); let R = abs(T), and call this the « absolute value» of T (cf V, 
p. 75. exerc. 4); we have L = abs(T*). Show that Ker(T) = Ker(R) and L(E) = T(E). 
There exists one, and only one isometry V from R(E) onto T(E) such that T = VR; if we 
extend V by continuity to R(E), then to an operator U E £-,(E) by taking U.x = 0 on the 
orthogonal complement of R(E), we also have T = UR (polar decomposition of T). Then 
R = U*T = U*UR = RU*U and L = URU*, T = LU*. If T belongs to £-,I(E), then 
so does R = abs(T), and T is the product of two Hilbert-Schmidt endomorphisms. 

b) If T belongs to £-,I(E), show that Tr(abs(T)) = sup(I l<adT.bi)l) where, on the right 

hand side, (aJ and (bJ range over the set of orthonormal bases of E (use the polar decompo­
sition of T). Show that if we put II Till = Tr(abs(T)), then II Till is a norm on the space £-' I (E), 
such that IITI12 ,,;: IITilI' 
e) Conversely, if T E £-,(E) is such that, for every pair (aJ, (bJ) of orthonormal bases of E, 
the sum I l<aiIT.bi>1 is finite, then T E £-,I(E) (first observe that T is a Hilbert-Schmidt 

i 

endomorphism, then use the polar decomposition of T). 
d) Let (TJ be a sequence of Hilbert-Schmidt endomorphisms (resp. of elements of £-,I(E)) 
such that for every pair of points x, y of E, the sequence «xITv'Y») converges to <xIT.y), 
where T is a linear mapping from E into itself; in addition, assume that the sequence of norms 
IITvl12 (resp. IITvlll) is bounded. Show that T is a Hilbert-Schmidt endomorphism (resp. an 
element of £-,I(E)) (use b) and c)). 
e) Deduce from d) that the space £-,I(E) is a Banach space for the norm IITk 
f) For an endomorphism T E £-,(E) to belong to £-,1(E) it is necessary and sufficient that, 
for at least one orthonormal basis (eJ of E, the sum I II T .eill is finite (with the notations 

i 

x 1 
g) In the space f~, let (en) be the canonical orthonormal basis, and let a = n~o n + 1 en; 

if F is the I-dimensional subspace C.a, the orthoprojector PF has finite trace, but the series 
I IIPF·enll is not convergent. 

15) Let E be a complex hilbertian space; let !18 = £-'(E) denote the algebra of continuous 
endomorphisms of E, endowed with the usual norm II Til = sup II T .xll. For every pair of 

IlxiiO 
points x, y in E, let O)x,y denote the continuous linear form T f-4 < xl T.y) on !18, and let .OJc be 
the closed subspa~e of the strong dual !18' of the Banach space !18, ge~erated by the O)x,y' 

a) Show that the llllear mapplllg whIch assocIates to every T E !18 the llllear form 0) f-4 < 0), T) 
on !18o ' is an isometry from .OJ onto the strong dual of !18o ; in other words, !18o is a predual (IV, 
p. 56, exerc. 23) of (!jJ. 

The topology cr(!18, !18o ) on (!jJ is called the ultraweak topology. 
b) For every element T of £-,I(E), we define a linear form <PT on (!jJ by the formula 
<PT(S) = Tr(ST) for every operator S E !18. Show that <PT is continuous and that the mapping 
T f-4 <PT is an isometry from the Banach space £-,1(E) (exerc. 14, e)) onto the Banach space!18o 

(first consider the case when T has finite rank). 
e) Let (!jJoo be the vector subspace of !18o generated by the O)x,y (in such a way that!18o = ~o). 
Show that (!jJoo is barrelled (note that a subset of!18 which is bounded for cr(!18, !18oo) is bounded 
for the norm topology). 
d) Let Fn be the subspace of !18co which is the image of the set of all endomorphisms of E 
of rank ,,;: n under the isometry defined in b). Show that Fn is nowhere dense in !18co and deduce 
that !18oo is not a Baire space. 



Historical notes 

(chapters I to V) 

(N.B. - The roman letters refer to the bibliography at the end of this note.) 
The general theory of topological vector spaces was founded in the period around 

the years 1920 to 1930. But the ground work had been under preparation since long 
by the study of numerous problems of functional Analysis; we cannot retrace the 
history of the subject without indicating, at least briefly, how the study of these pro­
blems slowly (particularly since the beginning of the 20th century) led the mathe­
maticians to an awareness of the relationship between the questions being considered 
and the possibility offormulating them in a much more general manner, and applying 
to them uniform methods of solutions. 

It can be said that the analogies between Algebra and Analysis, and the idea of 
considering functional equations (i.e. where the unknown is a function) as « limiting 
cases» of algebraic equations have their origins in the infinitesimal Calculus, which 
in some sense was invented to generalize «from the finite to the infinite ». But the 
direct algebraic ancestor of the infinitesimal Calculus is the Calculus of finite diffe­
rences (cf FVR, Historical note of chapters I, II, III, p. 54-58) and not the solution 
of general linear systems; it was only after the middle of the 18th century that the 
first analogies between the latter and the problems of differential Calculus made their 
appearance in the study of the equations of vibrating strings. We shall not enter 
into the details of the history of this problem here; but the constant reappearance 
of two fundamental ideas stands out, both of which are apparently due to D. Ber­
noulli. The first consists in considering the oscillation of the string as a « limiting 
case» of the oscillation of a system of n point masses as n increases indefinitely; 
we know that, later, this problem, for n finite, was the first example in the search 
for the eigenvalues of a linear transformation (cf A, Historical Notes of chapters VI­
VII); these numbers correspond in the limiting case, to the frequencies of the « eigen 
oscillations» of the string, which where observed experimentally long before, and 
whose theoretical existence had been established (notably by Taylor) at the beginning 
of the century. This formal analogy, although hardly ever mentioned later ((I, b), 
p. 390) never seems to have been lost of sight of during the 19th century; but as we 
shall see, it acquired its full importance only around the years 1890-1900. 

The other idea of D. Bernoulli (perhaps inspired by experimental facts) is the 
« superposition principle» according to which the most general oscillation of the 
string should be « decomposable» by superposition of the « eigen oscillations»; 
mathematically speaking, this means that the general solution of the equation of 
vibrating strings should have a series development as I c,,<p,,(x, t), where the <p,,(x, t) 

" 
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represent the eigen oscillations. We know that this principle was the starting point of a 
long battle on the possibility of developing an « arbitrary» function in a trigonome­
tric series, a battle which was settled by the works of Fourier and of Dirichlet only in 
the first third of the 19th century. But even before this result was obtained, there 
were other examples of series development in « orthogonal» functions * : spherical 
functions, Legendre polynomials, and also various systems of the form (eiAnX), where 
the 'A" are no longer multiples by the same number; these had already been intro­
duced in the 18th century in oscillation problems, as also by Fourier and Poisson 
in the course of their researches on the theory of heat. Around 1830, Sturm (I) and 
Liouville (II) systematized all the phenomena observed in these various particular 
cases into a general theory of oscillations for functions of one variable; they con­
sidered the differential equation 

(1) ix (p(X) Ix) + 'Ap(x) y = 0 (p(x) > 0, p(x) > 0) 

with the boundary conditions 

(2) 

and proved the following fundamental results 
1) the problem has a non-zero solution only if 'A takes one of the values of a 

sequence ('An) of numbers > 0, tending to + 00 ; 

2) for each 'A", the solutions are multiples of the same function Vn ' which may 

be assumed « normalized» by the condition f pv;dx = 1, and for m #- n we have 

f pvmvndx = 0; 

3) every twice differentiable function f on [a, b] which satisfies the boundary 
conditions (2), can be developed in a uniformly convergent series as f(x) = L: cnv,.(x), 

n 

where Cn = f pfvndx; 

4) the equality f pPdx = L: c; holds (this equality had already been proved 

by Parseval in 1799, though in a purely formal manner, for the system of trigono­
metric functions; and from it « Bessel's inequality» follows immediately; the latter 
inequality was announced by Bessel (again for trigonometric series) in 1828). 

Half a century later, these properties were completed by the work of Gram (III) 
who, following the researches of Tchebichef, threw light on the relationship between 

* This term however does not appear before the work of Hilbert. 
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the development in series of orthogonal functions and the problem of« best quadratic 
approximation» (a direct outcome of the «method of least squares» of Gauss 
in the theory of errors); the latter consists of the following: given a finite sequence 
of functions (\)I)lo(io(n' and a functionj, to find the linear combination L Gi\)li for 

i 

which the integral fb p(f - L Gi\)lJ2dx attains its minimum. In principle, this only 
a ' 

suggests a trivial linear algebraic problem, but Gram solved it in an original way, 
by applying the method of« orthonormalization » to the \)Ii' as described in chap. V, 
p. 23 (and generally known under the name of Erhard Schmidt). Next, in the case 
of an infinite orthonormal system, the question arises of finding out when the « best 
quadratic approximation» Iln of a function j, by linear combinations of the first 
n functions of the sequence, tends to 0 as n increases indefinitely * ; Gram was thus 
led to the definition of the notion of a complete orthonormal system, and recognized 
that this property is equivalent to the non-existence of non-zero functions which are 
orthogonal to all the <Pn' He even attempted to elucidate the concept of « mean 
quadratic convergence », but before the introduction of the fundamental ideas 
of measure theory, he could hardly obtain any general results in this direction. 

In the second half of the 19th century, the major effort of analysts was mainly 
directed towards the extension of the Sturm-Liouville theory to functions of several 
variables. This theory was prompted by the study of elliptic partial differential 
equations arising in Mathematical Physics, and the boundary value problems 
which are naturally associated with these. The main interest primarily centered 
on the equation of «vibrating membranes» 

(3) 

where solutions vanishing on the boundary of a sufficiently regular domain G were 
sought; the methods which had worked successfully for functions of one variable 
were no longer appropriate for this problem, and the considerable analytic diffi­
culties that presented themselves were overcome little by little. We recall the main 
steps towards the solution: the introduction of the « Green's function» of G, whose 
existence was proved by Schwarz; the proof, again due to Schwarz, of the existence 
of the smallest eigenvalue; and finally, in 1894, H. Poincare, in a celebrated memoir 
(V G) succeeded in proving the existence and the essential properties of all the eigen­
values. He considered the solution of the equation L).(u) = 1, for a« second member» 
j given; the solution being such as to vanish on the boundary; then by a skillful 
generalization of Schwarz's method, he proved that UJ,. is a merom orphic function 
of the complex variable A, having only real simple poles An' and these are precisely 
the eigenvalues being sought. 

* It must be pointed out that in this study, Gram did not restrict himself to considering only 

continuous functions, but emphasised the importance of the condition f pf 2 dx < + 00. 
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These researches are directly related to the beginnings of the theory of linear 
integral equations, which must have certainly contributed the maximum to the advent 
of modern ideas. We shall here limit ourselves to giving a brief outline of the deve­
lopment of this theory (for fuller details, we refer to the Historical Notes which will 
follow the chapters of this Treatise dedicated to spectral theory). This kind offunc­
tional equations, which first made a modest appearance in the first half of the 19th 
century (Abel, Liouville), had already acquired some importance since Beer and 
C. Neumann reduced the solution of« Dirichlet's problem» for a sufficiently regular 
domain G to the solution of an « integral equation of second kind» 

(4) u(x) + f K(x, y) u(y) dy = f(x) 

for the unknown function u; C. Neumann succeeded in solving this equation in 
1877 by a method of «successive approximations ». Prompted as much by the 
algebraic analogies mentioned above as by the results he had obtained for the equa­
tion of vibrating membranes, H. Poincare, in 1896 (V b) introduced a variable para­
meter A in front of the integral in the preceding equation, and asserted that, just 
as in the case of the equation of vibrating membranes, the solution is once again 
a meromorphic function of A; but he was unable to prove this result. This was 
established seven years later by I. Fredholm (VI) (for a continuous « kernel» K and 
a finite interval ( a, b)). The last mentioned author, perhaps with a greater awareness 
than his predecessors, let himself be guided by the analogy of( 4) with the linear system 

(5) 

to obtain the solution of (4) as the quotient of two expressions, based on the model 
of determinants, which arise in Cramer's formulas. This, however was not a new 
idea : since the beginning of the 19th century, the method of « indeterminate coeffi­
cients» (which consists of obtaining an unknown function, assumed to have a 
series development I en<l>n' where the <l>n are known functions, by calculating the 

n 

coefficients en) had led to « linear systems with infinitely many unknowns» 

(6) 
00 

L aijxj = bi (i = 1,2, ... ) . 
j= 1 

Fourier, who encountered such a system, still solved it like an 18th century mathe­
matician : he suppressed all the terms with indices i or j greater than n, explicitly 
solved the finite system so obtained by Cramer's formulas, then passed to the limit by 
letting n tend to + 00 in the solution! Much later, when this jugglery was no longer 
acceptable, it was again by the theory of determinants that the problem was attacked; 
Since 1886 (following the work of Hill), H. Poincare, then H. von Koch, had set up 
a theory of « infinite determinants », which permits the resolution of certain kinds 
of systems (6) by following the classical model; and in spite of the fact that these 
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results were not directly applicable to the problem tackled by Fredholm, it is beyond 
doubt that von Koch's theory in particular, served as a model for the construction 
of Fredholm's « determinants ». 

It was at this moment that Hilbert entered the scene and gave a new impetus to 
the theory (VII). To begin with, he completed the 'work of Fredholm by effectively 
carrying out the passage to the limit, which leads to the solution of (4) from that of 
(5); but he immediately brought in the corresponding passage to the limit in the 
theory of real quadratic forms, which arose automatically from integral equations 
with a symmetric kernel (i.e. such that K(y, x) = K(x, y)). These are the equations 
by far the most frequent in Mathematical Physics. He thus succeeded in obtaining 
the fundamental formula which directly generalizes the reduction of a quadratic 
form to its axes 

(7) fb fb CJ) 1 (fb )2 K(s, t) xes) x(t) dsdt = ~ ;;: <Pis) xes) ds , 
a a n 1 n a 

where the An are the eigenvalues (necessarily real) of the kernel K, the <Pn forming 
the orthonormal system of the corresponding eigen functions, and the second 

member of formula (7) is a convergent series if r X2(S) ds :::;; 1. He also showed 

how every function which is «representable» as f(x) = r K(x, y) g(y) dy has a 

« development» n~l <p/x) r <Pn(Y) fey) dy, and, following the analogy with the 

classical theory of quadratic forms, he indicated a procedure for determining the 
An by a variational method. This is precisely the extension of the well-known extremal 
properties of the principal axes of a quadric surface ((VII), p. 1-38). 

These preliminary results of Hilbert were almost immediately taken up by 
E. Schmidt, under a simpler and more general form, avoiding the introduction of 
« Fredholm's determinants» and also the passage from the finite to the infinite. 
The presentation was already very close to being abstract, the fundamental pro­
perties of linearity and of positivity of the integral being clearly the only facts used 
in the proof (VII a). But by then Hilbert had developed much more general con­
cepts. All the earlier works brought out the importance of square integrable func­
tions, and Parseval's formula established a direct link between these functions and 
sequences (cn) such that I c; < 00. It is certainly this idea which guided Hilbert 

n 

in his 1906 memoirs ((VII), chap. XI-XIII), where, taking up the old method of 
« indeterminate coefficients» once again, he showed that the solution of the integral 
equation (4) is equivalent to the solution of an infinite system of linear equations 

(8) 
CJ) 

xp + I kpqXq = bp (p = 1, 2, ... ) 
q=l 
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for the « Fourier coefficients)} xp = f u(t) rop(t) dt of the unknown function u 

with respect to a given complete orthonormal system (ron) (with bp = f f(t) rolt) dt 

and kpq = f f K(s, t) rop(s) roit) dsdt). Moreover, from this point of view, the 

only solutions of (8) of interest are those for which I x; < + 00; also it was to 
n 

this kind of solution that Hilbert systematically restricted himself; but on the other 
hand, he extended the conditions imposed on the « infinite matrix)} kpq (which in (8) 
is such that I k;q < + 00). Thenceforth, it was clear that the « Elbert space)} 

p,q 
of all sequences x = (xn) of real numbers such that I x; < + 00, while not expli-

n 

citly introduced was the space underlying the entire theory, and appears as a « pas­
sage to the limit)} from a finite dimensional Euclidean space. In addition, and this 
was particularly important for later developments, Hilbert was led to introduce, 
not just one, but two distinct notions of convergence in this space (corresponding 
to what has since been called the weak topology and the strong topology *), as also 
a « principle of choice)} which is precisely the property of weak compactness of 
the unit ball. The new linear algebra that he developed in connection with the solu­
tion of the system (8) depended entirely on these topological ideas: linear mappings, 
linear forms and bilinear forms (associated with linear mappings) were classified 
and studied with respect to their « continuity)} properties **. In particular, Hilbert 
discovered that the success of Fredholm's method depended on the notion of « com­
plete continuity)}, which he redeemed by formulating it for bilinear forms *** and 
by studying it profoundly; for more details we refer to the part of this Treatise 
where this important notion shall be developed, and also to the admirable and pro­
found works of Hilbert, where he inaugurated the spectral theory of symmetric 
bilinear forms (bounded or not). 

The language of Hilbert still remained classical, and throughout the « Grundzuge )}, 
he never lost sight of the applica tions of the theory which he developed from numerous 
examples (taking up almost half of the volume). The next generation already adopted 
a much more abstract point of view. Under the influence of the ideas of Frechet 
and ofF. Riesz on general topology (see Historical Notes of GT, chap. I), E. Schmidt 

* The Calculus of variations had naturally led to different notions of convergence on the 
same set of functions (according to the requirement of uniform convergence of functions, 
or of uniform convergence of functions and of a certain number of their derivatives); but 
the modes of convergence defined by Hilbert were entirely new at that time. 

** It must be pointed out that until around 1935, by a« continuous» function it was gene­
rally meant that this was a mapping wich transformed every convergent sequence into a 
convergent sequence. 

*** For Hilbert, a bilinear form B(x, y) was completely continuous if, whenever the 
sequences (xn), (Yn) tended weakly to x and y respectively, B(xn, Yn) tended to B(x, y). 
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(VII b) and Frechet himself, in 1907-1908 deliberately introduced the language of 
Euclidean geometry into the « Hilbert space» (real or complex); it is in these works 
that we find the first mention of the norm (with its present notation Ilxll), the triangle 
inequality that it satisfies, and the fact that a Hilbert space is « separable» and com­
plete; in addition, E. Schmidt proved the existence of the orthogonal projection 
onto a closed linear variety, which allowed him to give a simpler and more general 
form to Hilbert's theory oflinear systems. Also in 1907, Frechet and F. Riesz observed 
that the space of square integrable functions has an analogous « geometry», an 
analogy which was perfectly explained when, a few months later, F. Riesz and 
E. Fischer proved that this space is complete and is isomorphic to a « Hilbert space », 
and at the same time displayed in a striking manner the value of the tool newly 
created by Lebe~gue. From this moment onwards, the essential points of the theory 
of hilbertian spaces could be considered to have been achieved. Among the later 
developments the axiomatic presentation of the theory by M. H. Stone and 1. von 
Neumann around 1930 must be mentioned, and also the removal of the restrictions 
of « separability» which was the result of the work of Rellich, L6wig and F. Riesz 
(IX e) around the year 1934. 

Meanwhile, in the first few years of the 20th century, other streams of ideas came 
and reinforced the trend which led to the theory of normed spaces. The general 
idea of « functional» (i.e. a numerical function defined on a set whose elements are 
themselves numerical functions of one or of several real variables) was redeemed in 
the last decades of the 19th century in connection with the calculus of variations 
on the one hand, and on the other, with the theory of integral equations. But it was 
primarily from the Italian school, around Pincherle, and above all Volterra, that 
the general idea of « operator» arose. The works of this school often stayed at a 
rather formal level and were related to particular problems, for lack of a sufficiently 
deep analysis of the underlying topological concepts. In 1903, Hadamard inau­
gurated the modern theory of « topological» duality, in his search for the most 
general continuous linear « functionals » on the space ~(I) of continuous numerical 
functions on a compact interval (endowed with the topology of uniform conver-

gence), and he characterized these as limits of sequences of integrals x f--* i kn( t) x( t) dt. 

In 1907, Frechet and F. Riesz proved similarly that the continuous linear forms on a 
Hilbert space are the « bounded» linear forms introduced by Hilbert; then in 1909, 
F. Riesz put Hadamard's theorem in a definitive form by expressing every conti­
nuous linear form on ~(I) as a Stieltjes integral, a theorem which much later served 
as the starting point for the modern theory of integration (see Historical Notes of 
INT, chap. II-V). 

The following year, F. Riesz (IX a) again made new and important progress in 
the theory by introducing and studying (modelled on the theory of the Hilbert 
space) the space U(I) of functions on an interval I whose p-th power is integrable 
(for an exponent p such that 1 < p < +:D); three years later, this study was 
followed by analogous work on the sequence spaces fP(N) (IX c). These researches, 
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as we shall see later, made a great contribution towards the classification of ideas 
on duality, in the sense that for the first time we encountered two spaces in duality 
which were not naturally isomorphic *. 

Then onwards, F. Riesz thought of an axiomatic study which would encompass 
all these results ((IX a), p. 452), and it seems that only the scruples of an analyst 
anxious not to deviate from classical mathematics restrained him from writing 
his celebrated memoire of 1918 on Fredholm's theory (IX d) in this form. There he 
mainly considered the space 'ti(I) of continuous functions on a compact interval; 
but after defining the norm of this space, and having remarked that 'ti(l) endowed 
with this norm is complete, he did not use anything other than the axioms of complete 
normed spaces in his arguments **. Without entering into a detailed examination 
of this work, we mention that the notion of a completely continuous mapping was 
defined (by the property of transforming a neighbourhood into a relatively compact 
set) in a general way for the first time in this work *** ; by a masterpiece of axiomatic 
analysis, the entire theory of Fredholm (with respect to its qualitative aspect) was 
reduced to a single fundamental theorem, that every locally compact normed space 
is finite dimensional. 

The general definition of normed spaces was given in 1920-1922 by S. Banach, 
H. Hahn and E. Helly (the latter considered only sequence spaces of real or complex 
numbers). In the ten years that followed, the theory of these spaces developed mainly 
around two questions of fundamental importance for applications : the theory of 
duality and the theorems linked with the notion of Baire « category ». 

We have seen that the idea of duality (in the topological sense) originated in the 
beginning of the 20th century; it was the underlying notion in Hilbert's theory and 
occupied a central place in the work of F. Riesz. The latter, for example, observed 
in 1911 ((IX b), p. 41-42), that the relation If(x) I :( M Ilxll (taken as the definition 
of « bounded» linear functionals in a Hilbert space) is equivalent to the continuity 
of f in the case of the space 'ti(I), and this was proved by fairly general arguments. 
Concerning the characterization of continuous linear functionals on 'ti(I), he further 
observed that the condition for a set A to be total in 'ti(l) is that there exist no Stieltjes 
measure J.t =1= 0 on I which is « orthogonal» to all the functions in A (thus genera­
lizing Gram's condition for complete orthonormal systems); finally, in the same 

* In spite of the fact that the duality between L 1 and L 00 was implicit in most of the works 
of this epoch on the Lebesgue integral, it was only in 1918 that H. Steinhaus proved that every 

continuous linear form on L 1 (I) (I a finite interval) is of the form x f--> i J(t) x(t) dt, where 

J E L 00(1). 
** F. Riesz however, explicitly noted that the applications of his theorems to continuous 

functions is only a « touchstone» of much more general concepts (IX d), p. 71). 
*** In his work on LP spaces, F. Riesz had defined completely continuous mappings as 

those which transform every weakly convergent sequence into a strongly convergent sequence; 
this (on account of the weak compactness of the unit ball in the U for 1 < P < + CXJ) is 
equivalent to the above definition in this case; in addition, F. Riesz indicated that for the L 2 

spaces, his definition was equivalent to that of Hilbert (by translating from the language 
of linear mappings to that of bilinear forms «IX, a), p. 487)). 
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work, he established that the dual of the space L 00 is « bigger» than the space of 
Stieltjes measures ((IX b), p. 62). 

On the other hand, F. Riesz, in his work on the spaces U(I) and fP(N) succeeded 
in modifying the method of the solution of linear systems in a Hilbert space, as 
given by E. Schmidt (VIII b) so as to be applicable in more general cases. E. Schmidt's 
idea consisted in determining an « extremal» solution of (6) by finding a point in 
the closed linear variety represented by the equations (6), whose distance from the 
origin is the minimum. Using the same idea, F. Riesz showed that a necessary and 
sufficient condition such that there exists a function x E U(a, b) satisfying the equa­
tions 

(9) f (Xi(t) x(t) dt = bi (i = 1,2, ... ) 

(where the (Xi belong to U (with ~ + i = l)), and such that in addition 

f Ix(tWdt ::::; MP, is that, for every finite sequence ("-)1 ";i"'n of real numbers, we 

have 

(10) 

In 1911 (IX b), he treated, in an analogous manner, the « problem of generalized 
moments », which consists of the solution of the system 

(11) f (X;(t) d~(t) = bi (i = 1,2, ... ) 

where the (Xi are continuous and the unknown is a Stieltjes measure ~ * ; it was clear 
in this case that the problem can be restated by saying that it consists in determining 
a continuous linear functional on ~(I) from its values on a given sequence of points 
in this space. It was in this form that Helly treated the problem in 1912 - obtaining 
F. Riesz's conditions by a rather different method of much wider scope * - and 
which he again took up in 1921, with much more general conditions. Introducing 
the notion of a norm (on the sequence spaces), as we have seen above, he observed 

* The classical « problem of moments» corresponds to the case where the interval )a, b( 
is )0, + oo( or )- 00, + 00(, and where Cli(t) = ti; moreover, one assumes that the mea­
sure ~ is positive (in his 1911 memoire, F. Riesz indicated how his general conditions must be 
modified when solutions of this nature are sought). Among the various methods for the solu­
tion of the classical problem of moments, we particularly mention that of F. Riesz, who very 
elegantly combined the general ideas of functional Calculus and the theory of functions of 
one complex variable to obtain explicit conditions on the bi. (Sur Ie probU:me des moments, 
3, Ark. for Math., t. XVII (1922-1923), no 16,52 p.) 
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that this notion generalizes that of the « gauge» of a convex body in an n-dimensional 
space, as used by Minkowski in his celebrated work on the « geometry of numbers» 
(IV). In the course of his researches, Minkowski also defined (in Rn) the notions of 
a support hyperplane and of a « supj)ort function» (IV b), and proved the existence 
of a support hyperplane at every point of the boundary of a convex body ((IVa), 
p. 33-35). Helly extended these notions to a space of sequences E, endowed with an 
arbitrary norm; he established a duality between E and the space E' of sequences 
u = (un) such that for all x = (xn) E E, the series (unxn) is convergent; letting < u, x> 

denote the sum of this series, he defined a norm in E' by the formula sup I<u, x>l/llxll, 
x*D 

which gives the support function in finite dimensional spaces **. Then Helly proved 
that the solution of a system (6) in E, where each sequence ui = (ai)j?: 1 is assumed 
to belong to E', reduces to the successive resolution of the following two problems: 
1. to find a continuous linear form L on the normed space E', such that L(u)=bi 

for every index i; this, as he pointed out, leads to conditions of the type (IO); 2. to 
find if such a linear form can be written as u ~ < u, x> for some x E E. The latter 
problem, he observed, does not necessarily have a solution even if L exists, and 
he gave some sufficient conditions which imply the existence of the solution x E E 
in some particular cases (X). 

In 1927, these ideas were given their definitive form in a fundamental memoire of 
H. Hahn (XI), whose results were rediscovered (independently) by S. Banach two 
years later (XII b). Hahn applied the methods of Minkowski-Helly to an arbitrary 
normed space, and thus defined the structure of a (complete) normed space on the 
dual space; this immediately allowed Hahn to consider successive duals of a normed 
space, and to pose the problem of reflexive spaces in a general way, as already foreseen 
by Helly. But above all, the principal problem of the extension of a continuous 
linear functional without increasing its norm was definitely solved by Hahn in 
general, by an argument of transfinite induction on the dimension - thus giving 
one of the first examples of an important application of the axiom of choice to 
functional Analysis ***. To these results, Banach added a detailed study of the 
relations between a continuous linear mapping and its transpose, extending to 
general normed spaces results previously known in the case ofLP spaces only (IX a), 
by means of a deep theorem on weakly closed subsets of the dual (cf IV, p. 25, cor. 2); 
these results can be expressed in a more striking way using the notion of the quotient 
space of a normed space, which was introduced a few years later by Hausdorff 
and by Banach himself Finally, it was once again Banach who discovered the rela­
tion between the weak compactness of the unit ball (observed in several particular 

* Like F. Riesz (IX b), p. 49-50), Helly used a « principle of choice» in his proof, which is 
precisely the weak compactness of the unit ball in the space of Stieltjes measures; F. Riesz 
had also used the analogous property in the U spaces (1 < p < + co). 

** To obtain a norm in this way, we must assume that the relation < u, x> = ° for all 
x E E implies u = 0, as is explicitly remarked by Helly. 

*** Banach had already given an analogous argument in 1923 for defining an invariant 
measure in the plane (defined for every bounded subset) (XII a). 
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cases, as mentioned above) and reflexivity, at least for the spaces satisfying the first 
axiom of countability. Since then, the broad outlines of the theory of duality of 
normed spaces could be considered to have been fixed. 

During the same epoch some seemingly paradoxical theorems, whose first exam­
ples originated in the years around 1910, were clarified. In that year, Hellinger and 
Toeplitz had essentially proved that a sequence of bounded bilinear forms Bn(x, y) 
on a Hilbert space, whose values Bn(a, b) for every pair (a, b) are bounded (by a 
number depending a priori on a and b) is in fact uniformly bounded on every ball. 
Their proof was based on an argument of reductio ad absurdum, by inductively 
constructing a particular pair (a, b) violating the hypothesis; this method is since 
then known under the name « gliding bump », and is still useful in many analogous 
questions (cf IV, p. 54, exerc. 15). In 1905, Lebesgue had used a similar method to 
prove the existence of continuous functions whose Fourier series diverges at some 
points; and in the same year as Hellinger and Toeplitz he used the method again, 
to prove that a weakly convergent sequence in L 1 is bounded in norm *. These 
examples multiplied in the following years, but without the introduction of any 
new ideas until 1927, when Banach and Steinhaus (with the partial collaboration 
of Saks) related these phenomena to the notion of a thin set and to Baire's theorem 
in complete metric spaces, thus obtaining a general assertion which encompassed 
all the previous particular cases (XIII). During the same epoch, the study of questions 
of « category» in complete normed spaces led Banach to several other results on 
continuous linear mappings; the most remarkable and certainly the deepest being 
the « closed graph» theorem which, like the Banach-Steinhaus theorem, has become 
a vital tool in modern functional Analysis (XII b). 

The publication of Banach's treatise on « Linear Operators» (XII c) marks the 
coming of age for the theory of normed spaces. All the above mentioned results 
and many others can be found in this volume, though in a somewhat disorganized 
manner, but with many striking examples drawn from various domains of Analysis, 
and which seemed to forecast a brilliant future for the theory. The work had consi­
derable success, and one of the immediate effects was the almost universal adoption 
of the language and notations used by Banach. But in spite of the great number of 
researches undertaken during the past 40 years on Banach spaces (XVII), if the 
theory of Banach algebras and its applications to commutative and non-commu­
tative harmonic analysis are excluded, then the almost complete absence of new 
applications of the theory to the great problems of classical Analysis somewhat 
undermines the hopes based on it. 

It was more in the sense of widening and of a deeper axiomatic analysis related 
to the concepts of normed spaces that the most fruitful developments took place. 

* Observe also the analogous (easier) theorem proved by Landau in 1907 and which served 
as a starting point for F. Riesz in his theory of the LV spaces : if the series with the general 
term unxn converges for every sequence (xn) E fP(N), then the sequence (un) belongs to fq(N) 

(with.!. + .!. = 1). 
p q 
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In spite of the fact that the functional spaces encountered since the beginning of the 
20th century generally appear to be endowed with a « natural» norm, there are 
certain exceptions. Around 1910, E. R. Moore proposed a generalization of the 
notion of uniform convergence by replacing it with a notion of « relative uniform 
convergence », where a neighbourhood of ° consists of functions J satisfying a rela­
tion IJ(t)1 ~ Eg(t), g being a function which is everywhere > ° and which could 
vary with the neighbourhood. On the other hand, before 1930, it was observed that 
notions such as simple convergence, convergence in measure for measurable func­
tions, or compact convergence for entire functions, could not be defined by means 
of a norm; and in ) 926, Frechet observed that vector spaces of this kind could be 
metrizable and complete. But the theory of these more general spaces could be 
fruitfully developed only in relation with the idea of convexity. The latter (which 
already appeared in ReIly's work) was the subject of the studies carried out by 
Banach and his students, who recognized the possibility of interpreting several 
results of the theory of normed spac-es geometrically, thus preparing the road for 
a general definition of locally convex spaces, given by Kolmogoroff and J. von 
Neumann in 1935. The theory of these spaces and notably the questions related to 
duality, were mostly developed in the years 1950, and in this Book we have presented 
the essential results of this study. In this connection we must point out, on the one 
hand, the progress in simplicity and in generality, made possible by the focus on 
the fundamental concepts of general Topology developed between 1930 and 1940; 
and secondly, the importance of the notion of a bounded set, introduced by Kol­
mogoroff and von Neumann in 1935, and whose fundamental role in the theory 
of duality was brought to light by the work of Mackey (XIV) and of Grothendieck 
(XVIII). Finally, it is certain that the main impetus which motivated these researches 
came from the new possibilities of applications to Analysis in domains where Banacr: 
theory did not work : in this connection, we mention the theory of sequence spaces 
developed since 1934, by Kothe, Toeplitz and their students in a series of memoirs 
(XV), the focus on the theory of « analytic functionals» of Fantappie, and above 
all, the theory of distributions by L. Schwartz (XVI), where the modern theory of 
locally convex spaces found a field of applications, which is certainly far from being 
exhausted. 
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Index of notation 

The reference numbers indicate the chapter and page (and, occasionally, exercise). 

I~I, Ilxll : I, p. 3. 
:?l(I; K), :?lK(I), f ~(I), f~(I), :?l(I), f1(I) : I, p. 4. 

EA (A a convex symmetric set in a real vector space E) : II, p. 26. 
< x, y) : II, p. 42. 
cr(F, G) : II, p. 42. 
MO, MOo: II, p. 44. 
'u (u a linear mapping) : II, p. 46. 

~(X) : III, p. 9. 
'(i "'(U) : III, p. 9. 
'(iH"'(U), '(i O"(U) : III, p. 9. 
~ M(I), ~sCI), '(i (I) : III, p. 10. 
Jfi(U), Jr(L) (U an open subset of en, L a compact subset of en) : III, p. 10. 
~ (E; F) : III, p. 1 3. 
~2 (E; F) : III, p. 13. 
~s(E; F), ~c(E; F), ~ pc(E; F), ~cc(E; F), ~b(E; F) : III, p. 14. 
E', E's, E~, E~, E~c' E~c' E~ : III, p. 14. 
~(E), ~2 (E), ~s(E), ~cCE), ~pc(E), ~cc(E), ~b(E) : III, p. 14. 
PM (p a semi-norm, M a bounded subset) : III, p. 14. 
'(io(R) : III, p. 18. 

,(E, F) : IV, p. 2. 
~(E, F) : IV, p. 4. 
CE : IV, p. 14. 
P7(N) : IV, p. 17 
co(N), pl (N) : IV, p. 18. 
SeE) : IV, p. 26. 
Hp : IV, p. 26. 
Eo : IV, p. 32. 
'??,(X) : IV, p. 33. 
'(ibeX), '(i(X) : IV, p. 36. 
:?l(X; R) : IV, p. 40. 
Ind(u) (u a Fredholm operator) : IV, p. 66, exerc. 21. 

~ : V, p. 1. 
fl, C2(N) : V, p. 4. 
E(C) : V, p. 4. 
<xIY), Ilxll = <XIX)1/2, (xIY) = <ylx) : V, p. 5. 
E (E a complex prehilbertian space) : V, p. 6. 
Jrs (Sobolev space) : V, p. 6. 
H2(D) : V, p. 7. 
'(i~(U) : V, p. 8. 
PH (H convex separated and complete set in a prehilbertian space) : V, p. 10. 
x* (x a vector of a Hilbert space) : V, p. 15 et p. 40. 
(])Ei,EBEi : V, p. 18. 
iEI iEI 
E1 EB E2 EB ... EB En (Ei Hilbert spaces) : V, p. 18. 
f~(I), f2(I) (E a Hilbert space) : V, p. 18. 
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Ej O 2 Ez, Ilzllz (z E E j 0 z Ez) : V, p. 26. 

E j 0 z Ez O 2 ... O 2 E", ~7 Ei, Ilzllz (Z E~i Ei) : V, p. 27. 

E j @2 EZ@2"'@2 E", ®2 Ei:V,p.28 
l.:Si':::;n 

U 1 ®z Uz ® 2 ... ® 2 U" (U i linear mappings) : V, p. 28. 

t"(E), E®" : V, p. 29. 
S"(E), SeE) : V, p. 30. 
t"(u), S"(u) (u a linear mapping) : V, p. 31 and p. 32. 
A"(E), A(E) : V, p. 33. 
A"(u) (u a linear mapping) : V, p. 34. 
v. u, l'U (u, u linear mappings) : V, p. 37. 
u* (u a linear mapping) : V, p. 38. 
Jf'(E) (E a Hilbert space) : V, p. 44. 
u ~ 0 (u an endomorphism of a Hilbert space): V, p. 45. 
2' +(E) : V, p. 45. 
u ~ v (u, u in 2'(E). E a Hilbert space) : V, p. 45. 
,(u) (u an endomorphism of finite rank) : V, p. 48. 
Tr(u) (u ~ 0 in £)(E») : V, p. 49. 
2'1(E) (E a Hilbert space) : V, p. 51. 
2' 2(E; F), .'fJ2 (E) (E, F Hilbert spaces) : V, p. 52. 
II u liz (u E 2'(E; F), E, F Hilbert spaces) : V, p. 52. 
Tr(Q/H) (Q, H positive quadratic forms) : V, p. 57. 
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Absorbent set, absorption of one set by another: I, p. 7. 
Adapted bomology : !II, p. 3. 
Adjoint: V, p. 38. 
Affine transformation : IV, p. 39. 
Associated (Hausdorff vector space) with a topological vector space: I, p. 4. 

Balanced convex closed envelope of a set: II, p. 13 and p. 62. 
Balanced core of a set: I, p. 7. 
Balanced envelope of a set: I, p. 7. 
Balanced set : r. p. 6. 
Banach-Dieudonne theorem : IV, p. 24. 
Banach-Saks-Kakutani theorem: V, p. 68, exerc. 33. 
Banach space : I, p. 5. 
Banach-Steinhaus theorem : III. p. 25. 
Banach's theorem: t p. 17. 
Barrel : III, p. 24. 
Barrelled space : III, p. 24. 
Base of a bomology : Ill, p. 1. 
Basis (algebraic) of a Hilbert space: V, p. 22. 
Basis (Banach) : IV, p. 69, exerc. 14. 
Basis (complcte Banach, contracting Banach) : IV, p. 70, exerc. IS. 
Basis (orthonormal) : V, p. 22. 
Basis (unconditional Banach) : IV, p. 71, exerc. 16. 
Bessel's inequality : V, p. 21. 
Bidual : IV, p. 14. 
Bipolar theorem : II, p. 44. 
Birkhoff-Alaoglu theorem: V. p. 78. exerc. 13. 
Bishop-Phelps theorem : II, p. 77. exerc. 4. 
Bornologicallocally convex space: III, p. 12. 
Bornology : III, p. 1. 
Bornology (adapted) : Ill. p. 3. 
Bornology (canonical) : III, p. 3. 
Bomology (convex) : III, p. 2. 
Bomology generated by a family of sets : III, p. 1. 
Bomology (product) : III, p. 2. 
Bomivorous set: Ill, p. 39, exerc. II. 
Bounded set: III, p. 2 and p. 37, exerc. I. 

Canonical bomology : III, p. 3. 

Canonical mapping of ~ E; in (D Ei)' : IV, p. 13. 

Canonical mapping of E in En : IV, p. 14. 
Canonical mapping of E onto E' (E a Hilbert space) : V, p. 15. 
Canonical topology on a finite dimensional vector space: I, p. 2. 
Cap: II, p. 57. 
Cauchy-Schwarz inequality: V, p. 3. 
Closed graph theorem: I, p. 19. 
Closed half-spaces defined by a closed hyperplane: II, p. 15. 
Cobord : IV, p. 72, exerc. 3. 
l-cocycle (continuous) : IV, p. 72, exerc. 3. 
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Compact linear mapping III, p. 6. 
Compatible topology and structure of an ordered vector space: II, p. 15. 
Compatible vector space structure and preorder : II, p. 12. 
Compatible vector space structure and topology : III, p. I. 
Compatible with the duality (locally convex topology) : IV, p. I. 
Complement (orthogonal) : V, p. 13. 
Complete topological vector space: I, p. 5. 
Completion of a Hausdorff prehilbertian space: V, p. 8. 
Completion of a Hausdorff topological vector space: I, p. 6. 
Complex linear form: II, p. 6I. 
Complex linear variety: II, p. 6I. 
Complex locally convex space: II, p. 62. 
Complexification (prehilbertian space) : V, p. 5. 
Complexified topological vector space : II, p. 62. 
Concave function : II, p. 17. 
Cone (asymptotic) : II, p. 67. 
Cone (convex) generated by a set: II, p. II. 
Cone (pointed and non-pointed) : II, p. 10. 
Cone (polyhedral) : 11, p. 9I. 
Cone (proper pointed convex) : II, p. II. 
Conjugate of a complex prehilbertian space: V, p. 6. 
Convex balanced envelope of a set: II, p. 10 and p. 62. 
Convex bomology : III, p. 2. 
Convex closed envelope of a set: II, p. 13. 
Convex function : II, p. 17. 
Convex set : II, p. 7 and p. 62. 
Convex (symmetric) envelope of a set: II, p. 16. 
Coordinates with respect to an orthonormal base : V, p. 22. 
Core (balanced) of a set : I, p. 7. 

Density of order : V, p. 7. 
Dimension (hilbertian) : V, p. 24. 
Dimension of a convex set: II, p. 10. 
Dirichlet space : V, p. 8. 
Distal set: IV, p. 72, exerc. I. 
Distinguished space : IV, p. 52, exerc. 4. 
Dual (algebraic) of a real topological vector space: II, p. 42. 
Dual of a locally convex space (real or complex) : III, p. 14. 
Dual of a real topological vector space : II, p. 42. 
Dual (weak, strong) : III, p. 14. 
Duality separating in F, separating duality: II, p. 4I. 
Duality (vector spaces in) : II, p. 40. 
Dvoretzky-Rogers theorem: V, p. 63, exerc. 14. 

Eberlein's theorem: IV, p. 35. 
D. Edwards' theorem: II, p. 94, exerc. 4I. 
Endomorphism (hermitian) : V, p. 44. 
Endomorphism (normal) : V, p. 43. 
Endomorphism (positive) : V, p. 45. 
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Weak dual: III, p. 14. 
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Summary of some important properties 
of Banach spaces 

For the reader's convenience, the principal results of normed spaces and, more 
particularly, of Banach spaces are collected here. The field of scalars K is either R or 
(. 

Linear mapping spaces " dual 

1) Let E and F be two normed spaces. A linear mapping u ofE in F is continuous, 
if and only if 

(1) Ilull = sup II u(x) II 
II x II ,,1 

is finite. The mapping u ~ II ull is a norm on the vector space £,,(E; F) of continuous 
linear mappings ofE in F. 

Let F be a Banach space. Then £,,(E; F) is a Banach space. The completion £ of 
E is a Banach space and the mapping u ~ ulE is a bijective isometry of £"(£; F) on 
£,,(E; F). 

2) Let E be a normed space. Write E' = £,,(E; K) where K carries the norm 
A ~ IAI. The Banach space E' is called the dual ofE, and the dual En ofE' is called the 
bidualofE. 

Denote by cr(E, E') the coarsest topology on E for which all the linear forms 
x' E E' are continuous; it is called the weakened topology of E. Denote by cr(E', E) 
the coarsest topology on E' for which the linear forms x' ~ < x', x > on E' where x 
varies in E, are continuous; then cr(E', E) is called the weak topology on E'. The 
topology on E' deduced from the norm is called the strong topology. 

3) Let E be a normed space and M be a closed vector subspace of E. Let 1t be the 
canonical mapping ofE on ElM. A norm on the vector space ElM is defined by 

(2) 111;11 = inf Ilxll· 
n(x)=~ 

When E is a Banach space, then so also are M and ElM. For every normed space F, 
the linear mapping u ~ u 0 1t of £"(E/M; F) in £,,(E; F) is isometric. 

4) Let E be a normed space. For every x' E E', we have by definition 

(3) Ilx'll = sup I<x', x>l· 
IlxliG 

XEE 
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Further (Hahn-Banach theorem), we have 

(4) Ilxll = sup i<x', x)i 
Ilx'IIU 

x'EE' 

for all x E E. In other words, the canonical mapping ofE in its bidual Eft is isometric. 

Polars and orthogonals 

5) Let E be a normed space. For every subset A of E (resp. B of E'),the polar of 
A (resp. B) denoted by A 0 (resp. BO) is the set of x' E E' (resp. x E E) for which 

(5) fYl < x', x) ~ - I 

for all x E A (resp. x' E B). When A (resp. B) is a vector subspace, the relation (5) is 
equivalent to < x', x) = 0, and we then say that A 0 (resp. BO) is the orthogonal of 
A (resp. B). 

6) (<< The Bipolar Theorem »). Let E be a normed space. Let A (resp. B) be a sub­
set of E (resp. E') which contains O. Then the bipolar ADO of A (resp. BOO of B) is the 
closure for the topology cr(E, E') (resp. cr(E', E)) ofthe convex envelope of A (resp. B). 

7) Let A be a subset of a normed space E. Let x be a point in the closure of A with 

respect to the topology cr(E, E'). Then x is the limit (in the norm sense) of a sequence 
of points of the convex envelope of A. In particular, the convex subsets of E that are 
closed in the normed space E are the same as those that are closed for cr(E, E'). 

8) Let E be a normed space and M be a vector subspace ofE. For every linear form 
Uo EM', there exists a linear from u E E' extending Uo and such that Ilull = Iluoli. 
Let H be the orthogonal of M in E' ; then the orthogonal HO of H is the closure of M 

in E. 

Transposition 

9) Let E and F be two normed spaces and u E 2(E; F). The transpose 
tu E 2(F'; E') of u is defined by the relation 

(6) < u(y'), x) = < y', u(x) for all x E E, y' E F'. 

We have Iitull = Iluli. The kernel of u is the orthogonal in E of the image of tu. 
The kernel oftu is the orthogonal in F' of the image of u. 

10) Let E be a normed space, M be a closed vector subspace of E and F = ElM. 
Let,i be the canonical injection of M in E and let re be the canonical surjection of E 
on F. Then ti has as its kernel the orthogonal MO of M and induces, on passing to the 
quotient, an isometry ofE'/Mo on M'. Further tre is an isometry ofF' on MO. 

Conditions for continuity of a linear mapping 

11) Let E and F be two Banach spaces and u be a linear mapping ofE in F. Suppose 

that for every sequence (xn)n",O of points ofE tending to 0 and for which the sequence 

(u(xn))n",o has a limit yin F, theny is necessarily O. Then u is continuous. 
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* Suppose that for every compact subset K ofE, for every positive measure Jl on K 
and for every linear continuous form y' on F, the restriction of y' 0 u to K is Jl-measu­
rable. Then u is continuous.* 

12) Let E and F be two Banach spaces and u E iE (E; F). Then either u(E) is meagre, 
or u is surjective. 

Suppose that u is surjective. Then there exists a number C > 0 such that, for all 
y E F, there exists x E E with u(x) = y and Ilxll ::::; C.llyll.lfN is the kernel ofu, then u 
induces on passing to the quotient a homeomorphism ofE/N on F. 

13) Let E and F be two Banach spaces. If u is a continuous linear mapping of E 
in F that is bijective, then u- 1 is continuous. 

14) Let E and F be two Banach spaces, let u E iE(E; F) and x' E E'. For x' to 
belong to the image of tu, it is necessary and sufficient that there exists a number 
C > 0 such that 

(7) I<x', x)1 ::::; c.llu(x)11 

for all x E E. 
(15) Let E and F be two Banach spaces and u E iE(E; F). In order that u be sur­

jective, it is necessary and sufficient that there exists a number C > 0 such that 
II tu(y') II ;?! C.II y' II for all y' E F. 

The Banach-Steinhaus Theorem 

16) (<< The Banach-Steinhaus Theorem »). Let E be a Banach space; F a normed 
space and let (UJiEI be a family of elements of iE(E; F). Let A be the subset of x E E 
such that sup II u;(x) II < + 00. Then either A is meagre and its complementis dense 

iEI 

in E, or alternatively sup II uill < + 00. In particular, if A = E, then sup II uill < + 00. 
iEI 

17) Let E and F be two Banach spaces and let (un)n"O be a sequence of elements 
of iE(E; F). Suppose that the limit u(x) = lim un(x) exists for all x E E. Then 

sup Ilunll < + 00, u is continuous and the sequence (un) tends to u uniformly on 
n 

every compact subset of E. 

Properties of the weak topology on a dual 

18) Let E be a Banach space and B' be a subset of E'. The following conditions are 
equivalent: 

(i) B' is contained in a ball of E'. 
(ii) B' is relatively compact for the topology cr(E', E). 
(iii) For all x E E, we have sup 1< x', x) I < + 00. 

x'EB 

19) Let E be a Banach space and let B' be the (closed) unit ball of E'. Then B' is 
compact for cr(E', E). Suppose that there exists a countable total subset of E; then 
B' is metrisable for cr(E', E), and there exists a countable subset ofE' that is dense for 
cr(E', E). 
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20) Let E be a Banach space, u be a linear form on E' and B' be the unit ball of E'. 
The following conditions are equivalent: 

(i) There exists x E E such that u(x') = < x', x> for all x' E E'. 
(ii) The restriction of u to B' is continuous for the topology aCE', E). 
(iii) For every sequence (x~) of elements of E' that tends to 0 for aCE', E), we have 

lim u(x~) = o. 
21) Let E be a Banach space, B' be the unit ball ofE' and C be a convex subset of 

E' (in particular a vector subspace). In order that C be closed for aCE', E), it is neces­
sary and sufficient that the intersection C n rB' be closed for aCE', E) for every real 
number r > o. 

Reflexive spaces 

22) Let E be a normed space, E" be its bidual and i be the canonical mapping of E 
in E". The unit ball of E" is the closure for a(E", E') of the image under i of the unit 
ball of E. 

The following conditions are equivalent : 
(i) The isometric mapping i : E f--* E" is surjective. 
(ii) The unit ball in E is compact for aCE, E'). 

When these conditions are satisfied, we say that E is reflexive. 

Topologies compatible with the duality 

23) Let E be a Banach space and !T a locally convex topology on E. The following 
conditions are equivalent: 

(i) The topology !T is finer than aCE, E') and coarser than the topology defined on 
E by the norm. 

(ii) E' is the set oflinear forms on E that are continuous for!T. 
Suppose that these conditions are satisfied. Let A be a subset of E. Then A is rela­

tively compact for :Y if and only if every sequence of points of A has a cluster point 
for!T in E. If this is so then the balanced convex envelope of A is relatively compact 
for !T. 



Contents 

CHAPTER I. - TOPOLOGICAL VECTOR SPACES OVER A VALUED DIVISION RING. I. 1 

§ 1. Topological vector spaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. I. 1 

1. Definition of a topological vector space. . . . . . . . . . . . . . . . . .. I. 1 
2. Normed spaces on a valued division ring ................. I. 3 
3. Vector subspaces and quotient spaces of a topological vector 

space; products of topological vector spaces; topological 
direct sums of subs paces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1.4 

4. Uniform structure and completion of a topological vector 
space. . . . . . . . .. . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . .. 1.5 

5. Neighbourhoods of the origin in a topological vector space 
over a valued division ring. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1.6 

6. Criteria of continuity and equicontinuity. . . . . . . . . . . . . . . . .. 1.8 
7. Initial topologies of vector spaces . . . . . . . . . . . . . . . . . . . . . .. I. 9 

§ 2. Linear varieties in a topological vector space. . . . . . . . . . . . . . . . . . .. I. 11 

1. The closure of a linear variety. . . . . . . . . . . . . . . . . . . . . . . . . . .. I. 11 
2. Lines and closed hyperplanes. . . . . . . . . . . . . . . . . . . . . . . . . . .. I. 12 
3. Vector subspaces of finite dimension .................... I. l3 
4. Locally compacttopological vector spaces. . . . . . . . . . . . . . . .. I. 15 

§ 3. Metrisable topological vector spaces. . . . . . . . . . . . . . . . . . . . . . . . .. I. 16 

1. Neighbourhoods of 0 in a metrisable topological vector space. I. 16 
2. Properties of metrisable vector spaces. . . . . . . . . . . . . . . . . . . .. I. 17 
3. Continuous linear functions in a metrisable vector space. . . .. 1.17 

Exercises of § 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1.22 
Exercises of § 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1.25 
Exercises of § 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1.28 

CHAPTER II. - CONVEX SETS AND LOCALLY CONVEX SPACES.............. 11.1 

§ 1. Semi-norms... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 11.1 

1. Definition of semi-norms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 11.1 
2. Topologies defined by semi-norms. . . . . . . . . . . . . . . . . . . . . .. 11.2 
3. Semi-norms in quotient spaces and in product spaces. . . . . . .. 11.4 



360 TOPOLOGICAL VECTOR SPACES 

4. Equicontinuity criteria of multilinear mappings for topologies 
defined by semi-norms ................................ . 

§ 2. Convex sets . ............................................ . 

1. Definition of a convex set ............................. . 
2. Intersections of convex sets. Products of convex sets ........ . 
3. Convex envelope of a set. .............................. . 
4. Convex cones ........................................ . 
5. Ordered vector spaces ................................ . 
6. Convex cones in topological vector spaces ............... . 
7. Topologies on ordered vector spaces .................... . 
8. Convex functions .................................... . 
9. Operations on convex functions ........................ . 

10. Convex functions over an open convex set. ............... . 
11. Semi-norms and convex sets ........................... . 

§ 3. The Hahn-Banach Theorem (analytic form) .................. . 

l. Extension of positive linear forms ....................... . 
2. The Hahn-Banach theorem (analytic form) ............... . 

§ 4. Locally convex spaces .................................... . 

1. Definition of a locally convex space ..................... . 
2. Examples oflocally convex spaces ....................... . 
3. Locally convex initial topologies ....................... . 
4. Locally convex final topologies ......................... . 
5. The direct topological sum of a family oflocally convex spaces. 
6. Inductive limits of sequences oflocally convex spaces ....... . 
7. Remarks on Frechet spaces ............................ . 

§ 5. Separation of convex sets . ................................. . 

l. The Hahn-Banach theorem (geometric form) .............. . 
2. Separation of convex sets in a topological vector space ...... . 
3. Separation of convex sets in a locally convex space .......... . 
4. Approximation to convex functions .................... . 

§ 6. Weak topologies . ........................................ . 

1. Dual vector spaces ................................... . 
2. Weak topologies ..................................... . 
3. Polar sets and orthogonal subspaces .................... . 
4. Transposition of a continuous linear mapping ............. . 
5. Quotient spaces and subspaces of a weak space ............ . 
6. Products of weak topologies ............................ . 
7. Weakly complete spaces .............................. . 
8. Complete convex cones in weak spaces ................... . 

II.5 

II.7 

II.7 
II.9 
II.9 
II.lO 
n.12 
II.13 
II. 15 
II .16 
II.18 
II.18 
II .19 

II.21 

II.21 
II. 22 

II. 23 

II .23 

II.25 
II.26 
II.27 
II.29 
II.31 
II.34 

II.36 

II.36 
II.37 
II.38 
II.39 

II.40 

II.40 

II.42 
II.44 
II.46 
II.48 
II.50 
II.51 
II.52 



CONTENTS 361 

§ 7. Extremal points and extremal generators. . . . . . . . . . . . . . . . . . . . . .. II. 54 

1. Extremal points of compact convex sets. . . . . . . . . . . . . . . . . .. II. 54 
2. Extremal generators of convex cones. . . . . . . . . . . . . . . . . . . . .. II. 57 
3. Convex cones with compact sole. . . . . . . . . . . . . . . . . . . . . . . .. II. 59 

§ 8. Complex locally convex spaces . ............................ . 

1. Topological vector spaces over C ........................ . 
2. Complex locally convex spaces .......................... . 
3. The Hahn-Banach theorem and its applications ............ . 
4. Weak topologies on complex vector spaces ................ . 

Exercises on § 2 ................................................. . 
Exercises on § 3 . . . . . . . . . . . . . . . . . . . . . ............................ . 
Exercises on § 4 ................................................. . 
Exercises on § 5 : ................................................ . 
Exercises on § 6 . . . . . . . . . . . . . .................................... . 
Exercises on § 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... . 
Exercises on § 8 ................................................. . 

CHAPTER III. - SPACES OF CONTINUOUS LINEAR MAPPINGS .............. . 

II.60 

II. 60 
II.62 
II.63 
II.64 

II.65 
II. 72 
II.74 
II. 76 
II.81 
II.87 
II.95 

III. 1 

§ 1. Bornology in a topological vector space. . . . . . . . . . . . . . . . . . . . . . .. III. 1 

1. Bomologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. III. 1 
2. Bounded subsets of a topological vector space. . . . . . . . . . . . .. III. 2 
3. Image under a continuous mapping. . . . . . . . . . . . . . . . . . . . . .. III.4 
4. Bounded subsets in certain inductive limits. . . . . . . . . . . . . . . .. III. 5 
5. The spaces EA (A bounded). . . . . . . . . . . . . . . . . . . . . . . . . . . .. III. 7 
6. Complete bounded sets and quasi-complete spaces. . . . . . . .. III. 8 
7. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. III . 9 

§ 2. Bornological spaces ...................................... . 

§ 3. Spaces of continuous linear mappings . ....................... . 

1. The spaces 26(E; F) .................................. . 
2. Condition for 26 (E ; F) to be Hausdorff. ................ . 
3. Relations between 2 (E; F) and 2 (E ; F) ................ . 
4. Equicontinuous subsets of 2 (E ; F) ..................... . 
5. Equicontinuous subsets ofE' ........................... . 
6. The completion of a locally convex space ................. . 
7. 6-bomologies on 2(E; F) ............................. . 
8. Complete subsets of 26 (E ; F) ......................... . 

§ 4. The Banach-Steinhaus theorem . ............................ . 

1. Barrels and barrelled spaces ............................ . 

III.ll 

III. 13 

III. 13 
III. 15 
III. 15 
III. 16 
III. 19 
III. 20 
III. 21 
III. 22 

III. 23 

III. 24 



362 TOPOLOGICAL VECTOR SPACES 

2. The Banach-Steinhaus theorem ......................... III. 25 
3. Bounded subsets of 2(E; F)(quasi-complete case). . . . . . . .. III. 27 

§ 5. Hypocontinuous bilinear mappings . .......................... . 

1. Separately continuous bilinear mappings ................. . 
2. Separately continuous bilinear mappings on a product of Fre-

chet spaces .......................................... . 
3. H ypocontinuous bilinear mappings ...................... . 
4. Extension of a hypocontinuous bilinear mapping .......... . 
5. Hypocontinuity of the mapping (u,v) ~ v 0 u ............. . 

§ 6. Borel's graph theorem . ................................... . 

1. Borel's graph theorem ................................. . 
2. Locally convex Lusin spaces ............................ . 
3. Measurablelinear mappings on a Banach space ............ . 

Exercises on § 1 .................. . . . . . . . . . . . . . . . . . . . . ........... . 
Exercises on § 2 ................................................. . 
Exercises on § 3 ................................................. . 
Exercises on § 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ......... . 
Exercises on § 5 ................................................. . 
Exercises on § 6 ................................................. . 

CHAPTER IV. - DUALITY IN TOPOLOGICAL VECTOR SPACES .............. . 

§ 1. Duality .......................................... ....... . 

1. Topologies compatible with a duality .................... . 
2. Mackey topology and weakened topology on a locally convex 

space ............................................... . 
3. Transpose of a continuous linear mapping ................ . 
4. Dual of a quotient space and of a subspace ................ . 
5. Dual of a direct sum and of a product. ................... . 

§ 2. Bidual. Reflexive spaces . .................................. . 

1. Bidual .............................................. . 
2. Semi-reflexive spaces ................................. . 
3. Reflexive spaces ..................................... . 
4. The case of normed spaces ............................ . 
5. Montel spaces ....................................... . 

§ 3. Dual of a Fn?chet space . .................................. . 

1. Semi-barrelled spaces ................................. . 
2. Dual of a locally convex metrizable space ................. . 
3. Bidual of a locally convex metrizable space ................ . 
4. Dual of a reflexive Frechet space ....................... . 

III. 28 

III. 28 

III. 29 
III. 30 
III. 32 
III. 32 

III. 34 

III. 34 
III. 34 
III. 36 

III. 37 
III. 40 
III .41 
III.43 
III. 46 
III.49 

IV.l 

IV.l 

IV.l 

IV.4 
IV.6 
IV.8 
IV. 11 
IV.14 

IV.14 
IV.lS 
IV.16 
IV.17 
IV.18 

IV.21 

IV.21 
IV. 22 
IV.23 
IV.23 



CONTENTS 363 

5. The topology of compact convergence on the dual of a Frechet 
space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. IV. 24 

6. Separately continuous bilinear mappings. . . . . . . . . . . . . . . . .. IV. 26 

§ 4. Strict morphisms of Frechet spaces. . . . . . . . . . . . . . . . . . . . . . . . . . .. IV. 26 

1. Characterizations of strict morphisms. . . . . . . . . . . . . . . . . . . .. IV. 27 
2. Strict morphisms of Frechet spaces. . . . . . . . . . . . . . . . . . . . .. IV. 28 
3. Criteria for surjectivity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. IV. 31 

§ 5. Compactness criteria ...................................... IV. 32 

1. General remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. IV. 32 
2. Simple compactness of sets of continuous functions. . . . . . . . .. IV. 33 
3. The Eberlein and Smulian theorems. . . . . . . . . . . . . . . . . . . . .. IV. 35 
4. The case of spaces of bounded continuous functions. . . . . . . .. IV. 36 
5. Convex envelope ofa weakly compact set. . . . . . . . . . . . . . . . .. IV. 37 

Appendix. - Fixed points of groups of affine transformations. . . . . . .. IV. 39 

1. The case of solvable groups. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. IV. 39 
2. Invariant means ...................................... IV. 40 
3. Ryll-Nardzewski theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. IV.41 
4. Applications...... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. IV.44 

Exercises on § 1 .................................................. IV. 47 
Exercises on § 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. IV. 52 
Exercises on § 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. IV. 57 
Exercises on § 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. IV. 62 
Exercises on § 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. IV. 67 
Exercises on Appendix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. IV. 72 
Table I. - Principal types oflocally convex spaces. . . . . . . . . . . . . . . . . . . .. IV. 75 
Table II. - Principal bomologies on the dual of a locally convex space. . .. IV. 76 

CHAPTER V. - HILBERTIAN SPACES (ELEMENTARY THEORY) . . . . . . . . . . . .. V. 1 

§ 1. Prehilbertian spaces and hilbertian spaces. . . . . . . . . . . . . . . . . . . .. V. 1 

1. Hermitian forms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. V. 1 
2. Positive hermitian forms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. V. 2 
3. Prehilbertian spaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. V. 4 
4. Hilbertian spaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. V. 6 
5. Convex subsets of a prehilbertian space. . . . . . . . . . . . . . . . .. V. 9 
6. Vector subspaces and orthoprojectors. . . . . . . . . . . . . . . . . . .. V.12 
7. Dual of a hilbertian space. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. V. 15 

§ 2. Orthogonal families in a hilbertian space. . . . . . . . . . . . . . . . . . . . .. V. 17 

1. External hilbertian sum of hilbert ian spaces. . . . . . . . . . . . . . .. V. 17 
2. Hilbertian sum of orthogonal subspaces of a hilbertian space.. V. 18 



364 TOPOLOGICAL VECTOR SPACES 

3. Orthonormal families. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. V. 21 
4. Orthonormalisation ...... . . . . . . . . . . . . . . . . . . . . . . . . . . . .. V. 23 

§ 3. Tensor product of hilhertian spaces ......................... . 

1. Tensor product of prehilbertian spaces .................. . 
2. Hilbertian tensor product of hilbertian spaces ............ . 
3. Symmetric hilbertian powers ........................... . 
4. Exterior hilbertian powers ............................. . 
5. Exterior Multiplication ............................... . 

§ 4. Some classes of operators in hilbertian spaces . ................. . 

1. Adjoint ............................................. . 
2. Partially isometric linear mappings ..................... . 
3. Normal endomorphisms .............................. . 
4. Hermitian endomorphisms ............................ . 
5. Positive endomorphisms .............................. . 
6. Trace of an endomorphism ............................ . 
7. Hilbert-Schmidt mappings ............................. . 
8. Diagonalization of Hilbert-Schmidt mappings ............. . 
9. Trace of a quadratic form with respect to another .......... . 

Exercises on § 1 ................................................. . 
Exercises on § 2 ................................................. . 
Exercises on § 3 ................................................. . 
Exetcises on § 4 ................................................. . 
Historical notes ................................................. . 
Bibliography .................................................... . 
Index of notation ................................................ . 
Index of terminology ............................................. . 
Summary of some important properties of Banach spaces ............. . 
Contents ....................................................... . 

V.25 

V.25 
V.28 
V.29 
V.33 
V.35 

V.37 

V.38 
V.4l 
V.43 
V.44 
V.45 
V.48 
V.52 
V.55 
V.57 

V.60 
V.70 
V.73 
V.74 
V.80 
V.92 
347 
349 
355 
359 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile ()
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFA1B:2005
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (sRGB IEC61966-2.1)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<


    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <>
    /FRA <>

    /HEB <>

    /HUN <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>


    /SKY <>

    /SUO <>
    /SVE <>
    /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>

    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0034002e00350032003600330029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003100200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




