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To the reader

1. The Elements of Mathematics Series takes up mathematics at the beginning,
and gives complete proofs. In principle, it requires no particulas knowledge of
mathematics on the readers’ part, but only a certain familiarity with mathematical
reasoning and a certain capacity for abstract thought. Nevertheless, it is directed
especially to those who have a good knowledge of at least the content of the first
year or two of a university mathematics course.

2. The method of exposition we have chosen is axiomatic, and normally proceeds
from the general to the particular. The demands of proof impose a rigorously fixed
order on the subject matter. It follows that the utility of certain considerations will
not be immediately apparent to the reader unless he has already a fairly extended
knowledge of mathematics.

3. The series is divided into Books and each Book into chapters. The Books
already published, either in whole or in part, in the French edition, are listed below.
When an English translation is available, the corresponding English title is men-
tioned between parentheses. Throughout the volume a reference indicates the English
edition, when available, and the French edition otherwise.

Théorie des Ensembles (Theory of Sets) designated by E S)
Algébre (Algebra'") — A (A)
Topologie Générale (General Topology) — TG (GT)
Fonctions d’'une Variable Réelle — FVR
Espaces Vectoriels Topologiques (Topological Vec-

tor Spaces) — EVT (TVS)
Intégration — INT
Algebre Commutative (Commutative Algebra®) — AC (CA)
Variétés Différentielles et Analytiques — VAR
Groupes et Algébres de Lie (Lie Groups and Lie

Algebras®) — LIE (LIE)
Théories Spectrales — TS

() So far, chapters I to III only have been translated.
(*) So far, chapters I to VII only have been translated.
(®) So far, chapters I to III only have been translated.
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In the first six books (according to the above order), every statement in the text
assumes as known only those results which have already been discussed in the same
chapter, or in the previous chapters ordered as follows : S; A, chapters I to III; GT,
chapters I to III; A, from chapters IV on; GT, from chapter IV on; FVR; TVS;
INT.

From the seventh Book on, the reader will usually find a precise indication of its
logical relationship to the other Books (the first six Books being always assumed
to be known).

4. However we have sometimes inserted examples in the text which refer to facts
the reader may already know but which have not yet been discussed in the series.
Such examples are placed between two asterisks : *...*. Most readers will undoub-
tedly find that these examples will help them to understand the text. In other cases,
the passages between *...* refer to results which are discussed elsewhere in the
Series. We hope the reader will be able to verify the absence of any vicious circle.

5. The logical framework of each chapter consists of the definitions, the axioms,
and the theorems of the chapter. These are the parts that have mainly to be borne
in mind for subsequent use. Less important results and those which can easily be
deduced from the theorems are labelled as « propositions », « lemmas », « corolla-
ries », « remarks », etc. Those which may be omitted at a first reading are printed in
small type. A commentary on a particularly important theorem appears occasionally
under the name of « scholium ».

To avoid tedious repetitions it is sometimes convenient to introduce notations or
abbreviations which are in force only within a certain chapter or a certain section
of a chapter (for example, in a chapter which is concerned only with commutative
rings, the word « ring » would always signify « commutative ring »). Such conventions
are always explicitly mentioned, generally at the beginning of the chapter in which
they occur.

6. Some passages in the text are designed to forewarn the reader against serious
errors. These passages are signposted in the margin with the sign Z (« dangerous
bend »).

7. The Exercises are designed both to enable the reader to satisfy himself that he
has digested the text and to bring to his notice results which have no place in the
text but which are nonetheless of interest. The most difficult exercises bear the sign 4.

8. In general, we have adhered to the commonly accepted terminology, except
where there appeared to be good reasons for deviating from it.

9. We have made a particular effort always to use rigorously correct language,
without sacrificing simplicity. As far as possible we have drawn attention in the
text to abuses of language, without which any mathematical text runs the risk of
pedantry, not to say unreadability.

10. Since in principle the text consists of the dogmatic exposition of a theory,
it contains in general no references to the literature. Bibliographical references are
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gathered together in Historical Notes. The bibliography which follows each historical
note contains in general only those books and original memoirs which have been
of the greatest importance in the evolution of the theory under discussion. It makes
no sort of pretence to completeness.

As to the exercises, we have not thought it worthwhile in general to indicate
their origins, since they have been taken from many different sources (original
papers, textbooks, collections of exercises).

11. In the present Book, references to theorems, axioms, definitions, ... are given
by quoting successively :

— the Book (using the abbreviation listed in Section 3), chapter and page, where
they can be found, when referring to the French edition;

— the chapter and page only when referring to the present Book ;

— the chapter, paragraph and section, when referring to the English edition.

The Summaries of Results are quoted by the letter R ; thus Ser Theory, R signifies
« Summary of Results of the Theory of Sets ».



CHAPTER 1

Topological vector spaces
over a valued division ring

§ 1. TOPOLOGICAL VECTOR SPACES

1. Definition of a topological vector space

DEFINITION 1. — Given a topological division ring K (GT, 1IL, § 6.7) and a set E
such that E has

1° the structure of a left vector space on K ;

2° a topology compatible with the structure of the additive group of E (GT, III,
§ 1.1) and satisfying in addition the following axiom :

(EVT) the mapping (A, x) — Ax of K x E in E is continuous,
then E is called a left topological vector space over (or on) K.

It is equivalent to saying that E is a topological left K-module (GT, 111, § 6.6).

A left vector space structure relative to K and a given topology on a set E, are
said to be compatible if the topology and the additive group structure of E are compa-
tible and if, in addition, the axiom (EVT) is valid. This is the same as saying that
the two mappings (x, y) — x + y and (A, x) —> Ax of E x E and of K x E, respec-
tively, in E are continuous, for then the mapping x — — x = (— 1) x, is continuous
and the topology of E is compatible with its additive group structure.

If E is a left topological vector space over K, we say that E provided only with
its vector space structure, underlies the topological vector space E.

Examples. — 1) If E is a left vector space over a discrete topological division ring K,
the discrete topology on E is compatible with the vector space structure of E (this is
not so if K is non-discrete and E is not the single point 0).

2) Let A be a topological ring (GT, IIL, § 6.3) and let K be a subring of A that is
also a division ring and such that the topology induced on K by that of A is compatible
with the division ring structure of K ; then the topology of A is compatible with its
left vector space structure on K.

3) Let K be any topological division ring and I an arbitrary set. On the product
vector space K! (A, I1, § 1.5), the product topology is compatible with the vector space
structure (GT, III, § 6.4). Or we can say that the space K! of mappings of I in K with
pointwise or simple convergence topology is a topological vector space on K (TG,
X, p. 4).

4) Let X be a topological space; on the set E = € (X ; R) of finite real-valued conti-
nuous functions defined over X, the compact convergence topology (GT, X, § 1.3) is
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compatible with the vector space structure of E on R. For, let u, be a point of E, let H

be a compact subset of X and € be an arbitrary strictly positive number. The real-valued

function u, is bounded in H; let @ = sup |u,(?)|; if # is any point of E then for all t e H
teH

.|Xu(t) — Aotto(D] < M| u(D) — uo()] + a |k — Xl

Hence, if |A — kol <& and |u(r) — uy(1)] < & for all reH, then for reH,
[Au(r) — Aouo(t)| < &(e + |Ag| + a), which shows that the axiom (EVT) is satisfied;
similarly it can be verified that the compact convergence topology is compatible with
the additive group structure of E.

On the other hand, if X is not compact, the uniform convergence topology (in X)
is not necessarily compatible with the vector space structure of E ; for example if X=R
and if 4, is an unbounded continuous function in R, then the mapping A — Au, of R
in E is not continuous in the uniform convergence topology on E.

5) Let E be a vector space of finite dimension »n over a topological division ring K ;
there exists an isomorphism u:K} — E of vector K-spaces and moreover, if v is a
second isomorphism of K} on E, then we can write v = u o f, where f is an automor-
phism of the vector K-space K}. Consider, on K, the product topology that is compa-
tible with its vector space structure (Example 3); since every linear mapping of K
in itself is continuous for this topology, every automorphism of the vector space K”
is bicontinuous. Hence, if we transfer the product topology of K! to E, by means of
any isomorphism whatever of K! on E, the topology obtained on E is independent
of the particular isosmorphism used; we call it the canonical topology on E; we shall
characterize it differently (I, § 1.3) when K is a non-discrete complete division ring
with a valuation. Every linear mapping of E in a topological vector space over K is
continuous for the canonical topology on E.

In the same way as in def. 1, a right topological vector space over K, a topological
division ring, can be defined ; but every right vector space on K can be considered
as a left vector space on the division ring K° opposite to K (A, II, § 1 .1) and the topo-
logy of K is compatible with the structure of the division ring K°. For this reason
we usually consider only left topological vector spaces; when we speak of « topo-
logical vector space » without qualification, it is to be understood that we refer to
a left vector space.

If K’ is a sub-division ring of K, and E a topological vector space over K, then
it is clear that the topology of E is still compatible with the vector space structure
of E relative to K, obtained by restricting the field of scalars to K’; we say that
the topological vector space on K', obtained by this procedure, underlies the topo-
logical vector space E on K.

In order that a topological vector space E be Hausdorff, it is necessary and suffi-
cient that for all x # 0 of E, there exists a neighbourhood of 0 not containing x
(GT, 1III, § 1.2).

Consider a topology, on a vector space E over a topological division ring K,
that is compatible with the additive group structure of E. Because of the identity

Ax — Aoxg = (M — Xg) Xo + Ao(x — Xo) + (A — Ag) (x — Xxp)

axiom (EVT) is equivalent to the following system of three axioms.
(EVT) For all x, € E, the mapping A — Ax, is continuous at A = 0.
(EVTy) For all Ay €K, the mapping x — Ayx is continuous at x = 0.
(EVTy) The mapping (A, x) — Ax is continuous at (0, 0).
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In particular :

PROPOSITION 1. — For all o€ K and every point be E, the mapping x — ax + b
of E in itself is continuous. Further, if o # 0, this mapping is a homeomorphism of E
on itself.

The second part of the proposition is a result of the fact that if oo # 0, then
x> o~ 'x — o~ b is the inverse mapping of x> ax + b.

COROLLARY. — If A is an open (resp. closed) set in E, then oA is open (resp. closed)
in E for every o # 0 in K.

Let E and F be two topological vector spaces on the same topological division
ring K. A bijection f of E on F is an isomorphism of the topological vector space E
on the topological vector space F if and only if f is linear and bicontinuous. In parti-
cular, if y # 0 belongs to the centre of K, the homothety x — yx is an automorphism
of the topological vector space structure of E.

2. Normed spaces on a valued division ring

Recall (GT, IX, §3.2) that an absolute value on a division ring K is a mapping
Er—|&] of K in R, such that || =0 if, and only if, £ =0, and that |En| = [§].|n],
and |€ + | < |§| + In|; an absolute value defines a distance | — 1| on K, and
hence a Hausdorff topology compatible with the division ring structure of K. If
|| = 1 for all & # 0, the absolute value is called improper, and the topology that
it defines on K is the discrete topology ; if, on the other hand, there exists o % 0
in K such that |a| # 1, then there exists B # 0 in K such that |B| < 1 (it is sufficient
to take B = a or B = o~ !), and the sequence ("), , converges to 0, thus the topo-
logy of K is not discrete.

We recall on the other hand (GT, IX, § 3.3) that if E is a vector space on a non-
discrete valued division ring K then a norm on E is a mapping x — || x| of Ein R,
such that ||x|| = 0 if, and only if, x = 0, and such that ||Ax| = |A|.|x]|| for every
scalar A e K, and |x + y|| < ||x|| + |¥|l. A distance |x — y||, is defined on E by
the norm, and hence a topology that is compatible with the vector space structure
of E (loc. cit.). Unless the contrary is expressly stated, a normed space is considered
in terms of the structure of the topological vector space defined by its norm. The
normed spaces are among the most important of topological vector spaces.

n=

It is known (GT, IX, § 3.3) that two distinct norms on E can define the same topo-
logy on E; for this it is necessary and sufficient that the two norms be equivalent (loc.
cit). The structure of normed spaces is thus richer than the structure of topological
vector spaces; if E and F are two normed spaces one must be careful to distinguish
between the idea of isomorphism of the normed space structure of E with that of F,
and the idea of isomorphism of the topological vector space structure of E with that
of F.
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Example. — Let I be an arbitrary set of indices; it is known (GT, X, § 3.2) that a norm

x|l can be defined, on the set of bounded mappings x = (§,) of I in K, #(I; K) (also

written % (I) or £(D), by |x|| = sup [§|. When I is a topological space, the set of
el

bounded, continuous mappings of I in K is a closed subspace of the space #(I; K)
(GT, X,§ 3.1,cor. 2). Another subspace of Z(I; K) is the set¢x(1) of absolutely summable
families x — = (§) (GT, X, §3.6); we can define on thls subspace another norm
lIxll, Z [t that in general is not equivalent to the norm | x| = sup |§| (I, p. 23,

el
exerc. 6) when considering £L(I) as a normed space, without specifying its norm,
it is always the norm |/x|, that is meant. We write #(I) and ¢*(I) in place of #(I; R)
and £ (D).

3. Vector subspaces and quotient spaces of a topological vector space ; products of
topological vector spaces; topological direct sums of subspaces

Everything that has been said for topological modules (GT, III, § 6.6) applies
in particular to topological vector spaces. If M is a vector subspace of a topological
vector space E, the topology induced on M by that of E is compatible with the
vector space structure of M, and the closure M of M in E is a vector subspace of E.
The quotient topology of that of E by M is compatible with the vector space structure
of E/M.

If E is a topological vector space, the closure N of {0} in E (intersection of neigh-
bourhoods of 0) is a closed vector subspace of E ; the quotient vector subspace E/N,
which is necessarily Hausdorff whether E is or not, is caiied the Hausdorff vector
space associated with E.

Let (E,), be a family of topological vector spaces over the same topological
division ring K, and let E be the product vector space of the E,. The product topo-
logy of the topologies of the E, is compatible with the vector space structure of E.
In the product space E, the subspace F, the direct sum of the E, is everywhere dense
(GT, 1III, § 2.9, prop. 25).

For certain types of topological vector spaces on the field R or the field C we define
(in II, p. 29) a topology on the direct sum of a family (E,) of topological vector spaces
that is, in general, distinct from the topology induced by the product topology of the E,.

Everything that has been said on the finite direct sums of stable subgroups of
topological groups with operators (GT, I11, § 6 . 2) applies to topological vector spaces,
replacing « stable subgroup » throughout by « vector subspace ».

Remark. — Given a closed vector subspace M of a Hausdorff topological vector space E,
it is not necessarily the case that there exists an (algebraic) complementary vector
subspace to M that is closed in E (even if E is a normed space ; ¢f. IV, p. 55, exerc. 16 (¢)) ;
a fortiori there does not necessarily exist a topological complement of M in E (¢f 1,
p. 26, exerc. 8). However we shall see in § 2 that when K is a non-discrete valued division
ring, then every closed subspace M of E, with finite codimension, does have a topological
complement in E (I, p, 14, prop. 3).
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4. Uniform structure and completion of a topological vector space

Since the topology of the topological vector space E is compatible with the addi-
tive group structure on E, it defines a uniform structure on E (GT, III, § 3); when
we speak of the uniform structure of a topological vector space we always mean
this structure unless the contrary is expressly stated. Every continuous linear mapping
of a topological vector space E in a topological vector space F is uniformly continuous
(GT, 111, § 3.1, prop. 3); every mapping of E in itself of the form x> ax + b is
uniformly continuous. An equicontinuous set of linear mappings of E in F is uniformly
equicontinuous (GT, X, § 2.2, prop. 5).

Remarks. — 1) If B is a precompact set of K, then for every neighbourhood V of 0
in E, there is a neighbourhood U of 0 in E such that BU = V. For, if W is a neigh-
bourhood of 0 in E such that W + W < V; then from (EVTy,) there is a neighbourhood
T, of 0in K and a neighbourhood U, of 0 in E such that T,U, = W. As B is precompact,
there are finitely many points X; € B (1 < i < n) such that the X, + T, cover B; from
(EVTy) it follows that there is a neighbourhood U = U, of 0 in E, such that ,U =« W
for all i; clearly U has the required properties. In a similar manner (using (EVT))
instead of (EVTy)) it can be shown that if H is a precompact set of E, then for every
neighbourhood V of 0 in E, there exists a neighbourhood T of 0 in K such that TH < V.

2) From 1) it follows that, if B is a precompact set of K and H is a precompact set
of E, then the mapping (A, x) — Ax restricted to B x H is uniformly continuous. For,
if V is a neighbourhood of 0 in E then there are neighbourhoods T of 0 in K, and U
of 0in E such that TH + BU < V. Since we can write Ax — A'x'=(A — 1)) x + A/(x — x'),
we see thatfor A, M'in B, x, X in H,A — M eTand x — x' € U, we have Ax — A'x' eV,
which proves our assertion.

A topological vector space is called complete if, considering its uniform structure,
it is a complete uniform space.

DEFINITION 2. — A complete normed space on a non-discrete valued division ring is
called a Banach space.

Examples. — If K is a non-discrete valued division ring then the space 4(I; K) (I, p. 4,

Example) is complete (GT, X, § 3.1, cor. 1). This is also true for the space ¢%(I) (I, p. 4,

Example) with the norm ||x||, = Y |§| : for, if x, is a Cauchy sequence in this space and
el

X, = (&) then foralliel

G — &l < lx, — X045

thus, for each 1 € I, the sequence (§,,),>; converges to a limit § in K. Further, for each
finite subset J of I

2 B = Gl < I — X045
€]

and it follows immediately that there exists a constant a > 0, independent of J, m, n
such that ) |€,, — &, | < a. Letting m tend to + oo, we deduce ) & — &,| < e

€] 1€l

from which ) [§| < a + ||x,|l,, which shows that z = (), belongs to ¢L(I); further,
el

for all € > 0, there exists n, such that for n > n, and for every finite set J of I, we have
Y IE, — &, < €; passing to the limit with respect to the directed set of finite subsets of I,

(=)
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we see that ||z — x,|, < eforn = n,, which shows that z is the limit of the sequence (x,)
in the normed space £4(1).

Let K be a Hausdorff topological division ring, E a topological vector space on K
and suppose that the completed ring K is a division ring (this is so when K is a valued
division ring, GT, IX, § 3.3) then the Hausdorff completion E of E carries the struc-
ture of a complete topological vector space on K (GT, 111, § 6. 5) ; we say that E, with
this structure, is the Hausdorff' completion of the topological vector space E, or simply
the completion of E when E is Hausdorff.

5. Neighbourhoods of the origin in a topological vector space over a valued division
ring

DEFINITION 3. — Let K be a valued division ring and E a left vector space over K ;
we say that a subset M of E is balanced if, for all x e M and all » € K suchthat |\] < 1,
it is true that A.x € M (or in other words if \M = M when |A| < 1).

PROPOSITION 2. — In a topological vector space E over a valued division ring K, the
closure of a balanced set M, is a balanced set.

If B is the set of £ € K with || < 1; then B is closed in K. But B x M is mapped
into M by the continuous mapping (A, x) — Ax; and therefore B x M is mapped
into M (GT, L, § 2.1, th. 1) which proves that M is balanced.

When M is an arbitrary set in the vector space E over a valued division ring K,
the set M, of the Ax with x e M and A € K such that |A| < 1, is clearly the smallest
balanced set containing M ; M, is called the balanced envelope of M.

PRrROPOSITION 3. — Let K be a valued locally compact and non-discrete division ring
and E be a Hausdorff topological vector space (resp. a topological vector space) over K.
For every compact (resp. precompact) set H in E, the balanced envelope of H is compact
(resp. precompact).

If B denotes the ball || < 1 in K, the balanced envelope of H is H,, the image
of B x H under the continuous mapping m:(A, x) — Ax. If E is Hausdorf, if B is
compact and if H is compact then so is B x H and therefore H,. If H is precompact
the restriction of m to B x H is uniformly continuous (I, p. 5, Remark 2) and as
B x H is precompact, so also is its image under m (GT, II, § 4.2, prop. 2).

Note that the balanced envelope of a closed set is not necessarily closed. For example,
in R?, the balanced envelope of the hyperbgla defined by the equation xy = 1 is not
closed.

The union of a family of balanced sets in E is balanced, which implies that for
every set M of E there is a largest balanced subset N of M called the balanced core of
M; also N is not empty if and only if 0 e M. To say that x e N means that for all
A € K such that [A| < 1, we have Ax e M, or again (if 0 e M) that, for all p e K with
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[u| = 1, we have xe uM. If 0 € M, the balanced core N of M is therefore the inter-

section (N pM. This shows in particular that if M is closed, so also is N.
[u[=1

DEFINITION 4. — Let K be a non-discrete valued division ring and E be a left vector
space on K with two subsets A and B. We say that A absorbs B if there exists o > 0
such that \A o B for every A € K with |\| = o (or equivalently if nB = A forn # 0
and |y < a7 !). A set A of E is called absorbent if it absorbs every set consisting of a
single point.

Let A be a balanced set of E ; for it to absorb a set B of E it is sufficient that there
exists A # 0 such that AA o B; in fact, for |u| > |A|, we have AA = (Au~!) pA, and
as pA is balanced and [Ap~!'| < 1, it follows that AA < pA, and thus B < pA. In
particular for a balanced set A of E to be absorbent, it is necessary and sufficient
that for every x € E, there exists A # 0 in K such that Axe A. Every absorbent set
of E generates the vector space E. Every finite intersection of absorbent sets is an
absorbent set.

PROPOSITION 4. — In a topological vector space E on a non-discrete valued division
ring K there exists a fundamental system B of closed neighbourhoods of 0 such that :

(EV) Every set Ve B is balanced and absorbent.

(EVy) For every Ve B and A # 0 in K, we have AV € B (invariance of B under
homotheties of non zero ratio).

(EVy) For every Ve B, there exists We B such that W + W < V.

Conversely, let E be a vector space on K, and let B be a filter base on E satisfying
the conditions (EV,), (EVy) and (EVyy,). Then there exists a topology (and it is unique)
on E, compatible with the vector space structure of E, and for which B is a fundamental
system of neighbourhoods of 0.

By axiom (EVTy;,) we show firstly that the balanced core, V,, of V, a neighbourhood
of 0, is itself a neighbourhood of 0. For there exist & > 0 and a neighbourhood W
of 0 such that, if [A| < a and x € W, then Ax e V. Since K is non-discrete, there exists
p # 0 in K with |p| < o and pW is a neighbourhood of 0 for which pW < V. Also
if veK and |v| < 1 then |vp| < o and thus vuW > V. Hence pW > V, and V,
is a neighbourhood of 0. Also as V is closed so also V, is closed. Thus the set B of
closed balanced neighbourhoods of 0 form a fundamental system of neighbourhoods
of 0 in E. By (EVT)) every neighbourhood of 0 is absorbent ; furthermore B satisfies
(EVp) (¢f. 1, p. 3, cor.); finally, because of the continuity of (x, y) — x + y at the
point (0, 0), every fundamental system of neighbourhoods of 0 in E satisfies (EVy).
The set B satisfies the conditions of the proposition.

Now let E be a vector space over K, and B be a filter base on E satisfying (EV)),
(EV,) and (EVy,). The axiom (EV)) shows firstly that for all V € B, we have — V=V
and 0 e V; these relations and the axiom (EV ;) show that B is a fundamental system
of neighbourhoods of 0, for a topology on E compatible with the additive group
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structure of E (GT, III, § 1.2). On the other hand the axioms (EVT;), (EVT}) and
(EVTy,) are immediate consequences of (EV)) and (EVy)), thus the topology defined
above satisfies the axiom (EVT), and the proposition is proved.

Remarks. — 1) In a normed space on a non-discrete valued division ring the set of
open balls (resp. closed balls) with centre 0 is a fundamental system of neighbourhoods of
0 which satisfy the conditions (EV)), (EV,)) and (EVy).

2) When the division ring of scalars K is the field R or the field C, every filter base
B on E which satisfies just the two axioms (EV,) and (EV,;) is a fundamental system
of neighbourhoods of 0 for a topology compatible with the vector space structure of E.
In fact, we need only prove that, in these conditions, for every A # 0 in K and every
V € B there exists W € B such that AW < V. Now from (EV|;) there exists W, € B
with 2 W, < V, and we deduce, inductively, that for every positive integer n, there exists
W, € B such that 2"W, < V. As Vis balanced, if we take n so large that 2" = |2"| > |A|,
then W = W, satisfies the condition, as required.

This result does not hold for every non-discrete valued division ring K, for in such a
division ring it is no longer necessarily true that |me| = m for every positive integer m
(e indicates the unit element of the division ring ; ¢f. I, p. 22, exerc. 1).

3) If K is a discrete division ring, conditions (EVT;) and (EVTy,) are true for any
topology on E. Arguing as in prop. 4, one easily sees that if E is a topological vector
space on K, then there exists B, a fundamental system of closed neighbourhoods of 0
in E satisfying conditions (EV,,) and (EV,,). Conversely, if a filter base B on a vector
space E over K is such that 0 belongs to all the sets of B and (EVy), (EVy,) are true,
then B is a fundamental system of neighbourhoods of 0 in a topology compatible
with the vector space structure of E.

6. Criteria of continuity and equicontinuity

Let E and F be topological vector spaces over the same division ring K ; for a
linear mapping f of E in F to be continuous, it is sufficient for it to be continuous
at the origin (GT, III, § 2.8, prop. 23). This proposition generalizes as follows :

PrOPOSITION 5. — Let E; (1 < i < n) and F be topological vector spaces on a non-

discrete valuedfield K. In order that a multilinear mapping fof | | E,in F should be conti-

i=1
n
nuous in the product space [ | E, it is sufficient for it to be continuous at (0, 0, ..., 0).
i=1

n
Let (a,, a,, ..., a,) be an arbitrary point of [] E;; we must show that for every
i=1

neighbourhood W of 0 in F there exist neighbourhoods V; of 0 in E; (1 <i<n)
such that the relations z;e V imply

fla, +z,,a, +2,,...,a, + z,) —fla,, a,, ..., a)eW.
Now, we can write

fla, +z,,...,a, +z,) —flay, ...a) =) uy
H
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where H varies over the 2" — 1 subsets of the set of integers { 1, 2, ..., n }, excluding
the set { 1, 2, ..., n} itself, and where uy = f(¥,, ¥5, --.» ¥,), With y, = g, if ie H and
y; = z; if i¢ H. There exist 2" — 1 balanced neighbourhoods Wy of 0 in F such
that z Wy = W; on the other hand as f is continuous at (0, 0, ..., 0) by hypothesis,

there exists in each E, a neighbourhood U, of 0 (1 < i < n) such that the n relations
x; € U; imply that f(x,, ..., x,) e Wy. As U, is absorbent, there exists A; # 0 in K
H
such that A,4; € U,. Let A be an element of K such that |A| > [] |A;]~ ! for each subset
ieH
H; we show that the neighbourhoods V, = A" U,, fulfill the required condition.

We can write uy = pf(x,, ..., x,) where x;e U, for I <i<mandp =r""(] A1),
ieH

p being the number of integers of { 1, 2, ..., n } not in H. From the above |u| < 1,

hence uy e pyWy « Wy since Wy, is balanced. The proposition is established.

PROPOSITION 6. — With the same hypotheseson E;(1 < i < n)andonF asinprop.5, in

order that a set & of multilinear maps of || E, in F be equicontinuous it is sufficient
i=1

that the set be equicontinuous at (0, 0, ..., 0).

For, in the demonstration of prop. 5 the U, (1 < i < n) can be taken such that

the relation x, e U; (1 < i < n) imply f(x,, ..., x,) e Wy for every mapping fe &.
H

7. Initial topologies of vector spaces

PropoSITION 7. — Let (E)),4 be a family of topological vector spaces on a topological
division ring K. Let E be a vector space on K and for each1€ 1, let f, be a linear map-
ping of E in E,. Then the coarsest topology on E which makes each function f, conti-
nuous, is a topology I~ compatible with the vector space structure of E. Further, if
for every x € E, ¢§(x) denotes the point (f(x)) of the product space F = [ E,, then

1€l

the topology I is the inverse image of the topology of the subspace G(E) of F under
the linear mapping ¢.

The last part of the proposition is a particular case of GT, I, § 4.1, prop. 3. The
proposition then follows from the next lemma.

Lemma. — Let M and N be two vector spaces, and g a linear mapping of M in N.
If 7, is a topology compatible with the vector space structure of N, then the inverse
image of T, by g is compatible with the vector space structure of M.

We show, for example, that (A, x) — Ax is continuous at each point (A, x,) of
K x M. Put y, = g(x,). Every neighbourhood of 0 in M contains a neighbourhood

-1
of the form g(U) where U is a neighbourhood of 0 in N; by hypothesis there exists
a neighbourhood V of 0 in K and a neighbourhood W of 0 in N such that the rela-
tions A—A, €V, and y—y, € W imply Ly —2A,y, € U. Thus the relations A—A, € V,
-1 -1
x—x4 € g(W) imply Ax—2Ayx, € g(U). We can show similarly that (x, y) > x—y
is continuous in M x M.
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For each index 1 € I, let B, be a fundamental system of neighbourhoods of 0 in E, .
From the definition of the topology .7, the filter of neighbourhoods of 0 for this

-1
topology is generated by unions of sets of the families f,(B,); in other words, the
-1
sets of the form rk] f.(V,) form a fundamental system of neighbourhoods of 0 for 7,

the (1,); <x<, being any finite sequence of indices of I, and, for each index k, V,,
any set of B .

COROLLARY 1. — Let G be a topological vector space on K. In order that a set H of
mappings of G in E be equicontinuous, it is necessary and sufficient that, for all1 €1,
the set f ou where u varies in H should be equicontinuous.

This is a particular case of GT, X, § 2.2, prop. 3.

COROLLARY 2. — If the spaces E, are Hausdorff, then in order that 7 be Hausdorff,
it is necessary and sufficient that, for every x # 0 in E, there should exist an index
vel, such that f(x) # 0.

For ¢(E) is then a Hausdorff space, and in order that 7 be Hausdorff, it is evi-
dently necessary and sufficient that ¢ be injective ; note that we can then identify E
(with 77) with the subspace ¢(E) of [ | E, by the mapping ¢.

el

COROLLARY 3. — Suppose the E,_are complete and $(E) is closed in F = [ | E,. Then

el

E is complete in the topology 7 .

For the subspace ¢(E) of F is then complete (GT, II, § 3.4, prop. 8 and § 3.5,
prop. 10), therefore the same is true of E in the inverse image topology (GT, 1,§ 7.6,
prop. 10 and GT, IL, § 3.1, prop. 4).

* Example. — Let 2'(R) be the space of distributions on R ; for p a number such that
1 <p< + oo, let j:LP(R) » 2'(R) be the canonical injection, which is continuous
(when LP(R) carries its normed space topology and 2'(R) the strong topology). For
every distribution f € Z’(R), denote the derivative of f by D(f); recall that f — D(f)
is a continuous endomorphism of 2'(R). Then let E be the vector subspace of LP(R)
formed from those fe LP(R) for which D(f) e L?(R), and confer on E the coarsest
topology making the canonical injection i:E — LP(R) and the mapping D:E — L?(R)
continuous (L?(R) carries its normed space topology). For this topology, the space E
is complete. For, the image of E in F = L?(R) x LP(R) by the mapping ¢ :f+— (f, D(f))
is closed, since it is the trace on L?(R) x LP(R) of the image G of 2'(R) in 2'(R) x 2'(R)
by the mapping

bo:f = (f, D)

now G is the graph of ¢, therefore closed in 2'(R) x 2'(R) (GT, I, § 8.1, cor. 2 of
prop. 2), and as ¢(E) is the inverse image of G by i x 7, which is continuous, we see that
®(E) is closed in F.

COROLLARY 4. — Let E be a vector space over a topological division ring K, and let
(7 ).a be a family of topologies compatible with the vector space structure of E ; then
the upper bound J of the topologies 7, is compatible with the vector space structure
of E.
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For, if E, denotes the topological vector space obtained from E by the topology
7., and f, the identity map of E on E,, then 7 is the coarsest topology making the f,
continuous.

§ 2. LINEAR VARIETIES IN A TOPOLOGICAL VECTOR SPACE

1. The closure of a linear variety

Recall (A, II, § 9.3) that in a vector space E over a division ring K, a non-empty
affine linear variety (called « linear variety » when this can cause no confusion) is the
image under a translation of a vector subspace of E.

PROPOSITION 1. — In a topological vector space E, the closure of a linear variety is
a linear variety.

Since every translation is a homeomorphism of E, it is sufficient to demonstrate
the proposition for a vector subspace M of E, and in this case, the proposition has
been proved in I, p. 4.

COROLLARY. — In a topological vector space E, every hyperplane is either closed or
everywhere dense.

In fact, the closure of a homogeneous hyperplane H can only be H or the whole
space E, since it is a vector subspace containing H (prop. 1).

A hyperplane H is closed in E if, and only if, (H contains an interior point.

The vector subspace M generated by a set A, in a topological vector space E,
is the set of linear combinations of points of A (A, II, § 1.7, prop. 9) ; the closure of
M in E is, by prop. 1, the smallest closed vector subspace containing A ; we say that
this is the closed vector subspace generated by A.

DEFINITION 1. — A4 set A, in a topological vector space E, is total if, and only if, the
closed vector subspace generated by A coincides with E (i.e. the set of linear combi-
nations of elements of A is everywhere dense).

Examples. — 1) In the normed space €(I; C) (on the field C) of functions, continuous
on I=[O, 1), with values in C, the restrictions to I of the functions x" (n e N) form
a total set, by the Weierstrass-Stone theorem (GT, X, § 4.2, th. 3). Similarly, the res-
trictions to I of the functions e?"™* (n € Z) form a total set (GT, X, § 4.4, prop. 8), in
the subspace P of € (I, C) formed of functions such that f(0) = f(1).

2) Every absorbent set in a topological vector space E over a non-discrete valued
division ring (and in particular every neighbourhood of 0 in E) is a total set since it
generates E (I, p. 7). Thus a linear variety that is not dense in E is necessarily a nowhere
dense setin E (GT, IX, § 5.1) since its closure cannot contain an interior point.

DEFINITION 2. — A family (a,),.; of points of a topological vector space E is called
topologically independent if for any x € 1, the closed vector subspace generated by the
a, witht # x, does not contain a,.
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Example. — 3) In the normed space %(I; C) of continuous functions defined over
I = (0, 1), the restrictions to I of the functions e>"™* (n € Z) form a topologically inde-

pendent family. If f(x) is the linear combination Y ¢, e**™* (where all but finitely
k#n
many of the ¢, are zero) then

1
J 2™ — f()]Pdx =1+ Y |g? =1
0 k#n

and, a fortiori, by the mean value theorem

S)g}) IeZnnix 7f(x)| > 1

which shows that e2™"* does not belong to the closed vector subspace of (I ; C) gene-
rated by e*¥™* k # n.

The set of elements of a topologically independent family is called a ropologically
independent set of E. Every subset of a topologically independent subset is topolo-
gically independent ; every subset consisting of a single point x # 0 is topologically
independent if E is a Hausdorff space.

A topologically independent family is independent (in the algebraic sense; cf. A,
II, § 7.1, Remark), but the converse is incorrect.

Example. — 4) In the normed space € (I; C) of functions that are continuous over
I = (0, 1), the restriction to I of the functions x" (n € N) form an algebraically inde-
pendent family. But there exists a sequence of polynomials (p,) such that p,(x*) con-
verges uniformly to x in I (GT, X, § 4.2, lemma 2) which shows that x belongs to the
closed vector subspace of €(I; C) generated by the functions x?" (n € N).

Remarks. — 1) The family of topologically independent sets of a topological vector
space is not necessarily inductive for the relation of inclusion (I, p. 25, exerc. 2); this
situation is thus different to that for algebraically independent sets. Moreover there
does not necessarily exist in E a maximal topologically independent subset (I, p. 25,
exerc. 4), thus there does not necessarily exist a subset that is both total and topolo-
gically independent.

2) Let M be a closed vector subspace of E and (4,),; a topologically independent
family in the quotient space E/M. If a, is any element of the class d,, then from def. 2,
and the fact that the canonical mapping of E on E/M is continuous, it follows that
the family (q,),., is topologically independent. But note that if N is the closed vector
subspace generated by the «, it can happen that M n N # {0} (I, p. 25, exerc. 2), and
hence the sum M + N is not necessarily direct in the algebraic sense (nor a fortiori
in the topological sense).

2. Lines and closed hyperplanes

PROPOSITION 2. — Every Hausdorff topological vector space E of dimension 1 over a
non-discrete valued division ring K is isomorphic to K; in fact, for every a # 0 in E,
the mapping & — &a of K, on E is an isomorphism (in other words every linear mapping
of K on E is an isomorphism).

As the mapping & — &a of K, on E is bijective and continuous (I, p. 1, def. 1), it
is sufficient to show that it is bicontinuous. Let o be a real number > 0, we show
that there exists a neighbourhood V of 0 in E such that if Ea e V then |§| < o. As K
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is not discrete, there exists an element &, € K such that 0 < |§,| < a; but, as E is
Hausdorff, there is a neighbourhood V of 0 such that £,a does not belong to V.
We can suppose that V is balanced (I, p. 7, prop. 4). But then if Ea € V and [§] = |§,)|
we have [, < 1, and Eya = (E,E 1) (Ea) € V; since this last statement is false
we see that Eae V implies |§] < |, < a. This completes the proof.

COROLLARY 1. — In a Hausdorff topological vector space E, over a non-discrete
valued division ring K, every vector subspace D of dimension 1 is isomorphic to K.

COROLLARY 2. — Let E be a topological vector space over a non-discrete valued divi-
sion ring. Every vector subspace D (of dimension 1) which is the algebraic complement of
a closed homogeneous hyperplane H is also the topological complement of H.

In D, the set {0} is closed, being the intersection of D and the closed set H; D is
therefore Hausdorff. But as E/H is also Hausdorff, the canonical mapping of D
on E/H, which is linear, is also an isomorphism by prop. 2, from which the conclusion
follows (GT, III, § 6.2).

THEOREM 1. — Let E be a topological vector space over a non-discrete valued division
ring. Let H be a hyperplane in E defined by the equation f(x) = o where f is a linear
form not identically zero. Then H is closed in E if and only if f is continuous.

The condition is evidently sufficient (GT, I, § 2. 1, th. 1) ; we show that it is necessary.
We can suppose that H is a closed homogeneous hyperplane with the equation
f(x) = 0. The quotient space E/H is then a Hausdorff topological vector space of
dimension 1 on K. We can write f = g o ¢, where ¢ is the canonical mapping of
E on E/H and g is a linear mapping of E/H on K_; from prop. 2, g is continuous,
thus the same is true of f.

COROLLARY. — Every continuous linear form on E that is not identically zero is a
strict morphism of E on K,.
Remark. — There are examples of normed topological vector spaces over a complete
non-discrete valued division ring, in which every continuous linear form is identically

zero (I, p. 25, exerc. 4) ; in such a space therefore, every hyperplane is everywhere dense
(I, p. 11, corollary). '

3. Vector subspaces of finite dimension

THEOREM 2. — Every Hausdorff topological vector space E, of finite dimension n,
over a complete non-discrete valued division ring K, is isomorphic to K%; in

fact, for every basis (¢;); <;<, of E on K, the linear mapping (&) — Y, E.e, is an iso-
i=1
morphism of K! on E.

Proposition 2 of I, p. 12, implies that th. 2 is true for » = 1; we argue by induction
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on n. Let H be the vector subspace of E generated by e,, e,, ..., e,_, ; the induction
n—1

hypothesis is that the mapping (§), <;<,_ 1 — 2. &¢; is an isomorphism of K!~*
i=1

on H. The subspace H, being isomorphic to a product of complete spaces, is complete

(GT, 11, § 3.5, prop. 10); hence it is closed in E (GT, 11, § 3.4, prop. 8). Let D be

the subspace Ke, complementary to H in E ; E is the topological direct sum of H and

D (I, p. 13, cor. 2), therefore the mapping

n
Edi<i<n ™ Zl Eie;
=

of K"~ x K, on E is an isomorphism.

When »n > 1 the hypothesis that K is complete is essential for the validity of theorem 2.
In fact, let K be a non-complete valued division rmg, and let K be its complet1on :
for each a # 0 of K the set K.a is everywhere dense in K, since x > xa is a homeo-
morphlsm of K onitself. If a ¢ K, the subspace K +Ka of the topological vector space K
on K is of dimension 2 on K, but it is not isomorphic to K? since every subspace of
dimension 1 in K + Ka is dense in K + Ka.

COROLLARY 1. — In a Hausdorff topological vector space E over a complete non-
discrete valued division ring K, every vector subspace F of finite dimension is closed in E.

For, if F is of dimension » then it is isomorphic to K!; it is therefore complete
and hence closed in E (GT, II, § 3.4, prop. 8).

COROLLARY 2. — Let K be a complete non-discrete valued division ring, and E be a
Hausdorff topological vector space of finite dimension over K. If F is any topological
vector space over K, then every linear mapping of E in F is continuous.

COROLLARY 3. — In a Hausdorff topological vector space E, over a complete non-
discrete valued division ring, every finite independent set is topologically independent.

COROLLARY 4. — Let E be a topological vector space over a complete non-discrete
valued division ring. If M is a closed vector subspace of E and F is a vector subspace of E
of finite dimension, then the subspace M + F is closed in E.

Write ¢ for the canonical homomorphism of E on the quotient space E/M (neces-

sarily Hausdorff). Then the subspace M + F is identical with :bl(d)(F)). Now ¢(F)
is of finite dimension in E/M, therefore (cor. 1) ¢(F) is closed in E/M, and, in conse-

quence, Ebl((b(F)) is closed in E.

We note that, if M and N are any two closed vector subspaces in a Hausdorff topo-
logical vector space E, then M + N is not necessarily closed in E, * even if E is a Hilbert
space , (cf. IV, p. 64, exerc. 13, d)).

PrOPOSITION 3. — Let E be a topological vector space over a complete non-discrete
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valued division ring K. Let M be a closed vector subspace of finite codimension n in E.
T hen every subspace N that is an algebraic complement of M in E is also a topological
complement.

In N, the set {0} is closed, since it is the intersection of N and the set M which
is closed in E ; thus N is Hausdorff. As E/M is also Hausdorff, the canonical mapping
of N on E/M, which is linear and bijective, is bicontinuous (I, p. 14, cor. 2), from
which the proposition follows.

CorOLLARY. — Let E and F be two topological vector spaces over a complete non-
discrete valued division ring. If ¥ is Hausdorff and of finite dimension, then every
continuous linear mapping of E on F is a strict morphism.

Remark. — The results of Nos 2, 3 are no longer valid when K is discrete. For example,
let K, be a non-discrete valued division ring and K be the discrete division ring obtained
by endowing K, with the improper absolute value on K,. Then K, is a topological
vector space of dimension 1 over K, but it is not isomorphic to K,. However, we can
show that the results of Nos 2, 3 are valid even when K is discrete, provided that we
impose on the topological vector spaces considered, the property of having a funda-
mental system of balanced neighbourhoods of 0 (i.e. neighbourhoods V such that
K.V = V), p. 27, exerc. 14) ; this condition (which is always satisfied when K is a non-
discrete valued division ring c¢f. I, p. 7, prop. 4) is not valid for all topological vector
spaces over K as the preceding example shows.

4. Locally compact topological vector spaces

THEOREM 3. — Let K be a complete non-discrete valued division ring. If E is a Haus-
dorff topological vector space over K, which is such that some neighbourhood V of 0
in E is precompact, then E is of finite dimension. If E # {0}, then both K and E are
locally compact.

In proving the first assertion, we need consider only the case when E is complete;;
for E is an everywhere dense subspace of its completion E, and the closure V of V
in E is compact and is a neighbourhood of 0 in E (GT, 1L, § 3.4, prop. 7).

We can suppose then that there is a compact neighbourhood V of 0 in E. Let
o € K be such that 0 < |a| < I; then there are finitely many points g; € V such that

Ve U(ai + aV).

Let M be the finite dimensional subspace of E generated by the g, ; it is closed in E
(I, p. 14, cor. 1). In the Hausdorff topological vector space E/M the canonical image
of V is a compact neighbourhood W of 0, such that W < aW; hence a ! W < W,
and, by induction on n, a™" W < W for every positive integer n. As W is absorbent,
we conclude that W = E/M; and thus E/M is compact. To complete the proof of
the first assertion in the theorem, it is sufficient, therefore, to establish the following
lemma.

Lemma 1. — Any compact topological vector space E over a non-discrete valued divi-
sion ring, is just the set { 0 }.
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Since E is complete we can suppose K is complete (I, p. 6). If E # {0} then E
contains a line that is closed in E (I, p. 14, cor. 1) and therefore compact. This line is
isomorphic to K, (I, p. 12, prop. 2) and hence K must be compact. Now the mapping
£ — |€] of K in R is continuous and thus the image of K must be bounded, on the
other hand there exists y € K with |y| > 1, and theset |y"| = |y|", n € N, is unbounded.
This contradiction shows that E = {0}.

To prove the second assertion in the theorem, if E # {0} then from the first part
of the theorem E is isomorphic to K! with n > 0; now K is complete, hence so is E,
and thus E is locally compact. But K| is isomorphic to a line in E (I, p. 12, prop. 2)
which is necessarily closed in E (I, p. 14, cor. 1) ; it follows that K is locally compact.

Remark. — The result of th. 3 is no longer true if K is a discrete division ring as is shown
by the example of R (with the usual topology) considered as a topological vector space
over the discrete field Q.

§ 3. METRISABLE TOPOLOGICAL VECTOR SPACES

1. Neighbourhoods of 0 in a metrisable topological vector space

We say that a topological vector space E is metrisable if its topology is metrisable.
Relative to the structure of its additive group and of its topology, E is, therefore,
a metrisable group (GT, IX, § 3.1).

We know that, for a topological group to be metrisable, it is necessary and suffi-
cient that there exists an enumerable fundamental system of neighbourhoods of
the neutral element e, whose intersection is the single element e (GT,IX,§ 3.1,
prop. 1).

Also we know that the uniform structure of a metrisable topological vector
space E, can be defined by an invariant distance d(x, y) = |x — y|, where x> |x|
is a continuous mapping of E in R, which satisfies the conditions : 1) |— x| = |x|;
2) |x + y| < |x| + |¥|; 3) the relation |x| = 0 is equivalent to x = 0 (GT, IX,
§ 3.1, prop. 3).

We saw (GT, IX,§ 3.1, prop. 2) how such a distance d could be defined using a decreas-
ing sequence (W,) of neighbourhoods of 0 in E, forming a fundamental system of neigh-
bourhoods and such that W,,, + W,,, + W,,, =« W,. When E is a metrisable
vector space over a non-discrete valued division ring K, we can also suppose that the W,
are balanced (I, p. 7, prop. 4) ; if we revert to the process of definition of d (loc. cit.) we can
see that the relation |\ < 1 implies that |\x| < |x|. Further the conditions (EVT}) and
(EVTy) of I, p. 2 imply both that |Ax,| tends to 0 as A tends to 0 in K for every x, € E,
and that |Aox| tends to 0 as |x| tends to O for every A, € K. Conversely, if the function |x|
possesses all the preceding properties and if W, is the set of x € E such that |x] < 277",
thenthe W, form a fundamental system of balanced neighbourhoods of 0 for a metrisable
topology on E that is compatible with the vector space structure of E.

Remark. — One of the most important classes of metrisable vector spaces are the
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normed spaces (I, p. 3). But it must be noted that there exist metrisable vector spaces
whose topology cannot be defined by a norm (1, § 3, exerc. 1) ; we shall study important
examples later.

2. Properties of metrisable vector spaces

Every vector subspace of a metrisable topological vector space E is metrisable;
the same is true of every quotient space E/M of E by a closed vector subspace M
(GT, IX, § 3.1, prop. 4). Every product of an enumerable family of metrisable topo-
logical vector spaces is metrisable (GT, IX, § 2.4, cor. 2). If K, is a complete valued
division ring, and K is a subdivision ring everywhere dense in K, the completion E of
a metrisable vector space E over K is a metrisable vector space over K, (I, p. 6 and
GT, IX, § 2, No. 1, prop. 1). Finally, if E is a metrisable vector space that is complete,
then for every closed vector subspace M of E, the quotient space E/M is complete (GT,
IX, § 3.1, prop. 4).

3. Continuous linear functions in a metrisable vector space

THEOREM 1 (Banach). — Let E and F be two metrisable vector spaces over a non-
discrete valued division ring K, and let u be a continuous linear mapping of E in F.
Suppose that E is complete. Then the following conditions are equivalent :

(i) u is a strict surjective morphism.

(ii) F is complete and u is surjective.

(iii) The image of u is not meagre in F (GT, IX, § 5.2).

(iv) For every neighbourhood V of 0 in E, the set u(V) is a neighbourhood of 0 in F.

Firstly (i) implies (ii), for let u be a strict surjective morphism and N be the kernel
of u. Then u induces an isomorphism of E/N on F. But E is metrisable and complete,
hence E/N is complete (GT, IX, § 3.1, prop. 4), therefore F is complete.

Next (ii) implies (iii). Let F be complete and u be surjective. The image of u is
precisely F and therefore not meagre in F from Baire’s theorem (GT, IX, § 5.3).

The following lemma shows that (iii) implies (iv).

Lemma 1. — Let E and F be two topological vector spaces over a non-discrete valued
division ring K, and let u be a continuous linear mapping of E in F such that the image
of E is not meagre. Then, for every neighbourhood V of 0 in E, the set u(V) is a neigh-
bourhood of 0 in F.

Let W be a balanced neighbourhood of 0 in E such that W + W = V (I, § 1.5,
prop. 4). Let a be an element of K such that x| > 1; then E is the union of the sets
o"W where » varies in N ; in fact, for all x € E, there exists B € K such that x e W
(I, p. 7, prop. 4) and there exists an integer n > 0 such that |B| < |o/", then x € "W
since W is balanced. Hence, #(E) is the union of the sequence of sets u(a"W) = a"u(W),
and as u(E) is not meagre in F, one at least of the sets ou(W) possesses an interior
point (GT, IX, § 5.3, def. 2) and therefore u(W) has an interior point.
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Let y, be an interior point of u(W); since — (W) = u(W), and therefore
— u(W) = u(W)itfollows that0 = y, + (— y,)is an interior point of u(W) + u(W).
As vector addition is a continuous mapping of F x F in F, the set (W) + u(W)
is contained in the closure of the set

uW) + u(W) = uW + W) < u(V);
hence (V) is a neighbourhood of 0 in F.

Before proving that (iv) implies (i) we prove the following lemma, where we make
the convention that, in all metric spaces, B,(x) denotes the closed ball of centre x
and radius r.

Lemma 2. — Let E and F be two metric spaces, and suppose that E is also complete.
Let u be a linear mapping of E in F having the following property : whatever the number
r > 0, there exists a number p(r) > 0 such that, for all x € E, we have

B, (u(x)) = u(B,(x)).

In these conditions, for all a > r, the image u(B(x)) contains the ball B, (u(x)).

Q0
Let (r,) be an infinite sequence of numbers > 0 such that 7, = randa = Y r,.
n=1

For each index » there exists a number p, > 0 (with p, = p(r)) such that

B p"(u(x)) < u(B, (x))

for all xe E; we can, and will, suppose that lim p, = 0.

n—ow

Let x,, be a point of E, and y be a point of B, (u(x,)). We shall show that y belongs
to u(B,(xy)).

For this, a sequence (x,),., of points of E is defined inductively such that, for
all n = 1, we have x, € B, (x,_;) and u(x,) € Bpnﬂ(y). If the x; have been defined
for 0 < i< n — 1 satisfying these relations, then we have y € B, (u(x,_,)); since

Bpn(u(xn— 1)) < u(Brn(‘xnv 1)) >

there exists a point x, € B, (x,_;) whose image u(x,) belongs to the neighbourhood
B,..,(» of y, which establishes the existence of the sequence (x,).

Since the distance of x, from x,, , is less than r, ., +7,,, + -+ + 1,,,, Which
is arbitrarily small when n is large, the sequence (x,) is a Cauchy sequence in E.
As E is complete, the sequence (x,) converges to a point x of E. The distance of

0
X, from x is less than ) r, = a, thus x € B,(x,). But u is continuous, thus the
n=1

sequence u(x,) converges to u(x); also u(x,) e B
lemma is proved.

(), hence y = u(x), and the

Pn+1
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We return to the theorem and show that (iv) implies (i1). Suppose that u satisfies
condition (iv). For each of the spaces E and F, consider a distance that is invarient
under translation and defines its topology (I, p. 16). By hypothesis, the set »(B,(0))
is a neighbourhood of 0 in F for every » > 0, and thus there exists a number p(r) > 0
such that B,(0) = u(B,(0)). By translation we conclude that B, (u(x)) = u(B,(x))
for all » > 0 and all x € E. From lemma 2, for every pair of real positive numbers
(a, 1), a > r > 0, we have B, (0) = B,(0)); thus u is a strict morphism of E on F.
We have shown that (iv) implies (i) and the proof of the theorem is completed.

COROLLARY 1. — If E and F are two complete metrisable vector spaces over a non-
discrete valued division ring, then every bijective continuous linear mapping of E on F
is an isomorphism.

In particular, if E and F are two complete normed spaces, there exists a number
a > 0 such that [|u(x)|| > a.|x| for all xeE.

COROLLARY 2. — Let E be a vector space over a non-discrete valued division ring,
let 7, and 7, be two topologies on E compatible with its vector space structure and for
each of which E is metrisable and complete. Then, if 7 and 7, are comparable, they
are identical.

CoOROLLARY 3. — Let E and F be two complete metrisable vector spaces over a non-
discrete valued division ring. In order that a continuous linear mapping u of E in F
should be a strict morphism, it is necessary and sufficient that u(E) be closed in F.

The condition is necessary, because if u is a strict morphism, the image u(E),
being isomorphic to the quotient E/u~1(0), is complete (I, p. 17) and therefore
closed in F. The condition is sufficient, since, if u(E) is closed in F, then u(E) must
be a complete metrisable vector space and thus by theorem 1 u is a strict morphism
of E on u(E).

COROLLARY 4. — Let E be a complete metrisable vector space over a non-discrete
valued division ring. If M and N are two closed vector subspaces, that are (algebraic)
complements in E, then E is the direct topological sum of M and N.

For M x N is a complete metrisable vector space and the mapping (y, z) — y +z
of M x N on E is continuous and bijective, therefore an isomorphism (cor. 1).

COROLLARY 5 (The closed graph theorem). — Let E and F be two complete metrisable
vector spaces over a non-discrete valued division ring. In order that a linear mapping
u of E in F be continuous, it is necessary and sufficient that its graph, in the product space
E x F, be closed.

The condition is necessary since the graph of a continuous mapping into a Haus-
dorff space is closed (GT, I, § 8.1, cor. 2). To see that it is sufficient, note that it
implies that the graph G of u, which is a closed vector subspace of the complete
metrisable space E x F, is itself metrisable and complete. The projection z — pr,(2)
of G on E is a bijective, continuous linear mapping, therefore an isomorphism
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(cor. 1); since its inverse mapping is x — (x, u(x)), it follows that u is continuous
in E.

We can express this corollary in the following form : u is continuous if the following
situation holds: if the sequence (x,) of points of E both converges to 0 and is such that
the sequence (u(x,)) converges to y, then it is necessarily the case that y = 0.

Example. — Let E be a vector subspace of the space of real-valued functions defined
onI = [(0,1); let | /] be a norm on E, under which E is complete, and such that its
topology is finer than the topology of simple convergence. Suppose further that E
contains the set € *(I) of functions infinitely differentiable on I; we shall show that
there exists an integer k > 0, such that E contains the set ¥*(I) of all functions with
a continuous k-th derivative in 1.

For every pair of integers m > 0, n > 0, let V,, be the set of functions fe & *(I)
such that | f®(x)| < 1/mfor 0 < h < n and for all x € 1. The V,,, form a fundamental
system of neighbourhoods of 0 for a metrisable topology compatible with the vector
space structure of € *(I), further ¥ °(I) is complete in this topology (FVR, II, p. 2,
th. 1). Let u be the canonical mapping of € “(I) in E; we show that u is continuous.
From cor. 5 above it is sufficient to prove that if a sequence ( f,) converges to 0 in € (1)
and to a limit f in E then necessarily f = 0. But this is immediate since, by hypothesis,
f is the simple convergence limit of (f,). Hence there exists an integer k > 0 and a
number a > 0 such that the relation

pf) = sup |f?PX)| < a

O0<h<k

implies || f|| < 1 for all fe € >().

But p, is a norm on the space € *(I) and ¥ (I) is a subspace that is everywhere dense
in €*(1) for this norm (the set of polynomials being already everywhere dense in €*(I),
an immediate consequence of the Weierstrass-Stone theorem). By what has gone before,
the identity mapping of € “(I) (carrying the norm p,) in E, is continuous, and so it
can be extended continuously to the whole space €*(I) (since E is complete). This
proves our assertion.

PRrOPOSITION 1. — Let E, F be two topological vector spaces over a non-discrete valued
division ring K. We suppose that :

1) E is metrisable and complete.

2) There exists a sequence (F,) of complete metrisable vector spaces over K and,
for each n, an injective continuous linear mapping v, of F, in F such that F is the union
of the subspaces v,(F,).

Then let u be a linear mapping of E in F. If the graph of u is closed in E x F, then
there exists an integer n and a continuous linear mapping u, of E in F, such thatu=v,ou,
(which implies that u is continuous and that u(E) < v,(F))).

Let G be the graph of # in E x F. For all n, we consider the continuous linear
mapping w, :(x, ») — (x, v,(»)) of E x F,inE x F;as Gis closed, theset w, }(G)=G,
is a closed vector subspace of E x F, ; if p,, is the restriction to G, of the first projec-
tion pr,, we have p,(G,) = u'(v,(F,)). As p, is continuous and G, is complete
(since G, is closed in the complete space E x F,), p,(G,) is, by theorem 1, either
meagre in E or it is the whole of E. But, by hypothesis, E is the union of the p,(G,),
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and as E is complete, the p,(G,) cannot all be meagre in E by Baire’s theorem (GT,
IX, § 5.3, th. 1). Therefore there exists an integer n such that p,(G,) = E, or in other
words u(E) < v,(F,). Further, as v, is injective, G, is the graph of a linear mapping
u, of E in F,, and by the closed graph theorem (I, p. 19, cor. 5) u, is continuous; it
follows then from the definitions that u = v, o u,.



Exercises

§ 1

1) Let E0=Q§ be the vector space over the p-adic field Q, (GT, 111, § 6, exerc. 23) which is
the product of an enumerable infinity of factor each identical with Q,. Let P = E, be the
set Zg, and let E be the vector subspace of E, generated by P. On the additive group P we
consider the product compact topology of the topologies of the factors Z,, and we denote
by B the filter of neighbourhoods of 0 in P for this topology. Show that B is a fundamental
system of neighbourhoods of 0 in E for a topology 7 compatible with the additive group
structure of E, that satisfies (EVT]) and (EVTy,) but not (EVT},) (prove that the homothety

X — x/p is not continuous in E).

2) Let K be a non-discrete topological division ring, K, the division ring K with the discrete
topology. The discrete topology on K, is compatible with its additive group structure, and
when we consider K, as a vector space over K, it satisfies the axioms (EVTy) and (EVTyy,)
but not (EVT)).

3) For every real number o > 0, let G, be the topological group R/aZ, and let G be the
topological product group [| G, (o varying in the set of number > 0). For every x € R,

let 7,(x) be the canonical image of x in G, ; the mapping ¢ : x — (#,(x)) is a continuous injective
homomorphism of R in G. We consider on R the topology that is the inverse image by ¢
of that of G, and denote by E the topological group formed by R with this topology. Show
that when E is considered as a vector space over R its topology satisfies (EVT;) and (EVTy)
but not (EVTy,).

4) Let E be a vector space over a division ring K with a valuation ; we suppose that E carries
a metrisable topology compatible with its additive group structure. Suppose further that
this topology satisfies axioms (EVT;) and (EVT}); show that if one of the two metrisable
groups K, E is complete then the topology also satisfies (EVTy,) and is, in consequence, compa-
tible with the vector space structure of E (¢f. GT, IX, § 5, exerc. 23).

5) Let K be a non-discrete valued field, and S be an arbitrary infinite set.
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a) Let D = (a,) be an enumerable infinity of elements of S. For every A € K such that |A| < 1

let u, be the element of the normed space %(S), (I, p. 4, Example) of bounded mappings of
S in K, such that u,(a,) = A" for all n € N and w,(b) = 0 for b ¢ D. Show that the family (x,)
is algebraically independent.

b) Deduce that every basis of the vector space %(S) has the same cardinality as K® (using a)
show that the cardinal of every basis of #,(S) is at least equal to Card (K); note on the other
hand that Card(%y(S)) = Card(KS) and use A, II, § 2, exerc. 22).

¢) Show in the same way that every basis of the vector spacelk(S) has the cardinality of (K x S)N.

6) Let K be a non-discrete valued division ring. Show that, for the space £4(IN) of absolutely
summable sequences x = (§,) of elements of K, the norms ||x||;, = Z |€,l and ||x|| = sup |§,|
=0 n

are not equivalent (¢f. GT, IX, § 3.3, prop. 7) ; show that £} (N) with the norm || x|| is never com-
plete even if K is complete ; what is its closure in Z(N) ?

4 7) * Let A be a ring with a discrete valuation, v the normed valuation of the division ring
of fractions K of A ; take the absolute value a® on K, where 0 < a < 1. Let E be a normed
vector space over K, for which the norm satisfies the ultrametric inequality

Ix + »lI < sup(lix], 1)

a) Denote by M the set of those x € E for which ||x|| < 1, and by n a uniformizer of A; M

is an A-module, and M/nM a vector space on the residual division ring k = A/nA of A.

Let (e,),,. be a family of elements of M such that the images of e, in M/mM form a basis of

this vector k-space. Show that (e,) is an independent family in E and that the vector subspace F

of E generated by (e,) is dense in E.

b) If we put ||x||; = sup €1, for every x = ) &,e, in F, show that on F the norms | x| and
A

lx|l, are equivalent.

¢) Let K be complete. Deduce from a) and b) that, if L is finite, the completion E of E is iso-
morphic to K¥; if L is infinite E is isomorphic to the subspace %O(L) of By (L) formed of the
families (&,) such that lim &, = O for the filter of complements of finite subsets of L.

d) We suppose K and E complete; let G be a second normed complete space over K whose
norm satisfies the ultrametric inequality. Show that on replacing (if necessary) the norm of
Z(E; G) (GT, X, § 3.2) by an equivalent one, then Z(E; G) is isometric to the vector space
of families (,),.;. of elements of G such that sup Iy, < + oo, carrying the norm sup Iyl

(which is also an ultrametric norm).

8) Let E be a topological vector space over a non-discrete topological division ring K. In
order that there should exist a neighbourhood of the point (0, 0) in K x E such that the
mapping (A, x) — Ax should be uniformly continuous in this neighbourhood, it is necessary
and sufficient that there exist a neighbourhood V, of 0 in E such that the sets AV, form a
fundamental system of neighbourhoods of 0 in E, where A varies in the set of elements # 0
of K. When K is a division ring with a non-discrete valuation and E is Hausdorff, show that
the uniform structure of E is then metrisable.

9) Generalize prop. 5 of I, p. 8, to the case where the spaces E, ( < i < n) and F are topo-
logical vector spaces over an arbitrary non-discrete topological field.

10) Let E be a complete Hausdorff topological vector space over a non-discrete valued divi-
sion ring K. Denote by F a vector subspace of E, and by 7 the topology on F induced by the
topology 7 ' of E; let B be a fundamental system of closed, balanced nelghbourhoods of 0
for the topology 7. Let F,, be the vector subspace of E, generated by the closures V in E (rela-
tive to 7 ') of the sets V € B ; the sets V form a fundamental system of neighbourhoods of 0
for a topology 7, on F,, compatlble with the vector space structure of FO ; for this topology,
F, is complete, and the topology induced by 7, on'F is identical with 7
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11) In a topological vector space E over a non-discrete topological division ring K there
exists a fundamental system B of closed neighbourhoods of 0, satisfying the conditions (EV,,)
and (EV,,) as well as the two following :

(EV,,) ForeachV e B, thereexists W € 8 and a neighbourhood U of 0 in K such that UW < V.
(EV,,) Forevery x € E and every V e B, there exists A # 0 in K such that Ax e V.
Conversely, let E be a vector space over K and let 8 be a filter base on E satisfying the condi-
tions (EVy,), (EV,,), (EV,) and (EV,;;). Show that there is a topology on E (and one such only),
that is compatible with the vector space structure of E, and for which ¥ is a fundamental
system of neighbourhoods of 0.

12) Let K be a discrete field, E the division ring of fractions of the ring of formal series
A = K[[X, Y]] in two indeterminate variables on K (A, IV, p. 36). Foreveryn > 0,letV, = A
be the set of formal series of total degree at least equal to #n. Show that in E, the sets V, form
a fundamental system of neighbourhoods of 0, for a topology compatible with the vector
space structure of E (over K), for which E is metrisable and complete; if further K is a finite
field, then E is locally compact. Show that the K-bilinear mapping (¥, v) — uv of E x E in
E is continuous at the point (0, 0) but that there exists #, € E such that v — u,v is not conti-
nuous in E (for example u, = 1/X).

13) Let E be a vector space of infinite dimension over R, and let T be the family of all absorbent
and balanced sets of E. Show that T does not satisfy axiom (EV;) (in other words is not a
fundamental system of neighbourhoods of 0 for a topology compatible with the additive
group structure of E). For this, consider an infinite independent family (e,), ; in E; for every

integer n > 1, let A, be the set of points Y te; such that |, < 1/nfor 1 < i< n;let A
i=1

be the union of the A,, and V be a subspace complementary to the subspace of E generated

by the e,, and write C for the set A + V; show that there exists no set M € ¥ such that

M+ McC.

47 '14) Let K be a Hausdorff topological division ring, (E ), an infinite family of Hausdorff
topological vector spaces on K, none of which is the single point 0. We consider on F = [] E,

el

the topology 7, compatible with the additive group structure of F, for which a fundamental
system of neighbourhoods of 0 is formed by the products [] V,, where, for each 1€ 1, the

el
set V, is a neighbourhood of 0 in E (this topology is strictly finer than the product topology;
cf. GT, 111, § 2, exerc. 23). We denote by J, the topology induced by J on the subspace
E = @ E, of F; E is closed in F for the topology .7, and if each of the E, is complete, then

el

F is complete for the topology 7, therefore E is complete for the topology 7, (GT, III, § 3,
exerc. 10).

a) Show that if there exists in K a neighbourhood of 0 bounded on the right (GT, III, § 6,
exerc. 12) (in particular if K is a division ring with a valuation), the topology 7, is compatible
with the vector space structure of E. If, further, K is not discrete, then E is not a Baire space
for any topology that is finer than 7, and compatible with the vector space structure of E.
b) Moreover, if there does not exist in K any neighbourhood of 0 bounded on the right (see c))
give an example of a family (E,) such that the topology 7, is not compatible with the vector
space structure of E.

c) Let A = R[X] be the ring of polynomials in one variable on R. For every sequence s=(g,), > o
of real numbers > 0, denote by V, the set of polynomials ) @, X*e A such that |a,| < g,

k

for all k. Let T be the set of the V where s varies in the set of sequences of numbers > 0.
Show that ¥ is a fundamental system of symmetric neighbourhoods of 0 for a topology compa-
tible with the ring structure of A. Let K = R(X) be the division ring of fractions of A ; denote
by & the family of subsets of K of the form U(1 + U)~!, where U varies in the set of the V,
not containing 1 ; show that & is a fundamental system of neighbourhoods of 0 for a topology
compatible with the division ring structure of K, and that there does not exist in K any neigh-
bourhood of 0 that is bounded.
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d) For every Hausdorff topological division ring K, show that there exists a set I such that
on F = K/, the topology 7, defined above, is not compatlble with the vector space structure
of F.

§ 2

1) Let S be an arbitrary infinite set.

a) Show that the smallest cardinal of any total set in the normed space #(S) of bounded
mappings of S in R (I, p. 4, Example) is equal to 2°*"® (consider the set of characteristic func-
tions of subsets of S and note that there exists an enumerable set everywhere dense in R).
b) Show that the smallest cardinal of any total set in the normed space ¢(S) (I, p. 4, Example)
is equal to Card(S).

2) In the product topological vector space E = RN over the field R, denote by e, (neN)
the elements of the canonical basis of the direct sum R™. Write a4y = €y, a, = ¢, + (1/n)e,
for n = 1. Show that, for every integer n > 0, the g; such that 0 < i < n form a topologically
independent family in E, but that the inﬁnite family (a,), s is not topologically independent.
If M is the closed vector subspace Ra,, the classes a, of the g, in E/M form a topologically
independent family (for n > 1), but the closed vector subspace N generated by the g,, with
index n > 1, in E contains M.

3) Let E be a topological vector space over R, and f a homomorphism of the additive group
of E in R. Show that if there exists a neighbourhood of 0 in E in which f is bounded, then
f is a continuous linear form in E. This is so in particular when f is semi-continuous (lower
or upper).

4) Denote by K the field R with the absolute value p(€) = |§|'/2. Let E be the vector space
over K of the real valued regulated functions defined over 1 = (0, 1}, continuous on the

1
right everywhere and zero at the point I ; show that on E the mapping x > || x| = J |x(2)|1/2dt

0
is a norm. Show that for every function x > 0 in E, there exists in E two functions x; > 0,
1

7

1 .
x, = Osuchthatx = E(x1 + xy)and [|x, || = lIx,| = [ x]l. Deduce that every continuous

linear form on E is identically zero.

5) LetK be a Hausdorff topological division ring of which the topology is locally retrobounded
(GT, 111, § 6, exerc. 22). Extend prop. 2 of I, p. 12 and th. 1 of I, p. 13 to topological vector
spaces over K ; similarly extend th. 2 of I, p. 13 and prop. 3 of I, p. 14 when K is also complete.

6) Let K be the topological division ring obtained by transferring the usual topology of Q?
to the field Q(ﬁ) by the mapping (x, y) > x + y \/5

a) Let E be the set Q(ﬁ) with its vector space structure over K and with the topology induced
by that of R. Show that E is a Hausdorff topological vector space, of dimension 1 on K, but
that it is not isomorphic to K,.

b) Let F be the topological vector space E x E over K; in F, the hyperplane E x {0} is
closed but there is no continuous linear form f on E x E such that this hyperplane is given
by the equation f(x) =

7) Let K be a valued division ring which is non-discrete and non-complete, let E be the
topological vector subspace K + Ka of K where a ¢ K, and let F be the product space K x E.
In F, the subspace M = K x {0} is closed and of codlmensmn 2. Let N be the complementary
subspace to M in F generated by the vectors (0, 1) and (1, a) ; show that F is not the direct
topological sum of M and N.
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4T 8) Let p be a prime number, Q, the field of p-adic numbers (GT, III, § 6, exerc. 23). Let
E, be the topological product space Q, x R; if K denotes the field Q with the discrete topo-
logy, then E, is a topological vector space over K. Let M be the vector subspace formed by
the elements (r, r) where r varies in Q ; further let 6 be an irrational number and N the vector
subspace formed by the elements (0, 78) where r varies in Q. Let E be the subspace M + N
of E, ; show that N is a closed hyperplane in E, but that there does not exist a complementary
topological subspace to N (note that M is everywhere dense in E,).

9) Let X be a Hausdorff topological space, and let V be a vector subspace of finite dimension
n of the space ¢(X; R).

a) Show that there exist » pair-wise disjoint, open sets U; (1 < i < n) in X, such that any
function fe V which is identically zero in each of the U,, is identically zero in X (use A, II,
§ 7.5, cor. 3).

b) Let x; € U, for 1 < i < n. Deduce from a) that there exists a constant ¢ > 0 such that,
for every function fe V, we have

sup | /(9] < ¢ 3. |x)].

xeX

10) Let K be a locally compact non-discrete valued division ring, and E a left vector space of
finite dimension over K. Denote by M(E) the set of norms on E, which is a subspace of the
space € (E ; R) of mappings of E, continuous (in the canonical topology), in R.

a) When we give to €(E ; R) the compact convergence topology * (for which it is a Fréchet
space) ,, the set M(E) is closed in 4 (E; R), and locally compact.

b) Let p, be an element of N(E); show that there exists a continuous mapping (A, p) — m,(p)
of (0, 1) x N(E) in N(E) such that n,(p) = p and n,(p) = p, for every p € N(E).

11) With the hypotheses of I, p. 23, exerc. 7 show that if K and E are complete then every closed
subspace of E has a topological complement (proceed as in a), loc. cit.).

4 12) Let K be a locally compact valued division ring whose absolute value is non-discrete
and ultrametric. We call a norm on the left vector space E over K an u/tranorm if it satisfies the
ultrametric inequality (II, p. 2).

a) Let E be a finite dimensional left vector space over K, let o be an ultranorm on E and H
a hyperplane in E given by the equation {x, a* > = 0. Show that there exists a point x, € E
at which the function x — |{ x, a* >|/a(x) attains its upper bound in EN{0}; show that then

a(x) = sup(oc(x % a) > [Cx a®)] oc(x0)>.

T Txgr @y 0 ) [Cxgy @]

Deduce that there exists a basis (a;) of E and a family (;) of real numbers > 0 such that, for
all x = Z g;a; we have a(x) = sup(r;|€;|). We say that a is in the standard form relative to

the basis (a;).
b) Let o* be the norm on E* the dual of E canonically associated with o by

a*(x*) = sup [{x, x*H[/a(x) ;
x#0

it is an ultranorm. Show that for all x, # 0 in E, there exists x§ € E* such that
wxo) = [{xg. XED|/a*(x¥).

¢) Let o, B be any two ultranorms on E. Show that there exists a basis of E such that relative
to this basis a and B are both of the standard form (consider a point x, e EN{0} at which
/B attains its maximum ; then use b) and proceed by induction on dim E).

d) Let N, (E), the set of ultranorms on E, be considered as a subspace of M(E) (exerc. 10).
Show that 9,(E) is closed in M(E). Let o, be an element of N,(E); for each o € N,(E) and
for 0 < ¢t < 1, let P (?) be the set of B e N,(E) such that B(x) < a(x)' ‘a(x) for all x € E.
Show that P,(#) is not empty and that ¥ = sup P(¢) is an ultranorm. Further, the mapping
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(t, 0) = 7 of (0, 1) x MNy(E) in N,(E) is continuous and such that 1% = o, and 7 = o
(use ¢)).

* ¢) Let A be the ring of the absolute value of K, m its maximal ideal such that k = A/m
is a finite field with g elements (CA, VI, § 5, No. 1, prop. 2). For every ultranorm « on E, the
image X, of the set of values of log a(x) for x e EN\{0} under the canonical mapping in the
quotient group R/(Z.log g) is a finite set having at most » = dim E elements (use a)); the
number of these elements is denoted by (o) and called the rank of . Show that r is a lower
semi-continuous mapping of M,(E) in N and that the set 9ty(E) of the a for which r(®) = n
is open and everywhere dense in 9t,(E) (use @) and c)).

f) Suppose that r(o) = n; let (a;) be a basis of E relative to which « is of the standard form;
show that there exists a neighbourhood V of o in 9,(E) such that every B € V has the standard
form relative to (a;) (use b)) ; deduce that there is a neighbourhood W = V of « homeomorphic
to an open set in R".

g) Forevery basis(a;) of E, show that the set of ultranorms o that have a standard form relative
to (a,) is closed in 9Ny(E). Deduce that if o € 9,(E) has a standard form relative to (a,) the
same is true of all elements of the connected component containing o in 9,(E). ,

T 13) * We keep the general hypotheses and the notations of exerc. 12.

a) Let L be a free sub-A-module of E of dimension n = dim E. For all x e E\{0}, the set
of the a € A such that ax e L is a fractional ideal of K of the form m" (4 a positive or negative
integer) ; putting a(x) = ¢" and a(0) = 0, show that « is an ultranorm on E. It is said to be
associated with the free A-module L.

b) Conversely, if o is an ultranorm on E, the set L, of the x € E such that a(x) < 1 is a free
A-module of dimension n. If [«] is the norm associated with L,, we have o < [o] < ga, and
[o] is the lower bound of the norms associated with free A-modules and which are > o. We
have [qa] = g.[o], and a(x) = inf{q~‘[g'a] (x)) for all x € E, where 7 varies in the interval
(0, 1). Further, the function 7 — [q'a] (x) is left continuous in this interval.

¢) With the same notations, show that for 0 < 7 < 1, there are at most » distinct ultranorms
among the [g'a]. Conversely, let L be the set of ultranorms associated with the free A-modules
of dimension 7, and let (a,), <, < be an increasing family of ultranorms of L such that o, =go,.
Show that there exists a basis of E relative to which all the a, have the standard form (if u € A
is an element of valuation 1, and L, the free A-module of the x € E such that o, (x) < 1, consider
the vector spaces L,/uL, on k). Deduce further, that if, for all x € E, t +— o,(x) is left-continuous
in (0, 1} then there exists a unique ultranorm o such that o, = [q'd] for all 1 (0, 1).

d) The linear group GL(E) operates continuously in R ,(E); show that it operates properly.
For all « € N, (E), the stabiliser S, of o in GL(E) is the intersection of the stabilisers of the
[g'a] for 0 < t < 1; deduce that S, is an open compact subgroup of GL(E), and hence that
the orbit of each o € N,(E) is a closed, discrete subspace of R,(E).

e) For every ultranorm o € 9t,(E) consider the decreasing sequence of the dimensions of the
vector k-spaces L,/ulL,, where L, is the A-module of the x € E such that [¢'a] (x) < 1, and
t varies from 0 to 1; we call this sequence, the sequence of invariants of o.. In order that o and B
belong to the same orbit in 9R,(E), it is necessary and sufficient that X, = X (exerc. 12, ¢))
and that the sequence of the invariants of o and of B should be the same (use exerc. 12, b)).
f) Deduce from e) that the space of the orbits 9t,(E)/GL(E) is isomorphic with the space
of the orbits T"/&,, where the symmetric group operates on the right on T" by
(215 2,) P (25015 oo Zom)- % L

14) Generalize the results of No. 2 and No. 3 to topological vector spaces E over a discrete
division ring K, such that there exists a fundamental system of balanced neighbourhoods
of 0 in E (i.e. of neighbourhoods V such that K.V = V).

15) Let E be a normed space of finite dimension # over R or C. Ascribe to the dual E*, the

norm defined by || x*|| = sup |<x, x*>| (GT, X, § 3.2). Show that there exists a basis (e;)
Ix1<t

! For the exercises 12 and 13, see O. GoLDMAN and N. IwaHoORI, The space of p-adic
norms, Acta math., 109 (1963), pp. 137-177.
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of E such that, if (ef) is the dual basis, we have |le;| = lle¥|| = 1 for all i. (Let (a;) be a basis
of E formed of vectors of norm 1; consider, the determinant det(§;;) for each system of n

vectors x; = Z £:;4; of norm 1, and consider such a system for which the absolute value of

. L J .
this determinant is maximal.)

§ 3

1) a) Show that, if a Hausdorff topological vector space E over a non-discrete valued division
ring K is such that every neighbourhood of 0 contains a vector subspace that is not the single
point 0, then the topology of E cannot be defined by a norm, In particular, a product of an
infinite sequence (E,) of Hausdorff topological vector spaces on K, none consisting of the
single point 0, has a topology that cannot be defined by a norm.

b) Consider the product vector space E = KV; for all x = (§,) € E, put

M= 3 27l + ).

Show that the topology of E is defined by the distance d(x, y) = |x — y|, that [Ax| < |x]| if
A < 1, Ax| < |A|.|x] if |[A| = 1 and that, for all x, € E, |Ax,| tends to 0 with [A|.

2) Let E and F be two complete, metrisable vector spaces over a non-discrete valued division
ring, and let 7, be the topology of F. Let 7 be a Hausdorff topology on F, coarser than 7,
Show that if the linear mapping u of E in F is continuous for the topology 4 on F, it is still
continuous for the topology 7, on F (use the cor. 5 of I, p. 19).

Deduce that if 7, and 7, are two distinct topologies on a vector space E over a non-discrete
valued division ring, compatible with the vector space structure of E, and for each of them
E is metrisable and complete, then there does not exist a Hausdorff topology on E
coarser than 7, and 7 ,. Give an example of two such topologies on an infinite dimensional
vector space E (note that there exist bijections of E on itself such that both the bijection and
its inverse are not continuous for a normed space topology on E).

3) Let E and F be two Hausdorff topological vector spaces over a non-discrete valued division
ring ; and suppose that E is metrisable and complete. Let u be a continuous linear injection of E
in F, and let G be a vector subspace of u(E) ; suppose that there exists on G a topology .7
which is finer than the topology induced by that of F, is compatible with the vector space
structure of G and for which G is metrisable and complete. Show that the mapping inverse to u,
restricted to G, is continuous for 7 (use I, p. 19, cor. 5).

4) Let E, F be two complete metrisable vector spaces over a non-discrete valued division ring
and let u be a continuous linear mapping of E in F. Show that if there exists in F a closed com-
plementary subspace to u(E), then u(E) is closed in F (use I, p. 19, cor. 5).

5) Let E and F be two complete metrisable vector spaces over a non-discrete valued division
ring and let u be a linear mapping of E in F. Let N be the set of cluster points of v in F with
respect to the filter of neighbourhoods of 0 in E; show that N is a closed vector subspace
of F, and that, in order that u be continuous, it is necessary and sufficient that N be the single
point 0 (use I, p. 19, cor. 5). Show that N is the smallest of the closed vector subspaces M of F
such that, if ¢ denotes the canonical homomorphism of F on F/M, then ¢ o u is a continuous
mapping of E in F/M.

6) Let E be a complete metrisable vector space over a non-discrete valued division ring K.
@) Let p be a lower semi-continuous mapping of E in the interval (0, + o0} of R such that
p(Ax) = |A].p(x) for A # 0 in K and x € E, such that p(0) = 0 and p(x + ») < p(x) + p(y)



§3 EXERCISES TVS 1.29

for any x, y in E. Show that if p is finite in E, then p is continuous (consider the closed set
B of x € E such that p(x) < 1, and use Baire’s theorem).

b) Let (p,) be a sequence of mappings of E in (0, + oo} satisfying the conditions of @). Show
that if none of the p, are finite in E then there exists a point x € E such that p(x) = + o
for all n (same method as above).

7) Let E be a complete metrisable vector space over a non-discrete valued division ring K.
We say that a vector subspace M of E is paracomplete if there exists on M a complete
metrisable vector space structure for which the canonical injection of M in E is continuous.
a) Let M, N be two paracomplete subspaces of E such that M + N and M n N are closed
in E. Show that M and N are closed in E. (Taking quotients by M n N reduces the question
to the case where M n N = {0}, and we can consider then the mapping (x, y) — x + y of
M x N in E).

b) Show that if E is the union of an increasing sequence of paracomplete subspaces, (M)); -
then there exists an index j such that M; = E. (Use Baire’s theorem (GT, IX,§ 5.3, th. 1) and I,
p- 17, th. 1).

8) Let E be a Banach space over a non-discrete valued division ring K. We say that a vec-
tor subspace M of E is strongly paracomplete if there exists a norm | x|, on M for which
M is a Banach space and the canonical injection of M in E is continuous.

a) Show that if M and N are two strongly paracomplete subspaces of E, then M + N and
M n N are also strongly paracomplete subspaces. (On M + N, consider the norm
Ixllysn = inf{llully + llvlly), where the lower bound is taken over all pairs (u, v) such that
x=u+v, ueM and ve N.)

b) Let M, N be two strongly paracomplete subspaces of E such that N and M + N are closed.
Show that M =M + (M N N) and M A N = M n N (use exerc. 7, a)).

9) a) Let a, b be two points of a normed space E on the field R. Denote by §(A) the diameter
of a bounded set A in E (using the norm metric on E) and define inductively the sequence
(B,), > of bounded sets in E satisfying the following conditions : B, is the set of those x € E
such that |x — a|| = ||Ix — b| = 3lla — b|; for n > 1, B, is the set of those x € B,_, such
that |x — y|| < £8(B,_,) for all ye B,_,. Show that the intersection of the B, is just the
single point 3(a + b) (note that &(B,) < 45(B,_,))

b) Deduce from a) that if u is an isometry of the real Banach space E on the real Banach space
F, then u is an affine linear mapping of E on F.



CHAPTER 1I

Convex sets and locally convex spaces

In §§ 2 to 7 of this chapter, we shall be concerned only with vector spaces and affine
spaces over the field of real numbers R, and when we speak of a vector space or an affine
space without giving its division ring of scalars explicitly, then it is to be understood
that this division ring is the field R. For vector spaces on C, see § 8.

§ 1. SEMI-NORMS
Throughout this paragraph, K denotes a non-discrete valued division ring.

1. Definition of semi-norms

DErFINITION 1. — Let E be a left vector space over K. A mapping p of E in
R, = [0, + oo[, is called a semi-norm on E if it satisfies the following axioms :
(SN) If xe€ E and L e K then p(hx) = |\| p(x).
(SN If xe E and y € E then p(x + y) < p(x) + p(p).

Since p(x)<p(y)+p(x—y) and p(»)<p(x)+p(y—x), from p(y—x)=p(x—y),
we deduce

)] lp(x) — p(»)| < p(x — y).

Examples. — 1) A norm on E is a semi-norm p such that the relation p(x) = 0
implies that x = 0 (I, p. 3).

2) For every linear form f on E, the function x — |f(x)| is a semi-norm on E.
3) If p;(1 < i < n)is afinite set of semi-norms on E, then clearly p'(x) = sup p,(x)

1<i<n
and p"(x) = Y op(x) (where the o, are > 0) are both semi-norms on E.
i=1
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A mapping p of E in R, is called an wultra-semi-norm if it satisfies (SN;) and the
following axiom :

(SN;) If x€E and y € E, then p(x + ) < sup(p(x), p(»).

Clearly an ultra-semi-norm is a semi-norm.

To say that the absolute value on K is ultrametric (CA, VI, § 6.2) means that it is
an ultra-semi-norm on the left vector space K, which is not identically zero.

PROPOSITION 1. — Let E be a left topological vector space over K and let p be a semi-
norm on E. The following conditions are equivalent - ’

a) p is continuous in E.

b) p is continuous at the point 0.

¢) p is uniformly continuous.

d) For each real number oo > 0, the set W(p, o), of those x € E for which p(x) < a,
is open in E.

e) There exists a real number o. > 0, such that W(p, o) is a neighbourhood of 0 in E.

f) For every real number o > 0, the set V(p, o), of those x € E for which p(x) < a,
is a neighbourhood of 0 in E. V

In fact, the implications ¢) = a) = b) = d) = ¢) = f) = ¢) follow immediately
from (SN,) and inequality (1).

COROLLARY. — If p is a continuous semi-norm on E and q is a semi-norm such that
q < p, then q is continuous in E.

When p is an ultra-semi-norm on E, then the sets W(p, o) and V(p, o) are both open
and closed. For, we have seen that W(p, o) is open; on the other hand if z is a cluster
point of W(p, o), then there exists y € W(p, o) such that p(y — z) < a, and from (SN};)
we have p(z) < a, thus W(p, a) is closed. Also, V(p, a) is closed since p is continuous;
further if p(x) < o and p(y) < a, then p(x + y) < a by (SN), and this shows that
V(p, o) is open.

2. Topologies defined by semi-norms

Let p be a semi-norm on the vector space E over K ; for every a > 0 let V(p, o)
be the subset of those x of E for which p(x) < a. Clearly, if x e V(p, o) and L e K
is such that |A| < 1, then Ax € V(p, o), in other words V(p, o) is balanced. Further,
for every x, € E, there exists a non-zero scalar p e K such that |u| > p(x,) o™ 7,
therefore p~!'x, € V(p, o) that is to say V(p, o) is absorbent. Finally, from (SN,
we have V(p, a/2) + V(p, 2/2) = V(p, o), and from (SN,) that for every non-zero
scalar A in K we have AV(p, o) = V(p, |A| o). We conclude from these remarks, by I,
p. 7, prop. 4, that, when o varies in the set of numbers > 0 (or only in a sequence of
strictly positive numbers tending to 0) then the sets V(p, o) constitute a fundamental
system of neighbourhoods of 0 for a topology compatible with the vector space
structure of E ; we say that this topology is defined by the semi-norm p. A vector space
E with such a topology is called a semi-normed space. Note that if W(p, o) is the
subset of x of E such that p(x) < «, then the W(p, o) constitute (where o« > 0, or o
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varies in a strictly positive sequence of numbers tending to zero) a fundamental
system of neighbourhoods of 0 for the topology defined by p.

If T is a set of semi-norms on E, then the upper bound of the topologies defined by
the semi-norms p € I' is compatible with the vector space structure (I, p. 10, cor. 4).
A fundamental system of neighbourhoods of 0, for this topology, is given by the finite
intersections N V(p;, o;) where p; e I" and o, > 0. This topology is said to be defined

by the set of semi-norms I'. It is the coarsest topology on E amongst those that are
invariant under all translations and for which the semi-norms p € I are continuous.

Let E be a topological vector space over K : a system of semi-norms on E, say I,
is called a fundamental system of semi-norms if the topology on E is the same as the
topology defined by I.

Let E be a vector space over K, with the topology defined by a set of semi-norms T".
For every semi-norm p, we have p(x — z) < p(x — y) + p(y — z), which shows that
the function (x, y) +— p(x — y) is a pseudometric on E (GT, IX, § 1.1) : it follows from
the definitions that, when p varies in I', the set of these pseudometrics defines the
uniform structure of the topological vector space E.

Remarks. — 1) The topology defined by a finite set of semi-norms ﬁi a1<i<n
on E, can be defined by the single semi-norm p = sup p;. But a topology defined by
1<i<n

an infinite set of semi-norms cannot, in general, be defined by a single semi-norm (III,
p- 37, exerc. 2).

2) Let (7)), be a family of topologies on a vector space E over K, each of which
is defined by a family of semi-norms I',. Then the topology defined by the set of semi-
norms I' = Y I, is the upper bound of the topologies 7.

1€l

3) IfT,is a set of semi-norms directed by the increasing order relation defined between
two semi-norms p, g on E by « there exists A > 0 such that p < Ag », then a funda-
mental system of neighbourhoods of 0, for the topology defined by I, is obtained by
taking the sets V(p, o) where p e I'y and o > 0. If T is any set of semi-norms on E, then
a filtered set of semi-norms, defining the same topology as I, is the set I, of upper
envelopes of all finite families of semi-norms belonging to T

4) Even if K = R, the topology of a topological vector space over K cannot always
be defined by a set of semi-norms (¢f I, p. 24, corollary).

Example. — Let € *(R) be the vector space over R of real valued functions that are
infinitely differentiable in R. For every function and every pair of integers n > 0
m > 1, put

€)) Pumlf) = sup [f"0)]

—mst<m

]

with @ = f. Obviously the p, , are semi-norms on % *(R). In order that the functions
f, tend to 0 (following a filter § on the set of indices) in 4 *(R) for the topology 7
defined by the semi-norms p, ., it is necessary and sufficient that for all integers n > 0,
the functions £ tend to 0 (following &) uniformly on every compact subset of R. We
say that 7 is the topology of compact convergence for the functions f € € °(R) and all
their derivatives (cf 111, p. 9).

PROPOSITION 2. — On a vector space E, let T be the topology defined by a set of semi-
norms T
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(1) The closure of {0} in E, for 7, is the subset of x € E for which p(x) = 0 for
every semi-normp e I'.

(1) If 7 is Hausdorff and T is enumerable, then 7 is metrisable.

The proposition follows immediately from the definitions and from GT, IX, § 2.4,
cor. 1.

Note that if J is metrisable, it may be that  cannot be defined by a single norm;
this is the case in the example given above (¢f. IV, p. 18, Example 4).

Let E be a vector space over K, with the topology defined by a set of semi-norms I".
Let E be the Hausdorff completion of E (I, p. 6), and I be the set of mappings p of E
in R, where p varies in I (GT, 11, § 3.7, prop. 15). By the principle of extending
inequalities, the functions p € I" are semi-norms on E, and the functions p(x — y)
form a set of pseudometrics defining the uniform structure of E(GT, IX,§1.3, prop. 1).
We see, therefore, that I is a fundamental set of semi-norms defining the topology
of E.

3. Semi-norms in quotient spaces and in product spaces

Let E be a topological vector space over K, whose topology is defined by T, a set
of semi-norms. Clearly, the restrictions of the semi-norms of I" to a vector sub-space
M of E, define the topology induced on M by that of E.

Let ¢ be the canonical mapping of E on the vector quotient space E/M. We show
that, for every semi-norm p on E, the function
3 p(z) = inf p(x)

o(x)=z
is a semi-norm on E/M. In fact, it is clear that p satisfies the condition (SN;); on the
other hand, if z/, z” are two vectors of E/M, we have :

inf  p(x) < inf p(x + x")
d(x)=z"+z” o(x)=2z",p(x")=2"
< inf (p(x) + p(x"))

o=z 0(x")=z"
= inf p(x) + inf p(x")
o(x)=z' o(x")=z"
which shows that p verifies (SN;;). We say that p is the quotient semi-norm of p by M.

The same reasoning proves that, if p is an ultra-semi-norm, then so also is p.
This being so, we have (in the notation of No. 2)
@ S(W(p, o)) = W(p, o).

for every o > 0. In fact, to say that p(z) < o, means that there exists x € E such that
¢(x) = z and p(x) < o, from which the relation (4) follows.
We deduce from this, that, if the set of semi-norms I' is directed (11, p. 3, Remark 3),
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then the quotient topology on E/M is defined by the set of semi-norms p, when p
varies in I'.

If N is the closure of {0} in E, the topology of E/N is defined by the quotient semi-
norms p, where p varies in I (even if T is not filtered) : here p(x) = p(x) for every x
belonging to the class x mod N. Note that E/N is none other than the Hausdorff
space associated with E (I, p. 4).

Let E be a vector space over K and (E),, be a family of vector spaces over K,
where E, has the topology 7, defined by a set of semi-norms I',. For each 1€ [, let f,
be a linear mapping of E in E ; clearly when p, varies in the set I',, then the p, o f,
form a set I'’ of semi-norms on E. The topology .7 on E, defined as being the coarsest
of all those which make all the mappings f, continuous (L. p. 9) is then defined by
the set of semi-norms I = U I', this follows from the definition of neighbourhoods

el

of 0 for 7 (GT, 1, § 2.3, prop. 4).

If the p, are ultra-semi-norms, then so are the p, o f.

Let E be a vector space over K, with the topology 7 defined by a family of semi-
norms (p,),.; for everyt € 1, let 7 be the topology defined by the single semi-norm p,,
and denote by E, the space obtained from E using the topology .7,. Then the topology
 is the inverse image by the diagonal mapping A : E — [ | E, of the product topo-

1el

logy on [ [ E, (L p. 9, prop. 7). For each 1 € I, write N, for the closure of {0} in E_.
1€l

and by F, = E /N, the normed space defined by the norm p, corresponding to p,
(IL, p. 4, formula (3)); if ¢, : E, — F, is the canonical mapping and ¢ : (x)+—($,(x,)
the product mapping, we know that the product topology on [] E, is the inverse

1€l

image by ¢ of the product topology on [ [ F,(GT, 1L § 3.9, prop. 18). The topology 7~

el

is, therefore, the inverse image under the composite mapping ¢ o A of the product
topology on | | F,. In particular, if 7 is Hausdor{f then it follows from II, p. 3, prop. 2

1€l
that the mapping ¢ o A is injective, therefore :
PROPOSITION 3. — Every Hausdorff topological vector space E over K, whose topology
is defined by a set of semi-norms, is isomorphic to a sub-space of a product of Banach
spaces.
If, further, the topology of E is defined by an enumerable set of semi-norms, then E
is metrisable (1, p. 16).

4. Equicontinuity criteria of multilinear mappings for topologies defined by semi-
norms

PropPOSITION 4. — Let E; (1 < i < n) and F be topological vector spaces over K;
we suppose that, for every i, the topology of E, is defined by a directed set of semi<norms
T';, and that the topology of F is defined by a set of semi-norms I'. Then a set H, of
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n
multilinear mappings of || E, in F is equicontinuous if, and only if; for each semi-norm
i=1

q €T, and each index i, there exists a semi-norm p, € I';, and a number a > 0, such

that for each function ue H and point (x;) e || E,,

=1

%) q(u(x,, x5, ...y x,)) < a.py(x;) py(xy) ... p(x,) .

The condition is sufficient since it implies that H is equicontinuous at (0, 0, ..., 0)
and therefore everywhere (I, p. 9, prop. 6).

We show that the condition is necessary. By hypothesis, for every semi-norm ge I
and every number B > 0, we have g(u(x,, x,, ..., x,)) < B for every function u e H
provided that p,(x;) < o; are true for each index i, 1 < i < n, and certain appro-
priately chosen numbers o, > 0 and semi-norms p;eI’;. As K is non-discrete,
we can also suppose that, for every i, we have o, = |A;] < 1 where A, € K. Then let

n
(xy, X5, ..., x,,) be any point of [] E,, and for each index i, let m;, € Z be an integer
i=1

such that p(x;) < |A™*!; this can be written as p,(A; ™x) < |\ (1 < i< n),
therefore, by hypothesis, we have

© qulxy, x5, 05 X,)) < BIAG™ RS2 A, I™ .

Suppose firstly that one of the p,(x;) is zero, then we can take m, € N arbitrarily
large, therefore g(u(x,, x,, ..., x,)) = 0. If, on the contrary, all the p,(x;) are # 0,
take the integer m; such that |[A,|™ "2 < p,(x;) < |\|™*! for each i; then we have
A ™ < |\l 2pi(x;), from which, by (6), the relation (5) follows with

a = Byl Pyl )72 QE.D.

COROLLARY. — The set H is equicontinuous if, and only if, for every semi-norm q €T,

there exists a neighbourhood of 0 in [| E,, in which the functions q o u, for ue H,
. i=1
are uniformly bounded.

The condition is evidently necessary, and the demonstration of prop. 4 shows
that it implies an inequality of the form (5) for all u € H, and therefore the equicon-
tinuity of H.

We state explicitly the particular case of prop. 4 for linear mappings.

PrOPOSITION 5. — Let E, F be two topological vector spaces over a non-discrete
valued division ring K ; suppose that the topology of E (resp. F) is defined by a set
of semi-norms I" (resp. I'"). Let H be a set of linear mappings of E in F. The following
conditions are equivalent :

a) H is equicontinuous.
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b) For every semi-norm q € I'', there exists a finite family (p,), <;<, of semi-norms
belonging to I" and a number a > 0 such that, for all x € E and all u € H,

7 q(u(x)) < a. sup pyx).

1<i<n

¢) For every semi-norm q e I'', the mapping sup (q o u) is a continuous semi-norm

ueH

on E.

COROLLARY 1. — Suppose that 7, T ' are two topologies on a vector space E over K
defined, respectively, by two sets of semi-norms I and I"'. F is finer than T ' if, and
only if, for every semi-norm q € I'', there exists a finite family (1)1 <i<n Of Semi-norms
belonging toT and a number a > 0 such that, for all x € E, we have q(x) < a. sup py(x).

1<isn
In fact this shows that the identity mapping of E with topology .7, on E with
topology J ', is continuous.

COROLLARY 2. — Suppose that the topology I of a topological vector space E over K is
defined by a directed set of semi-norms I for each semi-norm p € T, let E, be the space
obtained from E using the topology defined by p. The set E' of linear forms on E that
are continuous for 7 is the union of the sets E,,, where E,, is the set of continuous linear
JormsinE,(peTl).

§ 2. CONVEX SETS

1. Definition of a convex set

For any two points x, y of an affine space E, the set of points Ax + py where
A=>0,p>=>0 A+ p=1is called the closed segment with end points x and y; it
reduces to a point when x = y. The complement of x in this segment is called the
segment with end points x, y which is open at x and closed at y ; it is empty if x = y.
Finally the complement of {x, y} in the closed segment with end points x, y is called
the open segment with end points x, y; it is empty when x = y.

DEFINITION 1. — A subset A of an affine space E is convex if, for every two points
X, y of A, the closed segment with end points x, y is contained in A.

As(1 — A) a + Ax = a + Mx — a), this definition is equivalent to the following :
the set A is convex if, for every point a € A, the transform of A by a homothety of
centre a and ratio A where 0 < A < 1, is contained in A (in other words, A is stable
for these homotheties).

Examples. — 1) Every linear affine variety of E (and in particular the empty set) is
convex.
2) The only non-empty convex sets in R are the intervals (GT, 1V, § 2.4, prop. 1).
3) Let E bea vector space and || x| a norm on E ; the unit ball B, formed by the points x
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such that [|x| < 1, is convex since the relations || x| < 1, |y < 1,implyfor0 < A < 1
that

e+ @ =My <rlxl +Q =2 Iyl <r+0 =2 =

Remark. — Let A be a convex subset of a vector space E ; for any scalars o > 0 and
B > 0 we have oA + BA = (o + B) A. In other words, for any x e A, y € A, there
exists ze A such that (o« + B) z = ax + By; in fact this relation can be written

_ B B o B _
z_a+Bx+a+Byandwehave +B>O +[3>Oandot+[3+oc+[3_l’
from which the assertion follows, on using def. 1.

PROPOSITION 1. — Let(x,) be a family of points of a convex subset A ; every barycentre
Y. X, of the x, formed using positive masses \, (such that y A, = 1 and A = 0 except

for finitely many of the indices, cf. A, 11, § 9.3) belongs to A.
Clearly we need only consider the case when the indices are 1, 2, ..., pand &, > 0
for each i; the proposition is trivial if p = 1; we prove the result by induction on p.

Put p= z A;>0, and y= Z ——xl, the induction hypothesis implies that y € A.

i=1 1:1

Now as A, = 1 — p and z Ax; = py + (1 — p) x, its follows from def. 1 that

i=1

p
)" A;x; belongs to A.

i=1

PrOPOSITION 2. — Let E and F be two affine spaces and f be an affine linear mapping
of E in F; then the image of a convex subset of E under f, and the inverse image of a
convex subset of F under f are both convex.

The image under f of the closed segment with end points x, y is the closed segment
with end points f(x), f(»), hence the first statement. We deduce that the inverse
image of a closed segment of F under f contains each closed segment whose end
points belong to it; the second statement of prop. 2 follows.

In particular the image of a convex set under a homothety or a translation is a
convex set.

PROPOSITION 3. — In the affine space E, let H be a hyperplane defined by the relation
g(x) = 0, where g is a non-constant affine function on E. Then the half-spaces defined
by the relations g(x) = 0, g(x) < 0, g(x) > 0, g(x) < 0 are convex.

For these are the inverse images under g of intervals of R and thus are convex.

With the notations of prop. 3 the points of a subset M of an affine space are on the
same side (resp. strictly on the same side) of the hyperplane H if M is contained in one
of the half-spaces defined by g(x) > 0, g(x) < 0 (resp. g(x) > 0 or g(x) < O\.

PROPOSITION 4. — The points of A, a convex subset of an affine space E are strictly
on the same side of a hyperplane H if, and only if, A does not meet H.
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Clearly the condition is necessary. Conversely suppose that it is satisfied and let
g(x) = 0, be an equation defining H (g is an affine linear mapping of E in R). The
set g(A) is convex in R, therefore it is an interval, and 0 ¢ g(A). Hence g(x) is of fixed
sign for all x € A.

2. Intersections of convex sets. Products of convex sets

PROPOSITION 5. — The intersection of any family of convex subsets of an affine space E
is convex.
The proposition follows immediately from def. 1 of II, p. 7.

PROPOSITION 6. — Let (E) 4 be a family of vector spaces, and for each v e 1, let A,
be a non-empty subset of E . Then the set A = || A, is convex in E = || E,, if, and

el el
only if, for all1 € 1, the set A, is convex in E, .
In fact, each projection pr, is a linear mapping and we have A, = pr,A and

-1
A =N pr(A); the proposition follows from props. 2 and 5 above.

el

COROLLARY. — In the space R" every parallelotope (GT, V1, § 1.3) is a convex subset.
For it is the image under an affine linear mapping of a rectangular parallelepiped,
and this last is convex by prop. 6.

PROPOSITION 7. — Let A and B be two convex subsets of the vector space E. For any
real numbers a, B the set oA + BB (set of points of the form ax + By, where x varies
in A, and y in B) is convex.

For oA + BB is the image of the convex subset A x B of E x E under the linear
mapping (x, y) — ax + By of E x E in E.

3. Convex envelope of a set

DEFINITION 2. — Given a subset A of an affine space E, we call the intersection of all
convex sets containing A, the convex envelope of A, that is to say (11, p. 9, prop. 5)
it is the smallest convex set containing A.

PROPOSITION 8. — For any family (A,),. of convex subsets of an affine space E, the
convex envelope of U A, is precisely the set of linear combinations Y Ax,, where

L
el el

x, €A, A = 0forallveI(h = 0 except for finitely many indices) and Y %, = 1.

el
Denote the set of these linear combinations by C, clearly C is contained in every
convex set which contains all the A, (IL. p. 8. prop. 1); on the other hand A, = C
for every 1. All that remains to be proved is that C is convex. Let x = ) A.x,,

y = Y py, be two points of C and a be a number such that 0 < a < 11, write

1
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Y, = or + (1 — o)y, for every 1e1, and let J be the set (finite) of the indices
of I for which vy, # 0. We can write oax + (1 — o) y = ) v,2,, where

€]
z, =y Marx, + (1 — @) py,)

belongs to A forallieJ;but) vy, =a) A + (1 — o) Y p, = 1, and we see that

el el el

ax + (1 — o) ye C. The proposition is proved.

COROLLARY 1. — The convex envelope of a subset A of E is identical with the set of
linear combinations Y \;x;, where (x;) is any finite family of points of A, the numbers

A, >0, for all i and Y L, = 1.

The dimension of the affine linear variety (A, I, § 9.3) generated by the convex
set A is called the dimension of A.

Let E be a vector space. The convex envelopz C, of the balanced envelope of a set
A in E is called the balanced convex envelope (or the symmetric convex envelope)
of A; clearly it is the smallest symmetric convex set that contains A ; it is also the
convex envelope of A U (— A), since every point of the balanced envelope of A
belongs to a segment with extremities « and — a where a € A. The set C coincides
with the set of linear combinations ) A,x; where x, € A and ) |A,| < 1;foritis clear

i

that this set of points is convex and contains A and — A it is sufficient to prove

that it is contained in C, and for this we need consider only those linear combinations

for which p = ) A > 0; we can then write ) Ax; = p - Y oy, with o = A,/
i i

i

and y; = x;, if 4, > 0; and o; = — A/p; y; = — x; if A, < 05 clearly Y o; = 1,
and our assertion is proved.

COROLLARY 2. — Let f be an affine linear mapping of the affine space E in the affine
space F; for each subset A of E, the convex envelope of f(A) is the image under f of the
convex envelope of A.

There is a similar statement for linear mappings and balanced convex envelopes.

4. Convex cones

DEFINITION 3. — A subset C of an affine space E is a cone with vertex x, if C is invariant
for all homotheties of centre x, and ratio > 0.

We shall suppose in this No. and in the one following, that we have chosen the vertex
of the cone being considered, as origin in E; i.e. we suppose that E is a vector space,
and when we speak of a cone, it is to be understood that this cone has vertex 0. The
set of points of the form Aa for A > 0 (resp. A = 0), where a is a non-null vector, is
called an open half line (resp. closed half-line) originating at 0.

A cone C of vertex 0 is said to be pointed if 0 € C, and non-pointed otherwise. A
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pointed cone is either the single point {0} or is the union of a set of closed half-lines
originating at 0. A non-pointed cone is the union (possibly empty) of open half lines
originating at 0. If C is a non-pointed cone, then C U {0} is a pointed cone. If C is a
pointed cone, then C—{0} is a non-pointed cone.

If C is a non-pointed convex cone, then C U {0} is a pointed convex cone. However,
if C is a pointed convex cone, C —{0} is not necessarily convex. We say that a pointed
convex cone is proper if it does not contain any line passing through 0. Then

PROPOSITION 9. — A pointed convex cone C is proper if and only if the non-pointed
cone C', which is the complement of 0 in C, is convex.

If C contains a line through 0 then clearly C’ is not convex. Suppose now that C
is proper and let x, y be two points of C". The closed segment with end points x, y
is contained in C; if it contains 0 thenAx + (1 — A) y = Oforsome A with0 < A < 1,
therefore x = py with p < 0. Thus C contains the line through 0 and x, contrary
to hypothesis.

PROPOSITION 10. — A subset C of E is a convex cone if and only if C + C < C and
AC <= C forall » > 0.

For the condition AC = C for all A > 0 characterises the cones. If C is convex
we have C + C = 1C + 1C = C (1L, p. 8, Remark). Conversely, if the cone C is
such that C + C < C,thenfor0 < A < I,wehaveAC +(1 —A)C=C + C c C,
which shows that C is convex.

COROLLARY 1. — If C is a non-empty convex cone, the vector space generated by C
is the set C — C (the set of points x — y where x, y vary in C).

For, if V= C — C, then V is non empty, we have AV = V for all A # 0, and
V+V=C+C—-(C +C =C — C =V, which shows that V is a vector sub-
space. Finally every vector subspace that contains C also contains V.

COROLLARY 2. — If C is a pointed convex cone, the largest vector subspace contained
in C is the set C n(— C).
For, f W = C n (— C), then W is non-empty and AW = W for all A # 0, also

W+Wcec(C+O)n(—(C+C)c=Cn(—0C =W,

which shows that W is a vector subspace. Clearly every vector subspace contained
in C is also contained in W.

Obviously, if f is a linear mapping of E in a vector space F, then f(C), the image
of a convex cone C in E, is a convex cone in F. Every intersection of convex cones
(with vertex 0) in E is a convex cone. For every subset A of E the intersection of
convex cones containing A (these exist, E itself is one such cone) is the smallest
convex cone that contains A ; it is called the convex cone generated by A.

ProposITION 11. — Let (C), be a family of convex cones in E ; the convex cone gene-
rated by the union of the C,_is identical with the set of points )’ x,, where J is any finite

el

subset of 1 and x, € C, for all 1€ J.
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In fact, it is obvious that C, the set of such points, is a convex cone containing
the union of the C, and that it is contained in any convex cone which contains
this union.

COROLLARY. — For any subset A of E, the convex cone generated by A, is identical
with the set of linear combinations Y L;x;, where (x,),; is any finite non-empty family

el

of points of A, and where A, > 0 for all ie]J.

It is sufficient to see that, if a convex cone contains a point x # 0 of A then it also
contains the half-line C, of the points Ax where A varies in the set of positive numbers
and that C,_ is a convex cone.

PROPOSITION 12. — If A is a convex set in E, then the convex cone generated by A
is identical with C = U AA.

A>0
The set C is clearly a cone; it is sufficient to show that C is convex. Let Ax, py be

two points of C(A > O, pn > 0, x € A, y € A). Let o, B be two numbers > 0 such that
o +pB =1 Then okx + Buy = (ar + Bu)z, with ze A, and aor + Bu > 0;
hence aix + PBuy e C.

Remarks. — 1) With the hypotheses of prop. 12, if 0 ¢ A, then the cone C is non-pointed,
thus C u {0} is proper.

2) Let A be any convex set in E ; consider the convex set A, = A x {1} in the space
F = E x R and the convex cone C with vertex 0 that is generated by A,. Prop. 12
shows that A, is the intersection of C and of the hyperplane E x {1} in F. Every
convex set in E can, therefore, be considered as the projection on E of the intersection
of a convex cone with vertex 0 in F and the hyperplane E x {1}.

5. Ordered vector spaces

A preorder structure, on a vector space E, denoted by x <X yory >= x, is compatible
with the vector space structure of E if it satisfies the following two axioms;

(EO) If x Xy then x + z<Xy + z for all zeE.

(EOy) If x = 0 then Ax = 0 for every scalar \ = 0.

The vector space E, carrying these two structures, is called a preordered vector space
(resp. an ordered vector space when the relation of preorder on E is an order).

Note that axiom (EO;) means that the preorder structure and the additive group
structure of E are compatible, that is to say, E carrying these two structures, is a
preordered group (A, V1, p. 3).

Example. — On the space E = R” of all finite real-valued functions defined over A,
the relation of order given by « for all 7 € A, x(#) < y(¢) » is compatible with the vector
space structure of E.

PropPosITION 13. — (i) The set P, of elements = 0, of a preordered vector space E,
is a pointed convex cone.

(i) Conversely, if P is a pointed convex cone in E, then the relation y — x € P is a
preorder relation on E, and the preorder structure that it defines is the only one that is
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compatible with the vector space structure of E andfor which P is the set of elements = 0.

(iii) The relation y — x € P, with P a pointed convex cone, is an order relation on E
if and only if P is a proper cone.

(i) Axioms (EO)) and (EOy) imply P + P < P and AP < P for all A > 0. As
0 < P, it follows that P is a pointed convex cone (IL, p. 11, prop. 10).

(ii) Conversely, if P is a pointed convex cone, the relation P + P = P implies
that the relation y — x € P is a preorder compatible with the additive group structure
of E (A, VI, p. 3, prop. 3); clearly writing it x <X y, the set P is identical with the set of
x 2= 0; further the relation AP < P for all A > 0 shows that axiom (EOy,) is satisfied.

(iii) To say that P is proper means that P n (— P) = { 0 } (IL, p. 11, cor. 2), hence
that y — x € P is an order relation.

Example. — * Let H be a real Hilbert space; in the vector space % (H) of continuous
endomorphisms of H, the positive hermitian endomorphisms form a proper pointed
convex cone; this cone, therefore, defines an order structure compatible with the
vector space structure of AH) and for which the relation 4 < B means that B — 4
is a positive hermitian endomorphism.

For any pointed convex cone P in the vector space E, the set P n (— P) is a vector
subspace, H, of E (II, p. 11, cor. 2). The canonical image P’ of P in E/H is a convex
cone and the inverse image of P’ in E is P. Thus P' n (— P’) = {0}, and P’ defines
an order structure on E/H that is compatible with its vector space structure.

A linear form f on a preordered vector space E is said to be positive if x = 0 in E
implies f(x) > 0. Or, alternatively, if the convex cone P of elements = 0 in E is
contained in the half space of those x for which f(x) > 0. Clearly, in the dual E* to E,
the set of positive linear forms is a pointed convex cone.

6. Convex cones in topological vector spaces

PROPOSITION 14. — In a topological vector space E, the closure of a convex set (resp.
of a convex cone) is a convex set (resp. a convex cone with the same vertex).

For, let A be a convex set ; the mapping(x, y) — Ax + (1 — A) y,where0 < A < 1,
iscontinuousin E x EandmapsA x Ain A;thus(GT,1§2.1, th. 1) it maps A x A
in K, which shows that A is convex. Similarly, if C is a convex cone with vertex 0
then C + C = C and AC < C for all » > 0.

DEFINITION 4. — For any set A of a topological vector space E, the intersection of
all the closed convex sets containing A is called the convex closed envelope of A ; it is
the smallest convex closed set containing A.

From prop. 14, the convex closed envelope of A is the closure of the convex enve-
lope of A; it is clearly the same as the convex closed envelope of A.

Similarly we call the smallest symmetric, convex, closed set that contains A, the
symmetric convex closed envelope (or the balanced convex closed envelope) of A;
it is the closure of the symmetric convex envelope of A (II, p. 10) ; it is also the sym-
metric convex closed envelope of A.
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PROPOSITION 15. — Let A; (1 < i < n) be a finite number of compact convex sets in
a Hausdorff topological vector space E. Then the convex envelope of the union of the
A, is compact (and is, therefore, the same as the convex closed envelope of this union).

Let B be the compact set in R" defined by the points (A, A,, ..., A,) Where
A, =0(i<i<n),and ) A;=1. Define a continuous mapping of Bx [| A;=R" x E"

i=1 i=1

in E by the formula (A, X, ..., A,,, X;, X,, ..., X,) — Y. L.x;. The convex envelope C
i=1

of U A, is the image of B x H A, under this mapping; as B x ]_[ A, is compact
i=1 i=1 i=1
and E is Hausdorff, it follows that C is compact.

COROLLARY 1. — In a Hausdorff topological vector space the convex envelope of a
finite set is compact.

COROLLARY 2. — In a topological vector space E, the convex envelope of a finite set
is precompact.

In fact, let j be the canonical mapping of E in its Hausdorff completion E; if C
is the convex envelope of A, then j(C) is the convex envelope of the finite set j(A)
in E, hence j(C) is compact (cor. 1) and therefore C is precompact (GT, I, § 4.2).

PROPOSITION 16. — Let A be a convex subset, with at least one interior point x,,
of a topological vector space E. For any point x € A, every point of the open segment
with end points x,, x lies in the interior of A.

For any point y of this segment, let f be the homothety of centre y and ratioA < 0,
which transforms x, into x. If V is an open neighbourhood of x, contained in A,
then f(V) is a neighbourhood of x and therefore contains a point f(z) € A; now

J@ =y =Mz =y =Mz = f(2) + MS(2) — ).,

hence y — f(z2) = 7 i 7 (z — f(2)), so that y is transformed into z by the homo-

thety g, of centre f(z) and ratio p = A/(A — 1); since 0 < p < 1, g transforms V
into a neighbourhood of 0 contained in A. The proposition is proved.

COROLLARY 1. — The interior A of a convex set A, is itself a convex set; if/o\ is not
empty, then it coincides with the interior of A, and A is a convex set that coincides with
the closure of A.

It follows from prop. 16, that if A is not empty, then it is a convex set and every
point of A is a cluster point of A. Next we show that every interior point of A belongs
to A. Let x be an interior point of A and suppose, for definiteness that X = 0.LetV
be a symmetric neighbourhood of 0 that is contained in A and let y e An V; now
— yeA, and therefore, by prop. 16, we see that 0 e A, if y # 0; this is obviously
true if y = 0.
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COROLLARY 2. — The interior C of a convex cone C, is itself a convex cone; if le
is not empty then it coincides with the interior ofC and C is a pointed convex cone
that coincides with the closure of C.

- Since homotheties of ratio > 0 and centre 0 transform C into itself, they do the
same for (03, thus C is a cone; the remainder of the corollary follows from cor. 1 and
the obvious remark that if C is not empty then C contains the vertex of C.

Let H be a closed hyperplane in the topological vector space E over R ; it has an
equation of the form f(x) = a, where f is a continuous linear form that is not iden-
tically zero in E (I, p. 13, th. 1). The closed half spaces defined respectively by f(x) < o
and f(x) = a are therefore closed convex sets; their complements defined respec-
tively by f(x) > a and f(x) < o, are open convex sets. We say that these half-spaces
are the closed (resp. open) half spaces determined by H

PROPOSITION 17. — In a topological vector space E, let A be a set with at least one
interior point, and such that all its points lie on the same side of an hyperplane H.
Then H is closed, the interior points of A lie strictly on the same side of H, and the
cluster points of A lie on the same side of H. In particular open (resp. closed) half spaces
are determined by closed hyperplanes.

In fact suppose that H contains the origin and that f(x) = 0 is an equation of
H ; suppose, for definiteness, that f(x) > 0 for all x € A. The half space formed by
the points y such that f(y) > — 1 contains at least one interior point, and, by trans-
lation, the same is true of the half space of points y such that f(y) > 0; this shows
that H is closed (I, p. 11, corollary). Then we know that f is a strict morphism of E
on R (I, p. 13, corollary), therefore f (A) is an open set in R. This set cannot contain 0
or it would contain numbers < 0 contrary to hypothesis; it is thus contained in the
open interval JO, + oo, On the other hand, the half space of those y for which
f(») = 0is closed and contains A, therefore it contains A.

COROLLARY. — Let P be a pointed convex cone, with at least one interior point, of the
topological vector space E. Then each linear form f that is not identically zero on E,
and is positive for the preorder structure defined by P (11, p. 13), is necessarily continuous.
Further, if x is interior to P then f(x) > 0 and if x is a cluster point of P then f(x) > 0.

Apply prop. 17 to the case A = P where H is the hyperplane with the equation
f(x) =0.

Remark. — In a topological vector space E, every convex set C is connected. In
fact, if a € C, then C is a union of segments with end point a and closed at a; these
are connected and the result follows from GT, I, § 11.1, prop. 2.

7. Topologies on ordered vector spaces

Let E be an ordered vector space. A topology on E is compatible with the ordered
vector space structure of E if it is both compatible with the vector space structure of E
and subject to the following axiom :

(TO) The convex cone of the x with x = 0, is closed in E.
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An ordered vector space E with a compatible topology is called an ordered topolo-
gical vector space.

Examples. — The space R” with its usual topology and the order structure that is the
product of the order structure of its factors is an ordered topological vector space. On
the other hand. for n = 2, when R" carries the lexicographical order (S, IIL, § 2.6), the
usual topology is not compatible with the ordered vector space structure of R”".
Let A be a set; the vector space #(A; R) of real valued bounded functions defined
on A, with the topology defined by the norm | x| = sup |x(¢)| and the order structure
teA

induced by the product order structure of R*, is an ordered topological vector space.

In an ordered topological vector space E, the set of elements x < 0 is closed;
since translations are homeomorphisms, we deduce that, for all a € E, the set of
elements x > a(resp. x < a) is closed. Since {0} is the intersection of the sets x > 0
and x < 0, it follows that {0} is closed and that E is Hausdorf{f.

PROPOSITION 18. — In an ordered topological vector space E, let H be a set directed by
the relation <. If the section filter of H has a limit in E, then this limit is the upper bound
of H.

For, let b = lim x; for every y € H, the set of x € H such that x > y is a set of
xeH

the section filter of H, therefore b is a cluster point of this set; but as the set x > y
is closed in E, we have b = y, thus b is an upper bound of H. On the other hand,
if @ is an upper bound of H, then H is contained in the closed set x < a; as b is a
cluster point of H, we have b < a, which completes the proof (IL, p. 72, exerc. 42).

8. Convex functions

DEFINITION 5. — Let X be a convex subset of the affine space E. A real-valued finite
Sfunction, defined over X is convex (resp. strictly convex) if for any two distinct points x,
y of X and any real number )\, 0 < A < 1, we have :

(1) SJOx + (1 =1 y) <A +0 =2 f(»)
(resp.
) fhx +(1 =N y) < M) +0 =2) f(»).

When E = R, this definition of convex function is the same as that in FVR, I,
p. 32. Further, f is convex (resp. strictly convex) in X if, and only if, for every affine
line D < E, the restriction of f to X n D is convex (resp. strictly convex) in X n D.

Examples. — If f is an affine linear function on E, then f and f?2 are convex functions
on E; this is obvious for f since

SOx + 0 =2y =M@ +d =1 )
on the other hand, if & = f(x), B = f(»), then;
Mt + (1 =M -+ =B =Ml =N (@—PB2=0
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for 0 < A < 1; further, the restriction of f 2 to an affine line D < E is strictly convex
if fID is not a constant.

A real-valued function f, defined over X, is concave (resp. strictly concave) if — f
is convex (resp. strictly convex). That is to say, for every two distinct points x, y of X
and every number A, such that 0 < A < 1, we have

SOx + @ =2 y) =M +0 = 1) f(»)
(resp.
Jx + (0 =2 y) > M) +0 = 2) f(»).

A mapping of X in R is gffine if it is both convex and concave (cf. I, p. 78, exerc. 11).

PROPOSITION 19. — Let X be a convex set of the affine space E ; and let f be a real-valued
Sfunction defined over X. Denote the set of points (x, a) e E x R for which x e X and
f(x) < a(resp. xe X and f(x) < a) by F (resp. F'). Then the following conditions
are equivalent -

a) The function f is convex.

b) The set F in the affine space E x R is convex.

¢) The set F' in the affine space E x R is convex.

We show that a) = ¢). Let (x, @) and (y, b) be two points of F' and 0 < A < 1,
then f(x) < a, f(y) < b and if f is convex

JOx +(0 =M <M +A =N () <ra+(0—-21)b

which shows that the point A(x, @) + (1 — A)(», b) of E x R belongs to F’. Thus
F’ is convex.

Next we show that ¢) = b). If (x, a), (y, b) are two points of F then for every ¢ > 0,
(x,a +¢) and (», b + €) belong to F’ and, if 0 < A < 1, the same is true of
Ax +0 =2)y, ha+ (1 —A)b + ¢); by the definition of F this implies that
(Ax +(1 — Ny, xa + (1 — 1) b) belongs to F.

Finally b) = a), for (with the above notation), if (Ax +(1 — L) y, Aa +(1 — 1) b)
belongs to F then

Jx +(A =M y)<hra+(0—-N)b

provided a > f(x) and b > f(y); hence (1) follows and f is convex.

CoOROLLARY. — If f is convex in X, then for all o € R, the set of x € X such that
f(x) < o (resp. f(x) < a) is convex.

In fact, it is the projection on E of the intersection of F (resp. F') and the hyper-
plane E x {a} in E x R.

PROPOSITION 20. — Let f be a convex function, defined over a convex set X of the affine
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space E. Then for every family (x;), <;<, of p points of X and every family ()\‘i-)ISiSp
p
of p real numbers, all > 0, such that ) A; = 1, we have :

i=1

3) S Zp: rx) < _:il rS(x) .

i=1

If f is strictly convex and if A, > O for all i, then

M=
>

© f

i

< 3 S,
i=1

1

unless all the x; are equal.
The inequality (3) follows from II. prop. 19 above and II p. 8, prop. 1. Suppose
that the x; are not all equal (which implies p > 2) and that the A, are all > 0; then the

p
point z = ) A.x; differs from at least one x;. Suppose for definiteness that z # x,,
i=1

p .

write z = A, x; + (1 — A,)y, where y, = ) Tl—xxf' Then y, # x, and, as
i=2 - M

0 < A, <1, we have, by hypothesis,

f@) <A flx) + A=A f(y).

But by 3) f(»,) Z S f (x,), and the inequality (4) follows.

9. Operations on convex functions

Let X be a convex set of an affine space E. If f;(1 < i < p) are finitely many convex
functions defined over X and ¢; (1 < i < p) are numbers > 0 then the function

p
f =) cf; is convex over X.
i=1
If ( f;) is any family of convex functions defined over X and if g, the upper envelope
of the family in X, is finite then g is convex.
Finally if H is a set of convex functions defined over X, and & is a filter on H that
converges simply in X to the finite real valued function f,, then f, is convex over X.

10. Convex functions over an open convex set

PROPOSITION 21. — Let f'be a convex function, defined over the non-empty open convex
set X in the topological vector space E. Then fis continuous if, and only if, it is bounded
above when restricted to some non-empty open subset U of X.

The condition is obviously necessary, we prove that it is sufficient. Let x, € X
be a point such that f is bounded above in a neighbourhood V of x,; we show
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firstly that f is continuous at x,,. By translation, we can restrict ourselves to the case
when x, = 0 and f(x,) = 0; moreover we can suppose that the neighbourhood
V is balanced (L, p. 7, prop. 4). Suppose that f(x) < ain V; forevery e, 0 < g < 1,
we observe that if x € €V, then x/e e V and — x/e € V. Applying inequality (1) of
I, p.16 to the points x/¢ and 0 and to the number A = ¢ we see that
f(x) < ef(x/e) < ea;applyingit to points x and — x/g and thenumber A = 1/(1 +¢),
gives f(x) = — gf(— x/g) = — ea. Thus f(x) is arbitrarily small in €V, if ¢ is
sufficiently small, and f is continuous at x = 0.

Now let y be some point of X; since X is open, there is a number p > 1 such that
z = py belongs to X. Let g be the homothety x — Ax + (1 — A) z of centre z and

ratio A = 1 — %, which transforms 0 into y; for every point g(x) € g(V), we have

from (1)
fgx) < M) +A =1 f(2a) < ha+(0 =) f(2).

Thus f is bounded above in a neighbourhood of y and hence, by the first part, is
continuous at y. The proposition is proved.

COROLLARY. — Every convex function f defined over an open convex set X in R" is
continuous in X.

We can suppose that X is not empty. Then there exist, in X, n + 1 affinely inde-
pendent points ¢; (0 < i < n) and the convex envelope of these points, S, contains

the open non-empty set formed of the points ) Az, with 0 < A, < 1 for all i and
i=0

A; = 1.ByIL, p. 17, prop. 20, f is bounded above in S and therefore is continuous.
0

™M=

In a topological vector space of infinite dimensions there exist, in general, linear
non-continuous forms (I, p. 80,exerc. 25) and thus convex functions that are not conti-
nuous at any point.

11. Semi-norms and convex sets

Let E be a vector space over R; a mapping p of E in R is positively homogeneous
if, for every A = 0 and all x € E we have

&) p(Ax) = Ap(x) .

A positively homogeneous function p on E is convex if, and only if] it satisfies
axiom (SN of I, p. 1 forall x, y of E ;

(6) p(x +y) < p(x) + p(p).

In fact, if p is convex, then for x, y in E,

PG(x + ) < 3p(x) + 3p(»)
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and, by (5), this relation is equivalent to (6). Conversely, if (6) holds, then we also
have for all A such that 0 < A < 1,

pPx + (1 =N y) < pOx) + p((1 — 1) y) = Ap(x) + (1 — 1) p(p)

using (5).

A convex positively homogeneous function on E is called sub-linear.

If p is a sub-linear function defined on E ; then, by I1, § 2.8, corollary, for alla > 0,
the set V(p, a) (resp. W(p, a)) of points x € E for which p(x) < a (resp. p(x) < a)
is convex ; further this set is absorbent, since for all x € E, there exists A > 0 such that
p(Ax) = Ap(x) < a.

There is a partial converse of this result :

PROPOSITION 22. — Let A be a convex set, containing 0, in the vector space E. For
all x € E, put
@) Pax) = inf p

p>0,xepA

(0 < pa(x) < o0). The function p, satisfies
(®) pA(x + ) < pA(x) + PA(y) s pAO\'X) = XPA(X)

for all x, y in E and A > 0. If V(p,, o) (resp. W(p,, o)) denotes the set of x € E for
which p,(x) < o (resp. p,(x) < o), then

9 W(p,, 1) c AcV(p,, D).

If A is absorbent then p, is finite (therefore sublinear).

Since the relations x € pA and Ax € ApA are equivalent when A > 0, we have
Pa(Ax) = Ap,(x)for A > 0. Let x, y be two points of E. If x (resp. y) is not absorbed
by A then p,(x)= + o (resp. p,(y)= + co0) and the inequality p,(x + ) < po(x) +p,(»)
is obviously true. Suppose there exist o > 0, § > 0 such that x € aA, and y € BA;
thenx +y € aA +BA=(a+B) A(IL p. 8, Remark);and thus p,(x + ) <pa(x) +pA(»).
The inclusion A = V(p,, 1) is clearly true. The inclusion W(p,, 1) = A follows
because A is convex and contains 0. Finally if A is absorbent then p, is obviously
finite.

The function p, defined by (7) is called the gauge of the convex set A. If A is absor-
bent and symmetric, then p, is a semi-norm.

ProPOSITION 23. — Let E be a topological vector space. If A is an open convex set
which contains 0, then p, is finite and continuous, and A = W(p,, 1). If A is a closed
convex set containing 0, then p, is lower semi-continuous and A = V(p,, 1).

If A is open and contains 0, then it is absorbent. For x € A, there exists p < 1
such that x/p € A, and thus p,(x) < 1; this, combined with (9) gives A = W(p,, 1).
Since the convex function p, is bounded above in the open set A, it is continuous
in E (11, p. 18, prop. 21).
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Suppose A is closed and contains 0. For every x € E with p,(x) < 1, we have
x € pA for all p > 1, therefore x € A since A is closed ; remembering (9), this shows
that A = V(p,, 1). For all p > 0, pA is therefore the set of x such that p,(x) < p;
as p,(x) = 0 in E, this shows that p, is lower semi-continuous in E (GT, IV, § 6.2).

A positive sublinear function p over E is the gauge of each convex set A where
W(p, 1) c A cV(p D).

§ 3. THE HAHN-BANACH THEOREM (ANALYTIC FORM)

1. Extension of positive linear forms

PROPOSITION 1. — Let E be a preordered vector space and V be a vector subspace of E
such that every element of E is bounded above by an element of V. Given a linear form f
on V that is positive for the preordered vector space structure of V (induced by that of E)
there exists a non-empty set S, of positive linear forms on E, each being an extension
of f. If h € S, then the values h(a) for a € E lie in the interval [oc’, oc"], where

ey o = sup f(z), o' = inf f(y).

zeV,z<a yeV,y=a

1. Special case.

Suppose firstly that E = V + Ra. Since the proposition is trivial if a € V, we
confine ourselves to the case a ¢ V. The conditions on V imply that the set A” of
y e Vsuchthata < yisnotempty; similarly theset A’ of ze Vsuchthat — z > — a
(i.e. z < a) is not empty. For ye A” and ze A’, we have z < a < y, and thus by
hypothesis f(z) < f(»). Thus o, a” are finite and o' < a”. Any linear form f, on E
that extends f is completely determined by f(a) and for all A e R and all xe V, we
have

Jilx + ka) = f(x) + Mi(a).

Thus f, is positive if and only if the relations

2) xeV, AeR, x+hla=0
imply
(3) f(x) + Mi(a) = 0.

As f(ux) = pf(x) and the relations x > 0 and ux > 0 are equivalent for p > 0,
it is sufficient to show that (2) implies (3) in the particular cases A = 0, A = 1 and

A = — 1. For A = 0, the fact that (2) implies (3) follows from the hypothesis that f
is positive. For A = 1, to say that (2) implies (3) means that for — x € A’, we have
fil@) = f(— x), ie fi(a) = o'; for A = — 1, (2) implies (3), means that for x € A”,

we have f(x) = f,(a), ie. fi(a) < o”. The proposition is therefore proved in this
case.
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II. General case.

Let & be the set of pairs (W, g) where W is a vector subspace of E containing V
and g is a positive linear form on W which is an extension of f. We order & putting
(W, g) < (W, g)if W< W and if g’ is an extension of g. Clearly & is inductive and
by th. 2 of S, III, § 2.4, there is a maximal element (W, g,). Suppose W, # E. Then
there exists a vector b ¢ W, and, if W, = W, + Rb, the special case above shows
that there exists a positive linear form on W, which is an extension of g, ; this con-
tradicts the hypothesis that (W, g,) is maximal. Thus W, = E, and the first part
of the proposition is proved. When a € V, the second assertion is obviously true
with o' = o = f(a); if, on the contrary, a¢ V and one puts V, = V + Ra, the
second assertion follows from the special case I of the proof.

COROLLARY. — In a topological vector space E with a compatible preorder structure,
let P be the set of elements > 0 in E. Let V be a vector subspace of E containing at least
one interior point x, of P. Then every positive linear form on V can be extended to a
positive linear form on E.

By prop. 1 it is sufficient to show that for every x € E, there exists x’ € V such that
x" — x e P. Now let U be a neighbourhood of 0 in E such that x, + U = P. Then
x + x, + U = x + P, and, hence there exists € such that 0 < ¢ < 1 and the point
y = X, + (1 — ¢) x belongs to x + P; then every point of the form x + A(y — x)
belongs to x + P for L > 0. If we take A = l/g, then x + My — x) = Ax, €V,
from which the conclusion follows.

The conclusion of the corollary is not necessarily valid if one does not assume that V

contains an interior point of P, even if E is of finite dimension and if P n V contains
points interior in V (I, p. 91, exerc. 25, b)).

2. The Hahn-Banach theorem (analytic form)

THEOREM 1 (Hahn-Banach). — Let p be a sub-linear function on a vector space E.
Let V be a vector subspace of E and f a linear form on V such that, for all y e V, we
have f(y) < p(y). Then there exists a linear form h on E that is an extension of f and
such that h(x) < p(x) for xeE. k

The set of pairs (x, a) such that p(x) < a is a convex subset P of the vector space
E, = E x R(L p. 17, prop. 19), and it is clearly a pointed cone. Let V, be the sub-
space V x R of E; and g(y, @) = — f(y) + a for each point (y,a) e V,. Then g
is a positive linear form for the preorder structure on V, defined by P n V,; for if
(r,@)e PV, then a = p(y) = f(»), therefore g(y, a) = 0. Next let (x, a) e E,;
we show that (x, a) isless than a point of V, for the preorder defined by P. If (x', a’) e V,
then (x, a) < (x, @) if, and only if p(x' — x) < d — a, taking @’ = p(— x) + a,
we see that (0, a’) of V| satisfies the requirements. Thus we can apply prop. I of 11,
p. 21; there is a linear form u on E, extending g and positive for the preorder defined
by P. Therefore u(0, 1) = ¢g(0, 1) = 1 and u is of the form wu(x, a) = — A(x) + a,
where 4 is a linear form on E that extends f’; further, for all x € E and all a > p(x),
we have A(x) < a, therefore A(x) < p(x). Q.E.D.
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COROLLARY 1. — Let p be a semi-norm on the vector space E. Let V be a vector sub-
space of E and f a linear form on V such that | f(y)| < p(y) for all y € V. Then there
exists a linear form h defined on E which is an extension of f and is such that |h(x)| < p(x)
for x e E.

For a semi-norm g and a linear form g on E, the relation g < ¢ is the same as
lgl < g. The corollary follows from th. 1.

COROLLARY 2. — Let p be a semi-norm on the vector space E. Given a point x, € E,
there exists a linear form f defined over E, such that f (x,) = p(x,) and that |f(x)| < p(x)
for all x € E.

Apply cor. 1 to the vector subspace, V, generated by x, and to the linear form
Ex, — Ep(x,) defined over V.

COROLLARY 3. — Let V be a vector subspace of the normed space E and let f be a conti-
nuous linear form over V ; then there exists a continuous linear form h defined over E
which extends f and is of the same norm (GT, X, § 3.2).

Apply cor. 1, taking p(x) = | fll.llx]l, which gives |A| < ||f]; but clearly
Al = I fll, and the corollary follows.

The conclusion of cor. 3 is not necessarily valid for continuous linear mappings
of a normed space into an arbitrary normed space (IV, p. 55, exerc. 16, ¢) and V, p. 65,
exerc. 22).

§ 4 LOCALLY CONVEX SPACES

1. Definition of a locally convex space

DEFINITION 1. — A topological vector space is locally convex (real) if there exists a
fundamental system of neighbourhoods of 0 that are convex sets.

Such a space is called a locally convex space. Its topology is called a locally convex
topology.

The topological vector spaces over R which we study in the rest of this book are
nearly all locally convex.

If V is a convex neighbourhood of 0 in the locally convex space E, then V n (— V)
is a symmetric convex neighbourhood of 0. As the closure of a convex set is convex
(IL, p. 13, prop. 14) it follows from I, p. 7, prop. 4 that the neighbourhoods of 0 in
E which are closed, symmetric and convex, form a fundamental system of neigh-
bourhoods invariant under homotheties of centre 0 and ratio # 0.

PROPOSITION 1. — Let & be a filter base on a vector space E formed from sets that
are absorbent, symmetric and convex. Then the set B of transforms of the sets of S
by homotheties of ratio > 0 is a fundamental system of neighbourhoods of 0 for a locally
convex topology on E.

Clearly B is a filter base satisfying (EV,) and (EV,)) of I, p. 7, prop. 4; it also satis-
fies (EV ) since if Ve S theniV + iV = V.
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Note that if 7 is the locally convex topology on E having 8B for a fundamental
system of neighbourhoods of 0, then the sets(1/n) V, where n varies in the integers > 0
and V varies in &, form a fundamental system of neighbourhoods of 0 for the topo-
logy 7. Then 7 is Hausdorft, if and only if, for every x # 0 in E there exists an
integer n and a set V € S, such that nx ¢ V; if, further, S is enumerable, then the
topology 7 is a metrisable locally convex topology. Conversely, it is clear that if
Z is a metrisable locally convex topology, then there exists an enumerable funda-
mental system of closed symmetric convex neighbourhoods of 0 for 7.

COROLLARY. — The topology F of a topological vector space E, is defined by a set
of semi-norms (11, p. 3) if, and only if, T is locally convex.

The condition is necessary since every semi-norm on E is a convex function, and
so, for o > 0, the set of x € E for which p(x) < «, is convex (I, p. 17, corollary).
Conversely if V is a symmetric, closed, convex neighbourhood of 0 in E, the gauge
p of V is a semi-norm on E such that V is the set of points x of E satisfying p(x) < 1
(IL, p. 20, prop. 23).

This shows further that a locally convex topology 7 is defined by the set of all
semi-norms that are continuous for 7 . Further, if 7 is metrisable, then it is defined
by an enumerable set of semi-norms.

From the corollary to prop. 1, all the results of § 1 on topologies defined by sets
of semi-norms apply in particular to locally convex topologies over real vector spaces.
A locally convex Hausdorff space E has a completion E that is locally convex. A
complete, metrisable locally convex space is called a Fréchet space; every Banach
space is a Fréchet space.

PROPOSITION 2. — Let f'be a continuous linear form defined over a vector subspace M,
of a locally convex space E ; then there exists a continuous linear form h that is defined
over E and is an extension of f.
From the corollary above and II, p. 7, cor. 2, there exists a continuous semi-norm
p on E, such that |f(y)| < p(y) for all y e M. By the Hahn-Banach th. (I, p. 23,
cor. 1) there exists a linear form / on E that extends f and is such that [A(x)| < p(x)
for all x € E, and this implies that 4 is continuous (II, p. 6, prop. 5).
Remark. — If g is a continuous linear mapping of M in the product space R!, then there
exists a continuous linear mapping 4 of E in R' that is an extension of g; for writing
g = (g,), where the g, are continuous linear forms defined over M, there is an extension
h, of g, for each 1 € I, such that 4, is a continuous linear form over E. The continuous
linear mapping 4 = (h,) has the required properties.
Note that if F is a locally convex Hausdorff space and g a continuous linear mapping
of M in F, then there does not necessarily exist a continuous linear mapping of E in F

which is an extension of g (IV, p. 55, exerc. 16, ¢)). However there does exist such an exten-
sion when M is finite dimensional (¢f. cor. 2, below).

COROLLARY 1. — Let E be a locally convex space. If x, € E is not in the closure of
{0}, then there exists a continuous linear form f defined over E with f(x,) # 0.

Apply prop. 2 to the one dimensional vector space M generated by x, and to the
linear form &x, — & defined over M, which, by I, p. 12, prop. 2, is continuous.



No. 2 LOCALLY CONVEX SPACES TVS I1.25

COROLLARY 2. — Let M be a finite dimensional vector subspace of E, a locally convex
Hausdorff space. Then there exists a closed vector subspace N of E, which is the topo-
logical complement of M in E.

There exists a topological complement to M in E if, and only if, the identity mapping
of M on itself can be extended to a continuous linear mapping of E on M, which
mapping is then necessarily a continuous projector (GT, III, § 6.2, corollary). Now,
this follows from the remark above since M is isomorphic to a space R” (I, p. 13,
th. 2).

PROPOSITION 3. — In a locally convex space E, the balanced convex envelope of a
precompact set is itself a precompact set.

Let A be a precompact set in E. Given V, a balanced convex neighbourhood of
0 in E, there exist finitely many points ¢; € A (1 < i < n) such that A is contained
in S, the union of the neighbourhoods a; + V (1 < i < n). Thus C, the balanced
convex envelope of A, is contained in T the balanced convex envelope of S; but T
is contained in B + V, where B denotes the convex envelope of the finite set of points
a;, — a; (1 < i< n). Now B is precompact (I, p. 14, cor. 2); hence there exist
finitely many points b, € B (1 < k < m) such that B, is contained in the union of
the neighbourhoods b, + V. Then C is contained in the union of the neighbourhoods
b, + 2V, and the proposition is proved.

Note that, in an infinite dimensional locally convex Hausdorff space, the convex
envelope of a compact set is not necessarily closed (II, p. 74, exerc. 3).

COROLLARY. — If, in a locally convex Hausdorff space E, a compact set X is contained
in a complete convex set (complete in the uniform structure induced by that of E) then
the convex closed envelope of X is compact.

For this envelope is a closed subset of a complete space, therefore it is complete,
but it is also precompact and Hausdorff.

However in a non complete locally convex Hausdorff space, the convex closed
envelope of a compact set need not be compact (II, p. 87, exerc. 2).

2. Examples of locally convex spaces

1) The space R” is locally convex since the open cubes with centre 0 are convex
(I1, p. 9, prop. 6). This is, therefore, also true for all real topological vector spaces
of finite dimension ; in fact it follows from the above and I, § 2. 3, th. 2 provided that E
is Hausdorff; if not, the Hausdorff space F associated with E is of finite dimension,
therefore locally convex, and the inverse images of convex neighbourhoods of 0 in F
under the canonical mapping E — F are convex and form a fundamental system of
neighbourhoods of 0 in E.

2) Let E be a vector space in R, and B be the family of all subsets of E that are
absorbent, symmetric and convex. By prop. 1 of I, p. 23 we see that 8B is a funda-
mental system of neighbourhoods of 0 for a locally convex topology 7, on E that
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is the finest of all locally convex topologies on E. This topology is Hausdorff; for
let x # O be any point of E; there exists a basis (i),; of E with an a € I such that
e, = x; the set of points y = )’ ye, such that |y,| < 1 is absorbent, symmetric and

1

convex. It does not contain x. From II, p. 24, corollary, it follows that 7 is also
the topology defined by the set of all semi-norms on E, thus every semi-norm is
continuous in .

In particular, if u is a linear mapping of E in any locally convex space F, the inverse
image, under u, of every convex neighbourhood of 0 in F is an absorbent convex
set in E ; therefore it is a neighbourhood of 0 for 7, and thus u is continuous for 7,

Given a convex set C in E, we say that a point a € C is an internal point of C if,
for every line D containing a, the intersection D n C contains an open segment
which contains «a; in other words — a + C is absorbent. The point a of the set A
in E is interior to A for 7 if, and only if, there exists a convex set Cwithae C = A,
and such that a is an internal point of C.

More generally, let V be an affine linear variety in E, and C be a convex set contained
in V; a point a e C is an internal point of C relative to V if, in the vector subspace
Vo = — a + V, the point 0 is an internal point of the set C, = — a + C.

When E is of finite dimension, the topology 7, is just the canonical topology on E
(I, p. 13, th. 2) ; which shows that every internal point of a convex set C in E, is interior
to C for the canonical topology (cf. I1, p. 74, exerc. 5).

3) Let A be a symmetric convex set in the vector space E over R. The vector
subspace F generated by A is also the convex cone generated by A, since — A = A;
this set is the set of Ax where x e A and A € R; the set A is absorbent in F and the
sets AA where A > 0, form a fundamental system of neighbourhoods of 0 for a
locally convex topology on F (said to be defined by A), which is defined by the semi-
norm p,, the gauge of A (1L, p. 20, prop. 22); we write E, for the locally convex
space obtained by giving F this semi-norm. The space E, is Hausdorff if, and only
if, p, is a norm or alternatively A does not contain any line. If B is a second symmetric
convex set in E and if A < B, then clearly E, < Eg, and the canonical injection of
E, in Ejy is continuous for the topologies defined respectively by A and by B. Further,
if f is a linear mapping of E in a real vector space E’, then f(A) is convex and sym-
metric in E” and f is a continuous linear mapping of E, on E,,.

Finally, note that if E carries a topology 7 compatible with its vector space struc-
ture, and if V is a symmetric convex neighbourhood of 0 for 7, then the vector space
generated by V is identical with E, since V is absorbent, and the identity mapping
of E in Ey is continuous.

3. Locally convex initial topologies

PROPOSITION 4. — Let E be a vector space and let (E),, be a family of locally convex
spaces. For each 1€, let f, be a linear mapping of E in E_; then the topology T
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on E, which is the coarsest making each mapping f, continuous, is a locally convex
topology.

Using II, p. 24, corollary, this is a particular case of the corresponding property
for topologies defined by semi-norms (II, p. 5).

In particular, every vector subspace of a locally convex space, and every product
space of locally convex spaces, is locally convex. Every projective limit of locally
convex spaces is locally convex.

Every enumerable product of Fréchet spaces (and in particular every enumerable
product of Banach spaces) is a Fréchet space.

Every locally convex Hausdorff space E is isomorphic to a subspace of a product
of Banach spaces and this subspace is closed if E is complete (II, p. 5, prop. 3). Every
Fréchet space is isomorphic to a closed subspace of an enumerable product of Banach
spaces (loc. cit.).

4. Locally convex final topologies

PropOSITION 5. — Let E be a vector space, and (F,),.. be a family of topological
vector spaces andfor each o € A, let g, be a linear mapping of F, in E.

(i) Denote by B the family of absorbent, symmetric convex subsets V of E such that
g }(V) is a neighbourhood of 0 in F, for every a; the family B is a fundamental system
of neighbourhoods of 0 in E for a topology I that is compatible with the vector space
Structure.

(ii) A linear mapping f of E in a locally convex space G (resp. a semi-norm p on E)
is continuous for 7 if and only if, for every index o, f o g, (resp. p o g,) is continuous
inF,.

(iii) The topology T is the finest of the locally convex topologies on E for which
the g, are continuous.

Further, the topology 7 is the only locally convex topology on E that satisfies
condition (ii) for linear mappings (resp. for the semi-norms).

As B is a filter base invariant under homotheties of ratio > 0, the assertion (i)
follows immediately from II, p. 23, prop. 1. By the definition of B, the topology
is the finest of locally convex topologies on E making the g, continuous ; whence (iii).
Finally, it is clear that if f is continuous, so is f o g, ; conversely if the f o g, are conti-
nuous for every a, then for each symmetric convex neighbourhood W of 0 in G,
the set g; '(f ~(W)) is a neighbourhood of 0 in F, for each o. Now f~ (W) is
absorbent, symmetric and convex thus f ~ (W) is a neighbourhood of 0 in 7, and
f is continuous. Similarly if p is a semi-norm on E such that p o g, is continuous
for every o, and if U is the set of points x € E such that p(x) < 1, then, for every a,
the set g, }(U) is a convex neighbourhood of 0 in E, that is symmetric and absorbent ;
thus U is a neighbourhood of 0 in E and p is continuous (IL, p. 2, prop. 1).

The last statement follows from S, IV, § 2. 5, criterion CST 18.

We say that 7 is the locally convex final topology of the family of topologies 7,
of the F,, for the family of linear mappings g,.
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It may happen that 7 is not the finest of the topologies on E compatible with its
vector space structure and making the f, continuous (II, p. 75, exerc. 15; see also IL, p. 75,
exerc. 14).

In the most important case E = ) g,(F,), we get a fundamental system of neigh-
aeA

bourhoods of 0 for 7~ asfollows ; for each a € A, let V,, be a symmetric neighbourhood
of 0 for 7, form the union of the g,(V,) for a € A and denote the convex envelope
in E of this union by I'((g,(V,))) ; since every element of E is of the form ) x,, where J

ac J

is a finite subset of I and x, € g,(F,), it is immediate that I'((g,(V,))) is an absorbent
symmetric convex set in E (each of the V, is absorbent in F,) ; as I'((g,(V,))) contains
all the g,(V,), it is a neighbourhood of 0 for . On the other hand, it is clear that for
every symmetric convex neighbourhood V of 0 for 77, we have V = I'((V n g,(F,))),
from which our assertion follows.

COROLLARY 1. — With the notations of prop. 5, let H be a set of linear mappings of E
in the locally convex space G. Suppose that E is the sum of its subspaces g(F,); then
H is equicontinuous for 7, if, and only if, for every o, the set f o g, where f varies in H,
is equicontinuous in F,.

Remembering I, p. 9, prop. 6 the argument is similar to that of (ii) prop. 5. Let
W be a symmetric convex neighbourhood of 0 in G and note that if the set fog,,

where f € H is equicontinuous, then the intersection g, *(f ~1(W)) is a symmetric
SfeH
convex neighbourhood of 0 in F,. As this intersection is the same as g, *(N f ~1{(W))
SfeH
and the set N f~ (W) is symmetric and convex, everything depends on showing
SfeH

that it is also absorbent. Now, by hypothesis, every x € E can be writtenas )" g, (z,),
i=1

where z, € F, . To show that there exists A > 0 such that f(Ax) e W for all fe H,

it is sufficient to consider the case x = g,(z,) with z, € F, (since we can pass to the

general case by replacing W by W/n). But this case follows from the fact that

g2 (N f~(W)) is a neighbourhood of 0 in F,.

SfeH

COROLLARY 2. — Let (1,),., be a partition of the index set A. Let (G,),.» be a family
of locally convex spaces and (F,),., be a family of vector spaces. For each \ € L, let
h, be a linear mapping of F, in a vector space E ; for each A € L and o € J,, let g,, be
a linear mapping of G, in F,. Write f, = h, o g,,. Suppose that each F, carries the
finest locally convex topology that makes the g,, (o € J,) continuous. Then, the finest
locally convex topology on E that makes the f, continuous, is identical with the finest
locally convex topology making the h, continuous.

This is a particular case of S, IV, § 2.5 criterion CST 19, and can also be proved
directly using prop. 5.
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Examples of locally convex final topologies.

1. Quotient space.

Let M be a subspace of the locally convex space F, and ¢ be the canonical mapping
of F on F/M. As the quotient topology on F/M is locally convex and is the finest
of all the topologies (locally convex or not) which make ¢ continuous, it is also the
locally convex final topology for the family consisting of the single mapping ¢.

I1. Inductive limits of locally convex spaces.

Let A be an ordered set directed to the right and let (E,, f;,) be an inductive system
of vector spaces relative to the set A (A, I1,§6.2);1et E = m E,andlet f,:E, > E
be the canonical linear mapping for each o € A. Suppose that each E carries a locally
convex topology 7, and further suppose that for o < B, the mapping f;,:E, — E;
is continuous. Then we say that the locally convex final topology  of the family (7,)
relative to the linear mappings f, (resp. the space E carrying the topology ) is the
inductive limit of the family (7,) (resp. the inductive limit space of the system (E,, f;,),
or simply of the locally convex spaces E,). Recall that E is the union of the vector
subspaces f,(E,) and that when o < B, we have f(E,) = fy(Ep); if we endow f(E,)
with the final topology for the mapping f, (which is the same as identifying f,(E,)
with the quotient space E_/f,” 1(0)), the topology J is also the final topology of the
family of the topologies of the f(E,), relative to the canonical injections (II, cor. 2
above). Further, the continuity of f;, for & < B implies that the canonical injection
Jou: J(By) = f3(Ep) is continuous, so that E is also the inductive limit of f(E,)
carrying the preceding topologies relative to the injection jg,.

Example. — Let X be a locally compact space and E = #°(X; R) the vector space of
finite continuous real valued functions defined over X with compact support. For
every compact subset K of X, let Eg be the vector subspace of E formed by those func-
tions f € E which are such that x ¢ K = f(x) = 0. Denote by 7 the topology induced
on Eg and by 7, the topology of uniform convergence on X. The inductive limit J of
the topologies 7 is finer than 7, ; we can show that if X is paracompact and not
compact, then J is strictly finer than 7, (¢f. INT, III, 2nd ed., § 1.8). The importance
of 7 lies in the fact that the linear forms on E that are continuous in J are precisely
the real measures on X (INT, III, 2nd., § 1.3).

Remark. — In the last example, the topology induced by 7 on E; is identical with J,
since by definition it is coarser than J and, since J is finer than 7, the topology
induced by .7 on Ey is finer than that induced by 7, that is to say J.

This reasoning generalises immediately to an inductive limit of locally convex topo-
logies () when there is a locally convex topology .7 ' on E such that .7, is the topology
induced on E, by 7.

More generally one can ask, when we suppose that E; < E, and 7 is the topology
induced by .7, under what circumstances .7 induces .7, on each of the E,. In general
this is not so (I, p. 80, exerc. 26) ; but we shall see in the Nos following two important
situations where this does occur.

5. The direct topological sum of a family of locally convex spaces

DEFINITION 2. — Let E be the vector space which is the direct sum (A, 11, § 1.6) of
the family of locally convex spaces (E,),. For each € 1, let f, be the canonical injection
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of E, in E. By the topological direct sum of the family (E,) we mean the space E with
the finest locally convex topology which makes each f. continuous (this topology is
called the direct sum of the topologies of the E).

In the remainder of this No. we keep the same notations as in def. 2 (unless the
contrary is expressly stated) and we identify, canonically, each E_ with a subspace
of E, by means of f.

By the general description of neighbourhoods of a locally convex final topology
given in II, p. 28, we can here obtain a fundamental system of neighbourhoods of
0 in E for the direct sum topology, in the following manner ; for every family (V)
where V| is a symmetric convex neighbourhood of 0 in E , consider the convex enve-
lope I'((V,)), of the union of the V_; the I'((V,)) for all the families (V,) (or only taking
V, for eacht to be in a fundamental system of neighbourhoods of 0 in E,) form a funda-
mental system of neighbourhoods of 0 in E.

Example. — Let (a,),, be a basis of the vector space E and consider the canonical
topology (L, p. 2, Example 5) on each line Ra,; the direct sum of these topologies
is the finest locally convex topology on E (II, p. 26); in fact, if V is an absorbent,
symmetric, convex set in E, then V. = V n Rgq, is a neighbourhood of 0 in Ra, and
V clearly contains the convex envelope I'((V))).

PROPOSITION 6. — A locally convex topology J on E is the direct sum of the topolo-
gies of the E,, if and only if, the following property holds: a linear mapping of E in a
locally convex space G (resp. a semi-norm p on E) is continuous, if and only if, for
every 1€ 1, the mapping g o f, (resp. p o f) is continuous in E, .

This is a particular case of prop. 5, II, p. 27.

Recalling the definition of the direct sum of a family of vector spaces (A, 11, p. 12,
prop. 6), we can say that the topology  is the only one for which the canonical
mapping g (go f) is a bijection

(1) Z(E;G) - [[ZE;G)

el
for every locally convex space G.

COROLLARY. — With the notation of prop. 5, 11, p. 27, suppose that E is the sum of the

9.(F,). Let F be the topological direct sum of the family (F,),.,, and let j.F, - F

be the canonical injection; suppose that g:F — E is the linear mapping such that

goJjy = g, for all a. € A. If N is the kernel of g, then the canonical bijection F/N — E

associated with g is a topological isomorphism of F/N on E with the topology 7.
This is a particular case of I, p. 28, cor. 2 remembering II, p. 29, Example 1.

PROPOSITION 7. — The canonical injection j:E — [ E, is continuous when E carries

el

the direct sum topology of the E_and || E, carries the product topology. When 1 is
el

finite, this mapping is an isomorphism of topological vector spaces.
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The first assertion follows from the fact that the canonical injections E, — [] E,

el

are continuous for each k e I. If I is finite then j is the identity mapping, and it is suffi-
cient to show that the product topology 7’ is finer than the direct sum topology .7
Now, let V be a convex neighbourhood of 0 for 7 ; each set V n E, is a convex neigh-
bourhood of 0 in E ; if # is the number of elements of I, then the set V contains the

1 L .
set ;Z(V n E)), which is a neighbourhood of 0 for 7, and the proposition is

proved.
When I is infinite, if, for each finite subset J of I, we write E, for the space H E,, with

el

the product topology, then E is the inductive limit of the E; (identified as subspaces of E).

PROPOSITION 8. — Let N, be a subspace of E,, for every 1€ 1,
(i) The topology inducedon N = Y N, by the direct sum topology F on E is identical

with the direct sum of the topologies of the N, .
(ii) The canonical mapping h of the topological direct sum space of the E |N, on
E/N (A, I, § 1.6, formula (26)) is an isomorphism between topological vector spaces.
(i) With the notations introduced above, we consider x = ) A.x, belonging to

1

NN I(V)) ((A) is a family of numbers = 0 of which at most finitely many are
non-zero, such that )’ A, = 1,and x, € V,, forallt € I). Since the sum of the N, is direct,

we have A x, e N, for all 1 e I; therefore, for all 1 such that A, > 0 we also have
x, e N, n V,, and x belongs to the convex envelope I'(N, n V,)), thus (i) is proved.

(ii) Denote canonical mappings asfollows: f:E —E, & :E /N, -E/N, p,:E,—-E /N,
and p:E — E/N. For every te ], h op, = po f and the proposition follows from
IL, p. 28, cor. 2 and p. 29 Example 1.

COROLLARY 1. — If N, is closed in E, for every 1€ 1, then N = Y N, in closed in E.

For, the canonical mapping p,:E — E, is continuous (11, § 4.5, prop. 6) for every

tel, hence p”'(N)) is closed in E, and thus the same is true of the intersection
N =Np '(N).

el

COROLLARY 2. — If each E, _is Hausdorff, so also is E and each E, is closed in E.
To prove thefirst statement apply cor. 1 taking N, = {0} forallt € I; for the second
apply cor. 1 with N, = E, and N, = {0} for every k # 1.

We shall show in III, p. 21, cor. 2 that if the E_are Hausdorff and complete then
so is their topological direct sum E.
6. Inductive limits of sequences of locally convex spaces

In this No. we shall consider an increasing sequence (E,) of vector subspaces of a
vector space E, such that E is the union of the E,; we suppose that each E, carries a
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locally convex topology 7, such that, for every s, the topology induced on E, by
T, +1 18 coarser than 7, and we give to E the locally convex topology 7 that is the
inductive limit of the sequence (7,) (1, p. 29, Example 1) ; these hypotheses and nota-
tions wi11 be used throughout the rest of this No. without restatement.

It may happen that each .7, is Hausdorff but that  is not ; it may also happen that
for each pair of integers n, m such that » < m, the subspace E, is closed in E,, (using
topology Z,,) but that E, is not closed in E using 7 (11, p. 80, exerc. 26).

Lemma 1. — Let § be a Cauchy filter on E (for T ) ; then there exists an integer k,
such that for all N € § and every neighbourhood V of 0 in E, the subspace E, meets
N+ V.

We assume the ~ontrary and obtain a contradiction. Suppose that for every k there
exists a convex neighbourhood V, of 0 and a set M, € § such that

E,+VonM, =.

Clearly we can suppose that V,,, = V, for all k. Let V be the convex envelope of
(E N V), this is clearly a nelghbourhood of Ofor7. ForallnwehaveV <V, +E,;

in fact, every x € V can be written Z A;x; where A; = 0, Z A; = 1and x;e V, n E,

for all i; now fori < nwe have x; € E , therefore Z AX; € E ;and fori > n we have

i<n
x, € V,, therefore ) Ax; €V, since V, is convex, contains 0 and ) A, < 1. Hence
iZn iZn

V + E, <V, + E, for all n. This being so, let M € & be a set that is V-small. For
some integer m, E, N M is not empty ; and we conclude that

McE, +VcE, +V,;

as & is a filter, the set M,, meets M and therefore E,, + V
which establishes the lemma.

we have a contradiction

m’

PROPOSITION 9. — Suppose that the topology induced on E, by 7, , , is identical with
T, for every integer n. Then

(1) The topology induced by J on E, is identical with 7, for each n; if the F, are
Hausdorff then I is Hausdorff.

(ii) If, for every n, E, is closed in E, ,, (for 7, ,), then E, is closed in E (using I")
for every n.

(iii) If each E, is complete (using ,) then E is complete using I .

(1) To prove the first assertion, it is sufficient to prove that the topology 7,
induced by 7 on E, is finer than . For this, let V, be a convex neighbourhood of 0
in E, for the topology .5 We are gomg to construct an increasing sequence of convex
nelghbourhoods of 0inE,, for 7, ,say(V,;,),> such that V,, nE, =V,
for every index p > 1. Then the union V of the increasing sequence (V,,, ) will be a
convex set such that V n E, is a neighbourhood of 0 in E, (using 7,), for every
index k; therefore V will be a neighbourhood of 0 in E for 7 andasVnE, = V,,
we have proved that 7, is finer than 7,



No. 6 LOCALLY CONVEX SPACES TVS I1.33

To define the V, ., we proceed by induction on p using the following lemma :

Lemma 2. — Let V be a convex neighbourhood of 0 in M, a vector subspace of a
locally convex space F. Then there exists a convex neighbourhood W of 0 in F such
that W n' M = V. Further, if M is closed in F, then, for every point x, € [} M, there
exists a convex neighbourhood W, of 0 in F such that Wy " M = V and xo, ¢ W,,.

In fact, by hypothesis there exists a convex neighbourhood U of 0 in F such that
U N M < V. Clearly, the convex envelope W of U U V in F is a neighbourhood of 0
in F; we show that W n M = V. For, every point z € W is of the form Ax +(1 —A) y
withxeV,yeU,and0 < A < 1L, p. 9, prop. 8); if ze M, and A # 1 then neces-
sarily y € M, therefore ye U " M < V and hence z € V; the result is obviously
true if A = 1. If M is closed in F, the space F/M is Hausdorff, thus there ex,\ists a
convex neighbourhood U, = U of 0 in F such that U, does not meet x, + M;
then the convex envelope W, of U, U V fulfils the required conditions.

Returning to the theorem, to prove the second part of (i) note that if x € E then
x e E, for some n; if x # 0 and 7, is Hausdorff then there is a neighbourhood V,,
of 0 for 7,, which does not contain x. We see that there is a neighbourhood V of 0
for 7 suchthat V. n E, = V,, hence x ¢ V, and it follows that 4 is Hausdorff.

(i) Let x € E—E,; there exists m > n such that x € E,, thus, as E, is closed in

n

E, for ,, (because of the hypothesis that 7, , , induces , on E, for every n) there

exists in the topology 7, a convex neighbourhood V, of 0 in E, such that
(x +V,) n E,is empty. Now we saw in (i) that there exists a convex neighbourhood
Vof 0for 7 such that VA E,, =V, ;and thus(x + V) n E, = x + V,, therefore
(x + V) n E, = &, which proves (ii).

(iii) From lemma 1, if § is a minimal Cauchy filter for 7 (GT, 11, § 3.2) then there
exists a k such that the trace of & on E, is a filter &, ; from (i) this last is a Cauchy
filter for 7 and thus &, converges in E, by hypothesis ; but as the filter on E generated
by &, is finer than &, we see that ¥ has a cluster point for 4~ and thus converges for
T.

When for all n the topology induced on E, by 7, | is just 7, we say that 7 is the
strict inductive limit of the sequence (,) and that the space E with the topology .7
is the strict inductive limit of the sequence of locally convex spaces E,.

Remarks. — 1) Suppose that E is the union of an increasing directed, non-enumerable
family of subspaces (E,),, each E, having a locally convex topology 7,, such that,
for E, = Eg, the topology induced on E, by 77, is identical with 7. It may be the case
that the topology induced on each E, by the topology 7 is equal to .7, and that the
E, are Hausdorff and complete, but that E is not complete for 7 (INT, 111, 2nd ed., § 1,
exerc. 2).
2) Let F be a locally convex space, which is the union of an increasing sequence of
vector subspaces (F,), and for each index n, let 7, be the topology induced on F, by the
2 topology 7 of F. One should beware that in general  is not the inductive limit of
the 7.
3) Suppose that E is the strict inductive limit of the sequence (E,); if F is a closed
(in ) vector subspace of E, it may be the case that the strict inductive limit of the topo-
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logies induced by the 7, on F n E,, is strictly finer than the topology induced by 7 (IV,
p. 63, exerc. 10).

PRrROPOSITION 10.— Let E, F be two locally convex spaces. Suppose that :

1) There exists a family of Fréchet spaces (E,), and for each o a linear mapping
g, E, = E, such that the topology of E is the final locally convex topology for the
Jamily (g,).

2) There exists a sequence of Fréchet spaces (F,) and for each n a continuous linear
injection j,:F, — F such that F = Uj(F,).

Then every linear mapping u of E in F, whose graph is closed in E x F, is necessarily
continuous.

To prove that u is continuous, it is sufficient to show that for every o, the mapping
uog,:E, - Fiscontinuous (IL, p. 27, prop. 5). Now the graph of u o g_ is the inverse
image of the graph of u under the continuous mapping g, x 1p:E, x F - E x F,
and therefore is, by hypothesis, closed in E, x F. We can, therefore, restrict ourselves
to the case when E itself is a Fréchet space. But then the proposition is a particular
case of I, p. 20, prop. 1.

COROLLARY. — With the same hypotheses on E and F as in prop. 10 and assuming
that E is Hausdorff, then every continuous surjective mapping v of F in E is a strict
morphism.

Let N be the kernel of v and write N, = j!(N); then the mappingj’:F, /N, — F/N,
deduced from j, by taking quotients, is injective and continuous, also F,/N, is a
Fréchet space (since N, is closed) and F/N is the union of the images under j,. By
hypothesis, in the canonical factorisation v:F — F/N ® E, the linear mapping
w is bijective and continuous and its graph in (F/N) x E is therefore closed (GT, 1,
§ 8.1, cor. 2 of prop. 2). By the remarks at the beginning and by prop. 10, the inverse
mapping u of w is therefore continuous and the corollary is proved.

* Prop. 10 and its corollary apply in particular when E is a complete bornological
space (111, p. 12) and F is the inductive limit of a sequence of Fréchet spaces.

7. Remarks on Fréchet spaces

We are going to consider prop. 2 of GT, IX, § 3.1 in the case of locally convex
spaces.

ProOPOSITION 11. — Let E be a metrisable locally convex space. The topology of E
can be defined by a distance that is invariant under translations, and for which the
open balls are convex.

Let (p,),.~ be a sequence of semi-norms that define the topology of E. Let d,
be the pseudometric defined by d,(x, y) =inf(p,(x —y), 1/n) for x, y in E; it is invariant
under translations. For every n > 0, and every real number R > 0, let B, be
the set of x € E for which d,(x, 0) < R. If R > 1/n, then B, ; = E, and in the other
case B,  is formed from the x € E such that p,(x) < R; in all cases B, ; is convex.
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For x, y in E define d(x, y) = sup d,(x, y). We see immediately that d is a distance,
neN

invariant under translations on E and defining the topology of E. For x, € E and
R > 0, the open ball with centre x, and radius R (for the distance d) is equal to
N (x, + B, g), therefore it is convex.

neN

PRrOPOSITION 12. — Let E and F be two Fréchet spaces and u a continuous linear
mapping of E on F. Then there exists a section of u that is continuous though not neces-
sarily linear.

By prop. 11 there exists a distance d in E, invariant under translations, defining
the topology of E and for which open balls are convex. Given y and y’ in F, let 8(y, y")
be the distance apart of the closed sets u~(y) and u~*(y’) in E. As u is a strict mor-
phism (I, p. 17, th. 1) the remark of GT, IX, § 3. 1 shows that 3 is a distance on F defin-
ing the topology of F. We shall construct, inductively, a sequence of continuous map-
pings (s,),.n Of F in E satisfying the following inequalities for all ye F :

2 3y, u(s,(»)) < 27"
3) d(s,(», s,_,(») <271 (onlyifn = 1).

Suppose then that either » = 0, or n > 1 and that s,_, has been constructed.
Let y, € F; as u is surjective, the set u~!(y,) is non-empty, and for n > 1, we have
du'(»e), 5,-1(»9)) < 27"*! by the induction hypothesis. Therefore there exists
a point x, of E such that u(x,) = y, and for n > 1, d(x,, s,_,(»y)) < 27""'. As
the mapping s,_, is continuous, the set of points y of F which satisfy the inequalities
8(y, o) < 2 "and d(x,, 5,_,() < 27"*! is an open neighbourhood of y,. Hence
there exist an open covering (V,),,; of F and constant mappings s, ; of F in E which
satisfy the inequalities (2) and (3) in V, where one replaces s, by s, ;. As the space F
is metrisable, there exists a continuous partition of unity (f;),, that is locally finite
and subordinate to the covering (V) (GT. IX, § 4.5, th. 4 and § 4.4, cor. 1).
Forevery y € F, put s,(») = Y, f(»).s, (»). The mapping s, of F in E is continuous;

iel
as the open balls are convex in E and in F, the mapping s, satisfies the inequalities
(2) and (3) for all ye F.

From inequality (3) the mappings s,: F — E form a Cauchy sequence, for uniform
convergence. As E is complete, the sequence (s,),.y converges uniformly to a conti-
nuous mapping s : F — E (GT, X, § 1.6); formula (2) shows that u o s is the identity
mapping of F, thus s is a continuous section of u.

COROLLARY. — If L is a compact set in F, then there exists a compact set K in E
such that w(K) = L.
It is sufficient to put K = s(L), where s is a continuous section of u.

Remarks. — 1) The corollary to prop. 12 can also be deduced from th. 1 of I, p. 17
and prop. 18 of GT, 1X,§2.10.
2) We keep the notations of prop. 12. Let p be a continuous semi-norm on E;
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for all yeF, put gq(y) = inf p(x), so that g is a continuous semi-norm on F (II,
u(x)=y

p. 4). Let ¢ be a lower semi-continuous mapping of F in the interval ]0, + oo[
of R. We show that there exists a continuous section s of u such that pos < q + o.

Let s, be a continuous section of u (prop. 12) and N the kernel of u. Let y, € F,
then there exists z, € N such that p(s,(y,) + z,) < q(¥o) + d(»,). There exists an
open neighbourhood W of y, in F such that p(so(») + z,) < q(») + ¢(») for all
y € W. Hence there is an open covering (W), of F and constant mappings ,:F - N
such that p(sq(») + 4(») < q(») + () for all ye W,. As F is metrisable, there
exists a locally finite continuous partition of unity subordinated to the covering
(W)ier 52y (91 (GT, IX, § 4.5, th. 4 and § 4.4, cor. 1). The mapping s of F in E
defined by s(») = 50(») + Y. g«{(»).t,(p) fulfils the stated conditions.

iel
§ 5. SEPARATION OF CONVEX SETS

1. The Hahn-Banach theorem (geometric form)

THEOREM 1 (Hahn-Banach). — Let A be an open convex non empty set of the topo-
logical vector space E and let M be a non-empty linear variety which does not meet A.
Then there exists a closed hyperplane H which contains M and does not meet A.
By translation the problem can be reduced to the case 0 € A, so that A is absorbent.
Let p be the gauge of A (II, p. 20) so that A is the set of points x € E such that
p(x) < 1. On the other hand, let V be the vector subspace of E generated by M ;
thus M is a hyperplane in V that does not contain 0, and hence there is a unique
linear form f on V such that M is the set of points y € V for which f(y) = 1. The
hypothesis M n A = ¢ implies therefore that for all y e V for which f(y) = 1,
we have p(y) = 1; as f and p are positively homogeneous we have f(y) < p(»)
forall y € Vsuch that f(y) > 0;finally as p(y) > Oforall y e V, we see that f(3) < p(3)
for all y € V. By the analytical form of the Hahn-Banach theorem (II, p. 22, th. 1)
there exists a linear form 4 on E which extends f and is such that, for all x € E,
h(x) < p(x). Let H be the hyperplane in E with the equation A(x) = 1. Clearly
HANV =MandH n A = . On the other hand the complement of H in E contains
the open non-empty set A, therefore H is closedin E (I, p. 11, corollary).
Q.E.D.

Remarks. — 1) When 0 € M, th. 1 can be stated as follows : there exists a continuous
linear form in E, such that g(x) = 0 in M and g(x) > 0 in A (11, p. 8, prop. 4).

2) If we apply theorem 1 to the case where E carries the finest locally convex topology
(I1, p. 25, Example 2), and if, for the sake of simplicity, we suppose that 0 € A, then we
get the following result (that superficially does not involve topology) : if A is an absor-
bent convex set in the real vector space E and if M is a non-empty linear variety that
does not meet A, then there exists a hyperplane H containing M and such that A lies
on one side of H. This result is not valid for every convex set A (I, p. 65, exerc. 5).
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2. Separation of convex sets in a topological vector space

DEFINITION 1. — T'wo non-empty sets A, B of a real topological vector space E are said
to be separated by a closed hyperplane H if A is contained in one of the closed half-
spaces determined by H and B is contained in the other closed half-space.

DEFINITION 2. — Two non-empty sets A, B of a real topological vector space are
said to be strictly separated by the closed hyperplane H if A is contained in one of the
open half-spaces determined by H, and B is contained in the other open half-space.

PROPOSITION 1. — Let A be an open non-empty convex set and let B be a non-empty
convex set in a real topological vector space E ; if A does not meet B then there exists
a closed hyperplane that separates A from B.

For the set C = A — B is open, convex (II, p. 9, prop. 7) and non-empty, also
0 ¢ C. By theorem 1 of I, p. 36, there exists a continuous linear form f # 0 on E
such that f(z) > 0 in C. Then, for all x € A, and y € B, we have f(x) > f(y). Write
o = Jicg{f(x); o is finite and we have f(x) > o for all xe A and f(y) < o for all

y € B; the closed hyperplane H with the equation f(z) = o separates A from B.

Remarks. — 1) The hyperplane H does not meet A (II, p. 15, prop. 1; if A and B are
two convex non-empty open sets that do not meet then there exists a closed hyper-
plane that separates A strictly from B.

2) However, when B is not open, it is not necessarily the case that there exists a
closed hyperplane that separates A strictly from B, even if E is of finite dimension,
and even if A does not meet B (II, p. 78, exerc. 12).

DEFINITION 3. — For a subset A of a vector space E, a hyperplane H is called a support-
hyperplane of A, if H contains at least one point of A and all the points of A lie on the
same side of H.

Let f be a linear form on E that is not identically zero; to say that the hyper-
plane of the equation f(x) = a is a support hyperplane of A means that o is either
the smallest or the largest member of the set f(A) = R. In other words, there exists
a support hyperplane of A parallel to the hyperplane of equation f(x) = 0, if, and
only if, one of the bounds of the set f(A) is finite and belongs to f(A).

PROPOSITION 2. — Let A be anon-empty compact subset of a topological vector space E.
For every closed hyperplane H in E, there exists a support hyperplane of A parallel to H.

For, if f(x) = v is an equation of H, where f is a continuous linear form in E,
the restriction of f to A is continuous, therefore bounded and attains its bounds
in A (GT, IV, § 6.1, th. 1).

This demonstrates that there exist one or two support hyperplanes of A parallel
to H: the first case can only arise when A is completely contained in a hyperplane
parallel to H.

PROPOSITION 3. — In a topological vector space E, let A be a closed convex set with
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a non-empty interior. Then every support hyperplane of A is closed and every frontier
point of A belongs to at least one support hyperplane of A.

Every support hyperplane of A is closed, since all the points of A are on the same
side of the hyperplane (II, p. 15, prop. 17). Also if x, is a frontier point of A, then
x, does not belong to the open non-empty convex set ,&; after th. 1 of II, p. 36 there
exi%ts a hyperplane H that contains x, and does not meet A. As A is the closure

of A (Il, p. 14, cor. 1 to prop. 16), it follows from prop. 17 of II, p. 15 that H is a
support hyperplane of A.

3. Separation of convex sets in a locally convex space

PROPOSITION 4. — Let A be a closed non-empty convex set in a locally convex space E
and let K be a compact non-empty convex set in E, that does not meet A. Then there
exists a closed hyperplane H that strictly separates A from K.

For there exists an open convex neighbourhood V of 0 in E such that A + V
and K + V do not meet (GT, II, § 4.3, prop. 4). As A + V and K + V are convex
and open in E, prop. 1 of I, p. 37 shows that there exists a closed hyperplane H
that strictly separates A + V from K + V, and a fortiori A from K.

Remark. — In a Hausdorff locally convex space E, let A and B be two closed non-empty
convex sets that are disjoint, if E is finite dimensional then there exists a closed hyper-
plane that separates A from (II, p. 78, exerc. 13); but this conclusion is not necessarily
true when E is of infinite dimension (II, p. 78, exerc. 10 and 11).

COROLLARY 1. — In a locally convex space, every closed convex set A is the inter-
section of the closed half-spaces which contain it.

In fact, for every point x ¢ A, there exists a closed hyperplane that separates x
strictly from A (using prop. 4).

COROLLARY 2. — In a Hausdorff locally convex space, every compact convex set A
is the intersection of the closed half-spaces which contain it and which are determined
by support hyperplanes of A.

For, let x, ¢ A; {x,} is closed, therefore there exists a closed hyperplane H which
separates x,, strictly from A (prop. 4); let f(x) = a be an equation of H (f a conti-
nuous linear form) and suppose that f(x) > o for all xe A. If we put y = inll; f(x),

the half-space defined by f(x) > y contains A, is determined by the support hyper-
plane of equation f(x) = vy, and does not contain x,; whence the corollary.
It is possible that a closed convex set that is not compact and has no interior point,

in a locally convex space, does not have any closed support hyperplane (11, p. 86, exerc.
18 : ¢f. also V, p. 71, exerc. 11).

COROLLARY 3. — In a locally convex space, the closure of each linear variety M is
the intersection of the closed hyperplanes that contain M. .
For all x¢ M, let H be a closed hyperplane that separates x strictly from M;
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thus M is parallel to H; the closed hyperplane H,, containing M and parallel to H
does not contain x. The corollary follows.

COROLLARY 4. — Let C be a closed convex set in a locally convex space E. A subset
A of E is contained in C, if, and only if, for every real valued continuous affine function
u in E such that u(x) = 0 for all x in C, we have u(y) = 0 for all y in A.

The condition is obviously necessary. Conversely we show that it is sufficient;
if a point x € A is not contained in C, there exists a closed hyperplane of equation
f(2) = o separating x strictly from C; if we suppose for example that f(x) < a,
then the continuous affine function u = f — o contradicts the hypotheses.

COROLLARY 5. — In a locally convex space E, the closure of each convex cone C of
vertex 0 is the intersection of closed half-spaces containing C determined by closed
hyperplanes that pass through 0.

For C is a convex cone of vertex 0 (I1, p. 13, prop. 14). For x ¢ E, there exists
a closed hyperplane H that separates x strictly from E(prop. 4). Itis now just necessary
to apply the following lemma :

Lemma 1. — If a cone A, with vertex 0, is contained in an open half-space determined
by a hyperplane H, then it is contained in a closed half-space determined by a hyper-
plane H,, that is parallel to H and passes through 0.

Let f(z2) = o with o < 0 be an equation of H, so that f(z) = 0 is the equation
of H,. If there exists z € A such that f(z) < 0, then there would exist A > 0, such that
J(Az) = a, and as Az € A, this would contradict the hypothesis.

4. Approximation to convex functions

PROPOSITION 5. — Let X be a closed convex set in a locally convex space E. Then
every lower semi-continuous convex function f defined in X is the upper envelope of a
family of functions that are the restrictions to X of continuous affine linear functions
in E.

For, the set A = E x R of points (x, ?) such that x e X and ¢ > f(x) is convex
(I, p. 17, prop. 19) and closed, since the function (x, 7) — f(x) — t is lower semi-
continuous. Then let x be any point of X and let a € R be such that a < f(x). By
cor. 1 of I, p. 38, there exists a closed hyperplane H in E x R, that contains (x, a)
and does not meet A. Every linear continuous form on E x R being of the form

(z,t) > u(z) + \t,

where A € R and u is a continuous linear form on E, it follows that H has an equa-
tion of the form u(z) + At = o, and as H contains (x, a) we have o = u(x) + Aa.
Now the point (x, f(x)) € A does not belong to H and therefore A # 0. Dividing
by — A, if necessary, we can write the equation of H as ¢t — a = u(z — x). As
f(x) —a > 0, we have, therefore, f(2) > u(z— x) + a for all z € X and this proves
the proposition.
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Remarks. — 1) Itfollows from prop. 5 that f is the upper envelope of a directed increas-
ing family of functions that are the restrictions to X of functions which are continuous
and convex in E.

2) Suppose further that X is a closed convex cone with vertex 0 and that f is posi-
tively homogeneous. Then f is the upper envelope of a family of functions which are
the restrictions to X of continuous linear forms in E. For, let (4,) be a family of conti-
nuous affine linear functions in E of which the restrictions to X have f as their upper
envelope. Put u, = v, + A,, where A € R, and where v, is a continuous linear form
in E. We have A, = #,(0) < f(0) = 0. On the other hand, if x e X, we have for every
p >0,

BT 4 0,0 = p T (A + 0(px) = p T g (ux) < p T f () = (%)
therefore u, < v, < f in X so that f is the upper envelope of the v,.

3) The restriction to X of a continuous affine fonction in E is a function that is
affine in X (i.e. both concave and convex II, p. 17); but it may be the case that there
exist continuous affine functions in a compact convex set X < E, that are not the res-
trictions to X of continuous affine functions in E (I, p. 78, exerc. 11, ¢)). However :

PROPOSITION 6. — Let f be an upper semi-continuous affine function in a compact
convex set X, of the Hausdorff locally convex space E. Let L be the set of restrictions
to X of continuous affine functions in E ; the set L' of the h € L such that h(x) > f(x)
for all x e X, is then decreasing directed and its lower envelope is equal to f.

We may suppose that X is non-empty. Let u, v be two elements of L, such that
u(x) > f(x) and (x) > f(x) for all x € X, and let b be a constant that is an upper
bound of # and v. Let U (resp. V) be the compact convex set of points (x, £) of X xR
such that u(x) < ¢t < b (resp. v(x) < t < b), and let F be the set of (x, 1) e X x R
such that 7 < f(x); F is convex and closed in X x R. The convex envelope K of
U u V does not meet F, since U U V is contained in the set of (x, ) € X x R such
that f(x) < ¢, a set which is convex and does not meet F. As K is compact (IL, p. 14,
prop. 15), we can separate F strictly from K by a closed hyperplane H in E x R.
For every x € X, the hyperplane H separates (x, f(x)) strictly from (x, b), and therefore
meets the line {x} x R in a single point w(x); thus H is the graph of a continuous
affine function whose restriction w to X is a member of L, that is a lower bound
for v and v and that satisfies the inequality w(x) > f(x) for all x € X. This proves
that the set L' is decreasing directed. Prop. 5 of II, p. 39, applied to — f shows that
f is the lower envelope of L.

COROLLARY. — Let f be a continuous affine function in X ; then there exists a sequence
(h,) of elements of L which converges uniformly to f in X.

For, prop. 6 and Dini’s theorem (GT, X, § 4.1, th. 1) show that for all n there
exists h,eL such that f<h, < f+ 1/n.

§ 6. WEAK TOPOLOGIES

1. Dual vector spaces

Let F and G be two real vector spaces and let (x, y) — B(x, y) be a bilinear form
on F x G. We say that the bilinear form B puts the vector spaces F and G in duality,
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or that F and G are in duality (relative to B). Recall that we say that xe Fand y e G
are orthogonal (for the duality defined by B) if B(x, y) = 0; we say that a subset M
of F and a subset N of G are orthogonal if every x € M is orthogonal to every y e N
(A, IX, § 1.2).

We say that the duality defined by B is separating in F (resp. in G) if it satisfies
the following condition :

(D)) For every x # 0 in F, there exists y € G such that B(x, y) # 0.
(resp.

(Dy) For every y # 0 in G, there exists x € F such that B(x, y) # 0.)

The duality defined by B is said to be separating if it is both separating in F and
in G. For this to be so, it is necessary and sufficient that the bilinear form B should
be separating in the sense of A, IX, § 1. 1. More precisely we have the following result :

PROPOSITION 1. — Let F, G be two real vector spaces and B a bilinear formon F x G.
Let

dy:y—B(., ),

sgix— B(x, .)

be linear mappings of G in the dual F* of F and of F in the dual G* of G, associated
respectively to the right and to the left of B (A, IX, § 1.1). Then B puts F and G in
a duality separating in G (resp. in F), if and only if dy (resp. sy) is injective.

When F and G are put in separating duality by B, we often identify F (resp. G)
with a subspace of G* (resp. F*) by means of sy (resp. di). When we consider F
(resp. G) as a subspace of G* (resp. F*) without specifying how this identification
is to be made, we are always using the preceding identifications; the bilinear form
B is then identified with the restriction to F x G of the canonical bilinear form :

(x*, x) > (x, x*)  (resp. (x, x*) > {x, x*)).

Examples. — 1) Let E be a vector space and let E* be its dual. The canonical bilinear
form (x, x*) = (x, x* ) on E x E* (A, II, § 2. 3) puts E and E* in separating duality :
for (Dy;) is true because of the definition of the relation x* # 0, and we know on
the other hand, that for all x # 0 in E, there exists a linear form x* € E* such that
{x, x*> # 0 (A, I, § 7.5, th. 6), which proves (D,); the identifications of E with
a subspace of E** is made here by the canonical mapping ¢ (Joc. cit.).

When E is of finite dimension, the only subspace G of E* that is in separating
duality by the restriction to E x G of the canonical bilinear form, is the space E*
itself ; for, E being then canonically identified with E** (loc. cit.), if we had G # E*,
there would exist a # 0 in E such that {(a, x*> = 0 forall x* e G (A, 11, § 7.5, th. 7),
which contradicts the hypothesis.

2) When E is an infinite dimensional vector space, and E’ is a vector subspace
of E*, the duality between E and E’ defined by the restriction to E x E’ of the cano-
nical bilinear form is always separating in E’ ; it can be separating in E even if B’ # E*.
The most important case occurs where E is a topological vector space.
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DEFINITION 1. — By the dual of a topological vector space E, we mean the subspace
E’ of E*, the dual of the vector space E, formed by the continuous linear forms on E.

When E is a Hausdorff locally convex space, the duality between E and its dual
E’ is separating : this follows from the Hahn-Banach theorem (II, p. 24, cor. 1) that
for every x # 0 in E, there exists x’ € E’ such that {x, x'> # 0.

Remarks. — 1) When E is a topological vector space, the dual E* of the vector space E
will be called the algebraic dual of E to avoid confusion. We note also that E* is the
dual of the topological vector space obtained by giving E the finest locally convex
topology (1L, p. 25, Example 2).

2) The dual E’ of a topological vector space does not itself carry a topology, unless
this is expressly stated.

3) If F and G < F* are in separating duality by the canonical bilinear form, then
this is also true of F and G, for every subspace G, of F* such that G = G;,.

2. Weak topologies

DEFINITION 2. — Let F and G be two vector spaces put in duality by the bilinear form B.
The coarsest topology on F that makes all the linear forms B(., y): x — B(x, y) conti-
nuous, where y varies in G, is called the weak topology on F defined by the duality
between F and G, and we denote it by o(F, G).

Similarly we define the weak topology o(G, F) on G, interchanging F and G in
definition 1; this possibility of interchanging F and G applies to all the results and
definitions that follow in this paragraph.

We use the adjective « weak » and the adverb « weakly » to denote properties relative
to a weak topology o(F, G) provided there is no possibility of confusion. We shall
speak, for example, of « weak convergence » and « weakly continuous functions » etc.

When G = F*, the notation o(F, G) will always denote the weak topology defined
by the duality corresponding to the restriction to F x G of the canonical bilinear
form (x, x*)— {x, x*>.

Without extra hypotheses on F and G, we often write { x, y ) for the value B(x, y)
of the bilinear form B at (x, y), provided there is no ambiguity ; we shall adopt this
convention in the rest of this paragraph.

A vector space F carrying a weak topology of o(F, G) will be called a weak space.

A weak topology o(F, G) is locally convex (II, p. 26, prop. 4); more precisely,
it is the inverse image of the product topology of RS by the linear mapping
¢:x > (X, ¥)),eq of F in RE. It is defined by the set of semi-norms x — |{x, y )|
when y varies in G (IL, p. 5). For every a > 0, and every finite family (»,); <;<, of
points of G, let W(y,, ..., »,; o) be the set of the x € F such that |{x, y;> < «a
for 1 < i < n; these sets (for o, n and y; arbitrary) form a fundamental system of
neighbourhoods of 0 for o(F, G). Note that W(y,, ..., y,; @) contains that vector
subspace of F, of finite codimension, which is defined by the equations {(x, y;> = 0
forl <ign
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PROPOSITION 2. — The weak topology o(F, G) is Hausdorff if and only if the duality
between F and G is separating in F.

This is a particular case of II, p. 3, prop. 2.

PrOPOSITION 3. — Let F and G be two real vector spaces in duality. Every linear
Sformon F, that is continuous for o(F, G), can be written as x — {x, y > for some y € G.
The element y € G is unique when the duality is separating in G.

For, to say that the linear form f on F is continuous for o(F, G) means that
there exists a finite set of points y; e G (1 < i < n) such that, for all x in F,
|f(x)] < sup [<x,y;>| L p. 6, prop. 5). The n relations {x, y;> =0 (1 < i < n)

1<i<n
imply therefore f(x) = 0, and hence (A, 11, § 7.5, cor. 1), there exists a linear combi-
nation y = Z A;y; such that f(x) = (x, y) for all x € F. The uniqueness follows
i=1

from (Dy).

In other words, when the duality is separating in G, and F has the topology
o(F. G), then we can identify G canonically with the dual of F for this topology
(I, p. 42, def. 1).

COROLLARY 1. — A family (a,) of points of F is total for the topology o(F, G) if, and
only if, for every y # 0 in G, there exists an index 1 such that {a,,y» # 0.

For using prop. 3 and I, p. 13, th. 1, the property expresses the fact that for o(F, G)
no closed hyperplane contains all the a, ; the corollary follows therefore from cor. 3
of 11, p. 38.

COROLLARY 2. — A family (a) of points of F is topologically independent for the
topology o(F, G), if, and only if, for every index 1, there exists an element b € G
such that : {a, by # 0 and {a., b > =0 for all x # 1.

This means, that for all 1, there exists a closed hyperplane in o(F, G), which con-
tains all the g, with index x # 1 but does not contain q,.

COROLLARY 3. — Let G, and G, be two vector subspaces of F*, in duality with F
(for the restriction of the canonical bilinear form). Then o(F, G,) is finer than o(F, G,)
if and only if G, = G,.

The condition is obviously sufficient ; conversely, if 6(F, G,) is finer than o(F, G,),
then every linear form that is continuous for o(F, G,) is also continuous for o(F, G,),
hence G, < G, by prop. 3.

COROLLARY 4. — Let G be a vector subspace of the dual F*, of the vector space F.
Then F and G are in separating duality (for the canonical bilinear form) if, and only
if, G is dense in F* in the topology o(F*, F).

This follows from cor. 1.
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3. Polar sets and orthogonal subspaces

DEFINITION 2.— Let F and G be two(real) vector spaces in duality. For every set M of F
we call the polar of M, the set of those y € G for which {x,y> = — 1 for all xe M.
(For complex vector spaces, cf. I, p. 64.)

If G,, G, are two subspaces of F* such that G, = G,, then the polar of M in G,
is the intersection of G, with the polar of M in G,.

When there is no danger of confusion we use M° to denote the polar, in G, of the
subset M of F. Similarly we define the polarin F ofa setin G.

Obviously, for every scalar A # 0 and all M = F, we have (AM)° = A~! M°. The
relation M = N < F implies N° = M°; if N absorbs M then M° absorbs N°; for
every family (M,) of sets of F, the polar set of U M, is the intersection of the polar

sets Ms. Since, for y € M, the closed half-spaces defined by therelations (x, y)> > — 1
contain 0 and M, we see that if M, is the convex envelope of M U {0}, then M] =M".
Clearly M = M°°. Hence

(MOO)O — MQ = (MC)CO — (MQO)O

i.e. M°°° = M° (¢f. S, 111, § 1.5, prop. 2).
If M is a symmetric subset of F, M° is a symmetric subset of G ; M° is also in this
case the set of y e G such that |[{x, y>| < 1 for all xe M.

PROPOSITION 4. — (i) For any set M of F, the polar set M° is a convex set that con-
tains 0 and is closed in G for the topology o(G, F).

(i) If M is a cone of vertex 0, then M° is a cone of vertex 0 and it is also the set
of ye G such that {x,y> = 0 for all xe M.

(iii) If M is a vector subspace of F, then M° is a vector subspace of G, and it is
also the set of ye G such that {x, y» = 0 for all xe M.

(1) Since the linear forms y+ (x, y) are continuous for o(G, F) the statement
follows immediately from the definitions and the fact that a half-space determined
by a hyperplane is convex.

(i) If M is a cone with vertex 0 and if xe M, y e M°, then as Axe M, for all A > 0,
we have (Ax, y> > — 1,ie. A{x, y> = — 1. Since this holds for all A > 0, it follows
that {x, y> = 0, and (ii) is proved.

(ii1) Similarly, if M is a vector subspace of F, the relations xe M, y e M° imply,
this time, that A{x, y» = — 1 for al/l real A which is possible only if {x, y> = 0.

If M is a vector subspace of F we say that M° is the orthogonal of M in G ; if G — F*,
then M is the intersection of G, and of the subspace orthogonal to M in the algebraic
dual F* of F (A, 11, § 2.4, def. 4).

For a vector subspace M of F and a vector subspace N of G we say that M and N
are orthogonal if M <= NP© (or, equivalently, if N = M°).

THEOREM 1 (The bipolar theorem). — Let F, G be two real vector spaces in duality.
For every subset M of F the polar set M°° in F of the polar set M° of M in G is the
closed convex envelope ( for o(F, G)) of M U {0}.
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We have seen that we need only consider the case where M is convex and 0 € M.
Denote the closure, in topology o(F, G) of M by M, then M is a convex set in F;
prop. 4 of II, p. 44 shows that M°° > M. On the other hand if a € F does not belong
to M then there exists a closed hyperplane H in F which separates a strictly from M
(II, p. 38, prop. 4); since H does not contain 0, there exists y € G such that H has
the equation (x, y> = — 1 (II, p. 43, prop. 3); thus (x, y> > — 1 for all xe M
and {(a, y» < — 1. This implies that y e M° and a ¢ M°°, and the relation M** = M
follows.

COROLLARY 1. — For any family (M,) of closed convex sets of F (in the topology
o(F, G)), each containing 0, the polar set of the intersections M = ﬂ M, is the convex
closed envelope ( for o(G, F)) of the union of the M.

For, if N is this convex closed envelope, then

N°=AM=NM, =M

whence N = N°° = M°.
The conclusion of cor. 1 does not necessarily hold if the M, are not convex.

COROLLARY 2. — For every vector subspace M of F, the subspace M°° is the closure
of M in the topology o(F, G).

Remark. — Every neighbourhood of 0 in G in the topology o(G, F) contains
a neighbourhood V defined by a finite number of inequalities of the form
|[<x;, ¥>| <1 (1 < i< n), where the x; are arbitrary points of F. If A is the sym-
metric convex envelope of the set of the x;, then V is the polar set A° of A in G. We
can say that the polars in G of finite symmetric sets in F (or of their convex envelopes)
form a fundamental system of neighbourhoods of 0 in G for o(G, F). If the duality
is separating in F, these convex envelopes are compact for o(F, G) (II, p. 14, cor. 1
of prop. 15), and of finite dimensions. Conversely every compact, convex set of finite
dimension C in F (with the o(F, G) topology) is contained in the convex envelope
of a finite subset of F. For, let M be a vector subspace of finite dimension containing C.
If (¢;); <; <, 1s @ basis of M, we can suppose that C is contained in the closed paralle-
lotope centre 0 and constructed on the vectors of the basis ¢; (GT, VI, § 1.3); now

it is immediate that this parallelotope is the convex envelope of the points ) ge;
i=1
with g, = + 1.
Thus we can say that (if o(F, G) is Hausdorff) the polars of finite dimensional,
convex, compact sets in F (for o(F, G) or for any Hausdorff locally convex topology
finer than o(F, G) on F) form a fundamental system of neighbourhoods of 0 for

o(G, F).

COROLLARY 3. — Let J be the topology of a locally convex space E and let E' be
its dual (11, p. 42, def. 1).
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(i) The closed convex sets in E are the same for the topology 7 and for the weak
topology o(E, E’).

(ii) For every subset M of E, the polar set M°° in E of the polar set M° of M in
E’, is the convex closed envelope of M u {0} for the topology T .

Clearly, (i1) follows from (i) and th. 1. From the definition of the dual E’, it follows
from II, p. 43, prop. 3 that the continuous linear forms on E for the topology 7
are the same as the continuous linear forms for o(E, E’). The closed half-spaces in E
are therefore the same for  and for o(E, E’) (I, p. 15, prop. 17) and the assertion
(i) follows therefore from II, p. 38, cor. 1.

4. Transposition of a continuous linear mapping
In this No., we suppose that (F, G) and (F,, G,) are two vector spaces in duality.

PROPOSITION 5. — Let u be a linear mapping of F in F,. The following properties
are equivalent :

a) u is continuous for the weak topologies o(F, G) and o(F,, G,);

b) there exists a mapping v:G, - G such that

(1) <u(y)’ Z1> = <y’ U(Zl)>

for all yeF and ze G;.

If these properties hold and if the duality between ¥ and G is separating in G, then
the mapping v satisfying (1) is unique, and v is linear.

If u is continuous for the weak topologies, then, for all z, e G,, the linear form
v {u(y), z, > on F is continuous for o(F, G), thus (IL, p. 43, prop. 3) can be written
as y— {y, v(z,)) with v(z,) € G, which shows that a) implies b). Conversely, if b)
is true, for all z, € G,, the linear form

Y=Ly, 0(zy)) = <u(y), 2,

is continuous for o(F, G) : it follows from the definition of weak topologies that
u is continuous for o(F, G) and o(F,, G,;) (I, p. 10, cor. 1). The uniqueness of v
follows from (D;;) and this uniqueness implies that v is linear.

Remark. — Suppose that the duality between F and G is separating in G and that
the duality between F; and G, is separating in G,. If we identify G and G, with
subspaces of F* and F¥ respectively, the conditions @) and b) are equivalent to
‘u(G,) = G; v is the restriction of the transpose ‘u of u (A, 11, § 2.5) to G,.

We say, simply (when there is no chance of confusion) that v is the transpose
of u (relative to the duality on the one hand between F and G and on the other hand
between F, and G,) and we again use ‘u to denote it.

COROLLARY. — Suppose that the duality between F and G is separating in G. If u is
a linear mapping of F in F, that is continuous for o(F, G) and o(F,, G,), then its
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transpose is a linear mapping of G| in G, that is continuous for o(G,, F,) and (G, F).
Further if the duality between F| and G, is separating in F, then '('u) = u.
It is sufficient to exchange F and F, with G and G, in prop. 5.

PROPOSITION 6. — Suppose that the duality between F and G (resp. F, and G,) is
separating in G (resp. F,). Let u be a linear mapping of F in F, that is continuous
for o(F, G) and o(F,, G,). Let A be a set in F and A, a set in F, ; then :

(i) We have (w(A))° = 'u”'(A°).

(i) We have 'u(A) = (u™"(A)))°; further, if A is closed, (for o(F,, G,)) convex,
and contains the origin, then we have 'u(A3) = (u™'(A)))°.

Let z, € G,, the relation z; € (u(A))° is equivalent to {u(y),z,> = — 1 for all
y € A, and the relation “u(z,) € A° is equivalent to {y, 'u(z,)> = —1 for all ye A
and our assertion (i) follows using (1). Next interchanging « and ‘u and applying (i)
to the set A] of G, we get

) (u(AD) = u YA°) > u Y (A))

from which, on taking polars
(w(AD)” = (™ '(A)) -

We have (‘u(A7)) = (‘u(A3))°° by the bipolar theorem (II, p. 44, th. 1); the final
statement follows from (2) and the bipolar theorem since then Aj° = A, and ‘u(AY)
is convex and contains the origin.

COROLLARY 1. — With the notations of prop. 6, the relation u(A) = A, implies
'uw(A}) = A°; if further A is convex, closed (for o(F,, G,)) and contains the origin,
then these two relations are equivalent.

In fact, the relation u(A) — A, equivalent to A = u~!(A,), therefore implies

WA = UAT) = (W (A) = A”
and conversely the relation ‘u(Aj) = A° implies
A°° = ('u(A9))° = u" Y(AS°)
from (2). When A, = A{°, we deduce that A < u~1(A,).

COROLLARY 2. — Let u be a linear mapping of F in F, that is continuous for o(F, G)
and o(F,, G,). We have then

3) Ker('u) = (Im(u))°,
4) Im(‘u) = (Ker(u))® .

Suppose that the dualities between F and G and between F, and G, are separating ;
then u(F) is dense in F, (for o(F,, G))), if and only if 'u is injective.
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Apply prop. 6 with A = F and A, = {0}, using the fact that the weak topologies
o(G, F) and o(F,, G,) are Hausdorff. The last assertion results from (4), inter-
changing u and ‘u.

5. Quotient spaces and subspaces of a weak space

Let F, G be two real vector spaces in duality. Let M be a vector subspace of F,
and consider the subspace N of the orthogonal M° in G; if y,, y, are two points
of G that are congruent mod. N then <{x, y, >=<x, y,» for all xe M. For each
class y mod. N, denote the common value of {x, y> when y varies in y by {(x, y>;
clearly (x, y) — (x, p> is a bilinear form on M x (G/N).

PROPOSITION 7. — Let M be a vector subspace of F and N a vector subspace of G
where F and G are two vector spaces in duality. Suppose that M and N are orthogonal
(which is equivalent to saying that N < M°®, or M < N°). The vector spaces M and
G/N are then in duality by the bilinear form (x,y) — {x, y>.

(i) The topology o(M, G/N) for this duality is induced by o(F, G) (and in parti-
cular we have o(F, G) = o(F, G/F°)).

(ii) The topology o(G/N, M) for this duality is coarser than the quotient topology
of o(G, F) by N; these topologies are identical if and only if M + G° = N°.

(i) Every element of G/N is a class mod. N of an element of G; if z;, (1 < i < n)
are elements of G and z; (1 < i < n) is the class of z; in G/N then the set of y e M
such that [y, 2i>1 < afor1 < i < nisthe trace on M of the set of those x e F such
that |<x, z;>| < o for 1 < i< n; the conclusion follows from the definition of
neighbourhoods of 0 for the weak topology.

(i) Let p:G - G/N be the canonical surjection. We show that the quotient
topology J of o(G, F) by N is identical with 6(G/N, N°). As, for ze G, ye N°,
we have {y, p(z) ) = {J, z), itfollows that every neighbourhood of 0 for 6(G/N, N°)
is of the form p(V), where V is a neighbourhood of 0 for o(G, F) saturated for the
relation z — z'e N, therefore Z is finer than o(G/N, N°). Conversely let
U = W(y,, ..., ,5 &) be a neighbourhood of 0 in G for o(G, F), where y, e F for
1 < i< nanda > 0; we are going to see that for 1 < i < n, there exist elements
t; € N° such that if one puts U = W(z,, ..., t,; o), then p(U’) = p(U); this will
show that o(G/N, N°) is finer than J and therefore is actually identical with .
Now, let L be the vector subspace of F generated by N° and the y;, and denote
by P the complementary subspace of N° in L; it is of finite dimension, say m. Let
(x;); <j<m b€ a basis of P; the restrictions to N of the linear forms x> {x;, z)
are linearly independent, since otherwise there exists x # 0 in P such that (x, z)>=0
for all ze N, that is to say x € N°, which contradicts the definition of P. Thus we
conclude that for all z’' € G, there exists se N such that {(x;, z') = {(x;, s) for
allj;if z2 = z + s, we have {(x, z) = 0for all x € P. This being so, put y;, = ¢, + w;,
where ;e N° and w; e P; we have (y;,z) = {¢t;,z) =<¢,z') for 1 < i < n;
therefore, for all z’ € U’, there exists z e U such that z’ — z e N, that is to say we
have p(U’) < p(U).
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Returning to the case where M is any subspace of N° note that evidently
o(G/N, M) = o(G/N, M + G°); further, from prop. 3 of II, p. 43, we see that,
if y € N° is such that the linear form Z+ (y, > is continuous for o(G/N, M),
then necessarily ye M + G°. We conclude that the condition M + G° = N° is
necessary and sufficient for the quotient topology  to be equal to o(G/N, M).

Remark. — The duality between M and G/N (where M and N are two orthogonal
subspaces) is separating in M, if and only if M n G° = {0}; it is separating in
G/N, if and only if N = M°.

COROLLARY 1. — Suppose that the duality between F and G is separating in F. For
a vector subspace M of F the topology o(G/M°, M) is identical with quotient topology
of o(G, F) by M°, if and only if M is closed for the topology o(F, G).

This follows from prop. 7 putting N = M°, and recalling that M°° is the closure
of M for o(F, G) (II, p. 45, cor. 2).

COROLLARY 2. — If M is of finite dimension n and the duality is separating in F,
then M° is of codimension n in G. If M is closed for o(F, G) and of finite codimension n
and if the duality is separating in G, then M° is of dimension n.

For, G/MP° is in separating duality with M ; if M is of dimension #n, the same is
therefore true of G/M° (IL, p. 41, example 1). If M is closed, F/M = F/M®° is in
separating duality with M°; if F/M is of dimension #, it is therefore the same for M°
(I, p. 41, example 1).

CoRrOLLARY 3. — Let (F, G), (F,, G,) be two pairs of spaces in separating duality
and let u be a linear mapping of F in F, which is continuous for o(F, G) and o(F,, G,).
Then u is a strict morphism of ¥ in F, if and only if, Im('w) is a closed subspace in G
for o(G, F).

Let N = Im(u) = G; we know that N° = Ker(») in F (I, p. 47, formula (3)).
Let p:F — F/N° be the canonical mapping so that u factorises as

u:F 5 F/N° 5 F, |

where w is injective. The spaces F/N° and N are in separating duality and by for-
mula (1) of II, p. 48, we have {w(), z,; > = {», 'u(z,)) for all p e F/N° and z, € G,.
This relation shows that w is an isomorphism of F/N°, carrying the topology
o(F/N°, N), on u(F) with the topology induced by o(F,, G,). The conclusion results
therefore from cor. 1 and the definition of a strict morphism.

COROLLARY 4. — Let (F, G), (F,, G,) be two pairs in separating duality, and let u
be a linear mapping of F in F, that is continuous for o(F, G) and o(F,, G,). Then u
is surjective, if and only if, 'u is an isomorphism of G, (with topology o(G,, F,)) on
‘u(G,) with the topology induced by o(G, F).
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For, to say that u(F) = F, is equivalent to saying that u(F) is closed and every-
where dense in F, for o(F,, G,); cor. 4 follows then from cor. 3 applied to ‘u and
of II, p.47, cor. 2.

Remarks. — 1) Let (F{, Gy), (F,, G,), (F;, G;) be three pairs of spaces in separating
duality and consider a sequence of two linear mappings

(%) F, 4 F, %F,

that are continuous for the weak topologies corresponding respectively with G,, G,,
G, ; we consider the sequence of transposed mappings

6) G,%G,"G,.

Itis clear that(v o u) = ‘u o 'v, therefore the relation v o u = 0 is equivalent to ‘u o 'v = 0.
The sequence (5) is exact if, and only if, the three following conditions are satisfied

a) 'uo'v =0,

b) Im('v) is dense in Ker('u);

¢) 'u is a strict morphism of G, in G,.

This follows in effect from cor. 3 of II, p. 499 and formulae (3) and (4) of II, p. 47.

2) It must not be thought that when u is a strict morphism of F in F,, then 'u is
necessarily a strict morphism of G, in G; in other words u can be a strict morphism
without u(F) being closed in F, for o(F,, G,). This is shown by the example where
F is a non-closed subspace of F, and G = G,/F°, u being the canonical injection.
Similarly, the fact that the sequence (5) is exact does not necessarily imply that (6)
is exact, however, if the sequence (5) is exact and if v is a strict morphism, then the sequen-
ce (6) is exact, by the remark 1 and by II, p. 49, cor. 3.

6. Products of weak topologies

PROPOSITION 8. — Let(F,, G)),, be a family of pairs of spaces in duality. Let F=] | F,

el

be the product space of the F, and G = @ G, be the direct sum of the G,. If, for all
el
x =(x)eF and all y = (y) € G, we write {x,y> = Z {x,, y.> (a sum which has
el

only finitely many non-zero terms) then the topology o(F, G) (relative to the bilinear
Sform (x, )+ {x, y>) is the product of the topologies o(F,, G,).

For, given a topology 7 on F ; in order that, forall y € G, thelinearform x— <{ x, y >
should be continuous for 7, it is necessary and sufficient, by the definition of { x, y >,
that each of the mappings x+— {prx, y, > should be continuous for , where 1
is arbitrary in I and y, in G,; but this means that each of the mappings pr, of F in
F, is continuous for 4 and for o(F , G,) (I, p. 10, cor. 1); this completes the demons-
tration.

el

Remark. — The duality between F and G is separating in F (resp. in G) if and only
if for all 1 e I, the duality between F, and G, is separating in F, (resp. in G)). If the
duality between F and G is separating in F (resp. G), then, in F (resp. G), the subspace
orthogonal to one G, (resp. F,), canonically identified with a subspace of G (resp. F)
is the subspace of the product of the F where k # 1 (resp. the direct sum of the G,
such that x # 1).
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COROLLARY 1. — Let F and G be two vector spaces in separating duality. If the
space F (with o(F, G)) is the direct topological sum of two subspaces M, N then the
space G (with o(G, F)) is the direct topological sum of the subspaces M°, N° orthogonal
respectively to M and N.

For let p:F —» M, q:F — N be the projectors corresponding to the decomposi-
tion of F into the direct sum of M and N; in these conditions the mapping
(p,q):F - M x N is a topological isomorphism. If M; = G/M°, N, = G/N°,
then the topologies on M and N (induced by that of F) are identical with c(M, M,),
o(N, N,) respectively (II, p. 48, prop. 7). The mapping ‘(p, 9):M; x N, - G is
a topological isomorphism when we give M, N, and G the topologies o(M,, M),
o(N,, N) and o(G, F), by prop. 8. Under this mapping M, (resp. N,) has as its
image in G the subspace N° (resp. M°), and the topology c(M;, M) (resp. o(N,, N))
has as its image the topology induced on N° (resp. M°) by o(G, F), from which the
corollary follows.

COROLLARY 2. — Let (e),.; be a basis of the vector space F with dual F*, and let
u:RY > F be an (algebraic) isomorphism defined by this basis. Then the transposed
mapping ‘u:F* - R' is a topological isomorphism when F* carries the topology
o(F*, F) and R' the product topology.

We know (A, II, § 2.6, prop. 10) that ‘u is a bijection, and that if for a x* € F*,
we put (e, x*)» = &* for all te I, then the image ‘u(x*) is the vector (£¥) of R/,
so that, for all x = ) &e in F, we have {(x, x*) = ) E&* The corollary then

1 el

follows from this formula and prop. 8.

7. Weakly complete spaces

PROPOSITION 9. — Let F, G be two vector spaces in separating duality. If F is the
completion of the space F for the topology o(F, G) and if we consider the canonical
injection j:F — G*, where G* has the topology o(G*, G), then the continuous exten-
sion j:F — G* of j is an isomorphism of topological vector spaces.

For, we see that G* endowed with o(G*, G), is Hausdorff and complete (II,
p. 51, cor. 2); if we identify F by j with a vector subspace of G* then the topology
induced on F by 6(G*, G) is o(F, G), and F is dense in G* in the topology o(G*, G)
(I, p. 43, cor. 4); from which the proposition follows.

Vector spaces that are complete for a weak topology are therefore the duals G*
of arbitrary vector spaces G endowed with o(G*, G); after 11, p. 51, cor. 2, they are
(topologically) isomorphic to products R" of real lines. To simplify the language, we
shall call them products of lines (for an intrinsic characterisation of these spaces see
II, p. 85, exerc. 13 and II, p. 81, exerc. 1).

We note that on G¥*, the o(G*, G) topology is minimal among the weak topologies
that are Hausdorff; for, a weak topology that is coarser than o(G*, G) is necessarily
of the form o(G*, H) where H = G (II, p. 43, cor. 3); but if H # G, then there
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exists a linear form x* € G* that is non null and is orthogonal to H (A, 1I, § 7.3,
prop. 8), therefore o(G* H) is not Hausdorff.

We deduce from this remark that, if F, G are two vector spaces, then a linear
bijection u:G* — F*, that is continuous for the topologies o(G*, G) and o(F*, F),
is necessarily bicontinuous.

PRrOPOSITION 10. — Let G be a real vector space and F = G* its dual with the topo-
logy o(G*, G).

(i) The mapping V +— V° is a bijection of the set of vector subspaces of G on the
set of closed vector subspaces of F.

(ii) Every closed vector subspace of F is a product of lines and has a topological
complement.

By the bipolar theorem (11, p. 45, cor. 2) V — V° is a bijection of the set of vector
subspaces V of G, closed for (G, G*) on the set of closed vector subspaces of F.
But, by definition, every linear form on G is continuous for o(G, G*), therefore
every vector subspace in G is closed, being defined by a system of equations
{y, y¥> = 0 (where y¥ e G*); this proves (i).

Now let W be a closed subspace of F; we have then W = V° with V = W° in G.
Let V' be a complement of V in G. We know that F = G* can be canonically iden-
tified with V* @ V’* and V'* identified with V° = W (A, 11, § 2.6, cor. to prop. 10);
further (II, p. 50, prop. 8) the topology o(G*, G) can be identified with the product
of the topologies o(V*, V) and o(V'*, V'); this proves assertion (ii).

Though, for the topology o(G, G*), every vector subspace of G is closed, we note that
if G is of infinite dimension then the topology o(G, G*) is not the finest locally convex
topology on G, every neighbourhood of 0 for o(G, G*) containing a vector subspace
of infinite dimension : it is however the finest of the weak topologies on G (11, p. 43,
cor. 3).

8. Complete convex cones in weak spaces

Lemma 1. — Let E be a Hausdorff weak space and C a proper cone with vertex 0
in E, that is complete for the uniform structure induced by that of E. Every continuous
linear form in E is then the difference between two continuous linear forms in E that
are positive in C.

Let E’ be the dual of E and F be the algebraic dual of E’, with the topology o(F, E’).
Let H = C° — C° be the vector subspace of E’ formed by the differences of linear
forms that are continuous in E and positive in C (II, p. 44, prop. 4). It is sufficient
to show that the orthogonal to H in F is {0} (I, p. 41, Example 1). Then let ae F
be orthogonal to H; as a is orthogonal to C°, it must belong to the bipolar of C
in F. But E is identifiable as a subspace of F, and since C is complete, thus closed
in F, we have a € C (I, p. 44, th. 1). Similarly a is orthogonal to — C° and therefore
ae — C. As C is proper, we have a = 0.

PROPOSITION 11. — Let E be a Hausdorff weak space, and C be a proper convex cone
with vertex 0 in E and which is complete in the uniform structure induced by that of E.
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Then there exists a set 1 and a continuous linear mapping u of E in the product space
R! with the following properties -

a) u is an isomorphism of C on u(C) for the uniform structures induced respectively
by those of E and of R\

b) We have u(C) = R, .

Further, if the uniform structure induced on C by that of E is metrisable, then we
can take T = N.

Let (f), be a family of continuous linear forms in E such that the finite sums of
pseudometrics of the form (x, y) — [f,(x — y)|on C x C define the uniform structure
of C. (If the structure is metrisable we can take I = N.) By lemma 1 we can suppose
further that each of the f is positive in C. Let u be the linear mapping x — (f,(x)),o
of E in RL It is clear that u is continuous and that u(C) = R . The restriction u|C
is a uniformly continuous mapping that is surjective from C on u#(C). Further if
x, y in C are such that f(x) = f(y)forallt € I, then x = y since the uniform structure
of C is Hausdorff; therefore u|C is bijective. Finally, if W is an entourage of the
uniform structure of C, then there exists a finite set J of I and a number € > 0 such
that the relations | f(x) — f(»)| < € for 1€ J imply (x, y) € W therefore u|C is an
isomorphism of C on u(C) for the uniform structures being considered.

COROLLARY 1. — Let E be a Hausdorff weak space and C a proper convex cone of
vertex 0 in E that is complete for the uniform structure induced by that of E. Then
the mapping (x, y)— x + y of C x C in C is proper.

Because of prop. 11, we can suppose that E = R' and that C = R, (GT, I, § 10. 1,
cor. 1 and 4). But then the mapping (x, y) — x + y of C x C in C is written as
(€D, (M) — (&, + n,, and we can restrict ourselves to proving that the continuous
mapping f:(§, nN)—& + n of R, x R, in R, is proper (GT, I, § 10.1, cor.3),
Now, forall { € R, we see that f%C) is the set of pairs (§, { — &) such that0 < € < (,
therefore the inverse image by f of the interval [0, {] is the set of the (§, ) e R, xR,
such that & + n < {, which is compact. The conclusion follows applying (GT, I,
§ 10.3, prop. 7).

COROLLARY 2. — Let E be a Hausdorff weak space, and C a proper convex cone
with vertex 0 in E, that is complete for the uniform structure induced by that of E.

(1) For every point a of E, the intersection C n (a — C) is compact.

(ii) Let A, B be two closed setsin C. Then A + B isa closed set in C.

(1) The set of the (x, y) e C x C such that x + y = a is compact from cor. 1
and from GT, I, § 10.2, th. 1, b). Now this set is also the set of the (x, a — x) for
xeCn(a— C), which proves (i).

(i) If A and B are closed in C, then A x B is closed in C x C, therefore A + B
is closed in C after cor. 1 and GT, 1, § 10.1, prop. 1.
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§ 7. EXTREMAL POINTS AND EXTREMAL GENERATORS

1. Extremal points of compact convex sets

DEFINITION 1. — Let A be a convex set in an affine space E. Then we say that a point
x € A is an extremal point of A if there does not exist an open segment that is contained
in A and contains x.

In other words, the relations x=Ay+(1—2)z, ye A, ze A,y # zand 0 < A < 1
imply A = 0 or A = 1 (thus x = y or x = z). This implies that x cannot be the
barycentre of a set of # points x; of A carrying positive masses unless x is one of the
x;; for this is just the definition when n = 2; for arbitrary n argue by induction
on n, as x is the barycentre of x; and of the barycentre y, of the x; with 2 < i < n,
therefore x is identical with x; or y,, and in the second case it is sufficient to apply
the induction hypothesis.

To say that x is an extremal point of A also means that A—{x} is convex.

Examples. — 1) In the space R", all the points of the sphere S,_, are extremal points
of the closed ball B,. For, if > y? < 1, Y z7 < 1 and 0 < A < 1, the relation

i

MYy =Y 2+ 20 =M YyE =1 =0 +(1 —W)?

is possible only if
Y v} =)z = Yyizi=1.

But this implies Y (y; — z)* = 0, thus y, = z for all i, which proves our assertion.

2) In the normled space #(N) of bounded sequences of real numbers (I, p. 4) the
extremal points of the unit ball are the points x = (§,) such that |§,| = 1 for all n. For,
suppose that we had |,| < 1 for all n and [§,| < 1 for one index p. We can then write

_1+F=11 l_éf’
X = > y + > z

where y (resp. z) is the point all of whose coordinates are equal to the coordinate of x
with the same index, except in the case of index p where the coordinate is equal to 1
(resp. — 1). This shows that x is not extremal, since we have | y|| < 1 and |z| < 1.
Conversely, if |§,| = 1 for all n, then x is extremal, for the relation €, = An, + (1 — 1),
with [n,| < 1,]{,| < 1 and 0 <X < | implies §, =, = {,.

3) Let u:E — E’ be an affine mapping of an affine space E in an affine space E’;
let C < E, C' = E’ be two convex sets such that u(C) = C'. If x’ is an extremal point
of C’ and x is an extremal point of ™ }(x") n C, then x is an extremal point of C, as it
follows from def. 1.

PROPOSITION 1. — Let B be the set of extremal points of A, a non-empty compact
convex set in a Hausdorff locally convex space E, and let f be a convex function defined
in A and upper semi-continuous. Then f attains its upper bound in A at one point (at
least) of B.
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Use & to denote the family of subsets X of A that are non-empty, closed, and such
that every open segment that is contained in A and meets X necessarily lies in X. It
has the following properties;

(i) A belongs to &.

(i) A point a € A is such that {a} € &, if, and only if, a is an extremal point of A.

(iii) Every non-empty intersection X of a family (X,) of sets of & also belongs
to &.

The properties (i), (ii) and (iii) follow immediately from the definitions.

(iv) Let X € &, and let 4 be a function that is convex and upper semi-continuous
in A; then the set Y of the points of X where the restriction 4|X attains its upper
bound in X is such that Y belongs to &.

For, h|X being upper semi-continuous in X attains its upper bound o over X
in at least one point of X (GT, IV, § 6.2, th. 3); thus Y is non-empty, it is also closed
(GT, 1V, § 6.2, prop. 1). On the other hand let x, y be two distinct points of A and let
z=Ax +(1 —2)y beapoint of Y such that 0 <A <1;asY < X and Xe @,
we have x € X and y € X; on the other hand, as 4 is convex, we have

h(z) < Mi(x) + (1 — )) h(y)

but as A(x) < a, A(y) < a and A(z) = a, of necessity h(x) = h(y) = o, that is to
say xe€ Y and y e Y. Therefore Y € &.

With these properties established, let M be the set of x e A where f attains its
upper bound in A; by (iv), M € &. On the other hand, by (iii) and the fact that the
sets of & are closed subsets ot the compact set A, it follows that & is inductive for
the order relation >. By th. 2 of S, III, § 2 .4, M contains a subset N which is a minimal
element of &. We shall show that N consists of a single point and this will complete
the proof of the proposition. Since E is a Hausdorff locally convex space, it is suffi-
cient to show that every continuous linear form « on E is constant in N (II, p. 38,
cor. 1). Now it follows from (iv) that the set N’ of the x € N where u|N attains its upper
bound in N is such that N’ belongs to &; since N is minimal in § we necessarily have
N’ = N.

COROLLARY. — Let A be a compact convex set in a Hausdorff locally convex space E.
Then every closed support hyperplane H of A contains at least one extremal point of A.

For, if f(x) = o is an equation of H and f(x) < o in A, it is sufficient to apply
prop. 1 to f.

THEOREM 1 (Krein-Milman). — In a Hausdorff locally convex space E, every compact
convex set A is the closed convex envelope of the set of its extremal points.

For, let C be the closed convex envelope of the set of extremal points of A ; clearly
C < A. To see that A = C, it is sufficient to prove that, if u is an affine linear func-
tion, continuous in E and if #(x) > 0 in C then also u(x) > 0in A (II, p. 39, cor. 4);
but this follows from prop. 1 applied to — u.

PROPOSITION 2. — Let x be an extremal point of a compact convex set A in a Hausdorff
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locally convex space E. Then for every open neighbourhood V of x in E, there exists
an open half-space F in E such that xe F n A = V n A (in other words, the traces
on A of the open half-spaces containing x, form a fundamental system of neighbour-
hoods of x in A).

For every open half-space D of E containing x, the set A N D is a compact neigh-
bourhood of x in A, and the intersection of all these neighbourhoods is precisely
the point x (any two distinct points can be strictly separated by a closed hyperplane
(II, p. 38, prop. 4). By prop. 1 of GT, I, § 9.2, it is sufficient to prove that the sets
A n D form a filter base. Now if we write Ly = A n (E—D), the set L, is convex,
compact and contained in the convex set A—{x}; if D;, D, are two open half-
spaces of E containing x, the convex envelope B of L, U Ly, is therefore contained
inA — {x} ; but Bisa compact set (II, p. 14, prop. 15), therefore there exists a closed
hyperplane H that separates x strictly from B (IL, p. 38, prop. 4) and if the open
half-space determined by H and containing x is D, then we have Lp, vlp, Ly,
therefore A " D = (A N D,) n (A N D,).

COROLLARY. — In a Hausdorff locally convex space let K be a compact subset of a
compact convex set A. Then the following conditions are equivalent.

a) A is the closed convex envelope of K.

b) K meets every set that is the intersection of A with one of its support hyperplanes.

¢) K contains the set of extremal points of A.

a) = b). Suppose that there exists a support hyperplane H of A whose equation
is f(x) = a, such that (H n A) n K = ¢ and suppose, for example, that f(x) > o
in A. As f(x) — a > 0 for all x e K by hypothesis and as K is compact we have

B = inlgf(x)> o,

and K is, therefore, contained in the closed half-space f(x) > B; therefore the
same is true of the closed convex envelope A of K and this is absurd.

b) = ¢). Suppose that an extremal point x of A does not belong to K ; there is
a neighbourhood V of x in E such that VA A n K = (. But by prop. 2, we can
suppose that V is an open half-space defined by a hyperplane H with the equa-
tion f(z) = o. If for example f(x) > a, then for all y € K, we have f(y) < o, there-
fore K does not meet the intersection of A and the support hyperplane f(z) = vy > o
parallel to H (I1, p. 37, prop. 2) ; this is absurd.

¢) = a). This is an obvious consequence of the Krein-Milman theorem.

Remarks. — 1) Even if the vector space E is finite dimensional the set of extremal
points of a compact convex set is not necessarily closed (II, p. 89, exerc. 11).

2) If K is a compact set in a non complete Hausdorff locally convex space, and A,
the closed convex envelope of K is not compact, there can be extremal points of A
that do not belong to K (II, p. 87, exerc. 2).

3) In a Banach space E of infinite dimension, it may happen that the closed ball
of centre 0 and radius 1 does not possess any extremal point (II, p. 89, exerc. 14).

4) If Aisa compact convex set in a Hausdorfflocally convex space, it may happen that
an extremal point of A does not belong to any support hyperplane of A (II, p. 78,
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exerc. 11). The proof of theorem 1 (IL, p. 56) shows that in any case A is the convex closed
envelope of the set of extremal points of A which belong to a support hyperplane.

2. Extremal generators of convex cones

Let C be a convex cone with vertex 0 in a vector space E ; clearly no other point
of C than the vertex can be an extremal point; the vertex is an extremal point of C
if and only if C is pointed and proper.

DEFINITION 2. — Let C be a convex cone of vertex 0 in a vector space E. We say that
a half-line D = C originating at 0 is an extremal generator of C, if every open segment
contained in C, not containing 0 and meeting D is contained in D.

It comes to the same thing to say that for all x e D such that x # 0, if y # 0,
V' # 0 are two points of C such that x = y + )/, then, it is necessarily the case that
yeD and y' e D.

Remark 1. — Let C be a pointed proper convex cone in E, and consider on E the
order structure for which C is the set of elements > 0 (II, p. 12, prop. 13); in order
that an element of E, say x > 0, belongs to an extremal generator of C, it is necessary
and sufficient that every element y > 0, that is bounded above by x, is of the form \x
with 0 < A < 1 :in fact, to say that y is bounded above by x means that x = y + )’
where )’ € C, whence the conclusion follows.

PROPOSITION 3. — In a vector space E, let C be a convex cone with vertex 0, and let
Xxo # 0 be a point of C, and D a half-line that is contained in C, originating from 0 and
containing x,. Let H be a hyperplane containing x, and not passing through 0. Then
D is an extremal generator of C if and only if x,, is an extremal point of H n C.

The condition is clearly necessary. Conversely, suppose that it is satisfied ; sup-
pose that there is a line D’ not containing D, passing through x, and such that
D’ n C contains an open segment to which x, belongs. Let y # 0 be a direction
vector of D’; the hypotheses imply that the point (1 + A)x, + py belongs to C
for |A| and |u| sufficiently small. But then, in the plane P determined by D and D’
and carrying the canonical topology, x, is an interior point of P n C, and it follows
that the line P n H contains an open segment contained in H n C and to which
X, belongs. This contradicts the hypothesis.

DEFINITION 3. — Let C be a convex set in a Hausdorff topological vector space E.
A compact convex non-empty set A of C is called a cap of C if the complement C—A
of A in C is convex.

Let C be a pointed convex cone with vertex 0 in E and let A be a cap of C. Write
B = C—A. For every closed half-line L = C originating at 0, the sets L n A and
L n B are convex sets that are complements in L, whose union is L, and such that
L n A is compact. As L n A is non-empty for at least one half-line L, we see that
0e€ A, thus L n A is a closed segment with an end point at 0. If A exists then C is
proper.
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PROPOSITION 4. — Let C be a pointed convex cone with vertex 0 in E, a Hausdorff
locally convex space.

a) Let A be a cap of C. Let p be the restriction to C of the gauge of A (11, p. 20).
The set of the x € C such that p(x) < 1 is the set A. The function p is lower semi-
continuous and has the following properties :

(i) For any x, y in C, we have p(x + y) = p(x) + p(p).

(i) For any x e C and ) € R%, we have p(Ax) = Ap(x).

(ii1) If x € C, the relation p(x) = 0 is equivalent to x = 0.

b) Conversely, let p be a function defined in C with values in [0, + oo], satisfying
the conditions (1), (ii) of a). Let A be the set of the x € C such that p(x) < 1. Then
A and C = A are convex. A isa cap, if and only if A is compact and non-empty.

The statement b) is obvious. The properties stated in a) are consequences of the
remarks preceding prop. 4 and of the prop. 22 of I, p. 20 and prop. 23 of 11, p. 20
with the exception of

p(x +») = p(x) + p(y).

It is sufficient to prove this last when x # 0 and y # 0; we have therefore p(x) > 0,
p(y) > 0. Let pu, A be two numbers > 0 such that A < p(x), p < p(»), and denote
the complement of A in C by B. We have x € AB, y € uB, therefore x + y e AB + uB;
by the convexity of B, we have AB + pB < (A + p)B, whence p(x + ») > X + p,
which implies the inequality stated above.

COROLLARY 1. — Let C be a pointed convex cone of vertex 0 in E, a Hausdorff locally
convex space and let p be the gauge of A, a cap of C. The extremal points of A are
then the point 0, and the points x on the extremal generators of C such that p(x) = 1.

It is clear that O is an extremal point of A. Let x be a point on L an extremal gene-
rator of C and such that p(x) = 1. Let y, z be two points of A such that x = 1(y +2).
As L is extremal, we have y = Ax and z = px, where A and p are numbers > 0
such that A +p) =1, A = Ap(x) = p(») < 1 and p = pp(x) = p(2) < 1, from
which A = p = 1 and hence y = z = x; so, x is an extremal point of A. Conversely,
let x # 0 be an extremal point of A. Obviously p(x) = 1. Let y, y' be two points
of Csuch that x = y + )’, and we shall show that y, y" are proportional to x. Without
loss of generality we can suppose that the numbers A = p(y) and A’ = p()’) are
finite and > 0. Then A "'y e A, A" !y’ e A, A + A’ = 1 by prop. 4, (i) and the equa-
lity x = MA"1y) + M'(M~'y") implies, by hypothesis that

x=A1ly=N"1y.

COROLLARY 2. — Every point of C that belongs to a cap of C, also belongs to the
convex closed envelope of the union of the extremal generators of C.

This follows immediately from cor. 1 and the Krein-Milman theorem (I1, p. 55,
th. 1).
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* Example. — Let X be a locally compact space that is c-compact. Let C be
a closed convex cone of vertex 0 in .# , (X) with the vague topology. We shall show
that C is the union of its caps. Let (X,) be an increasing sequence of open, relatively
compact sets of X whose union is X. Let p be an element # 0 of C. There exist o, > 0
such that ) o,u(X,) = 1.

For every measure ve C, put p(v) = Y o,v(X,) € [0, + oo]. The function p

on C satisfies conditions (i) and (ii) of prop. 4. It is lower semi-continuous for the
vague topology (INT, IV, 2nd ed., § 1, No. 1, prop. 4). The set A of the y € C such
that p(y) < 1 is therefore closed and non-empty. On the other hand, every compact
set of X is contained in one of the X, thus A being vaguely bounded is also vaguely
compact (INT, III, 2nd ed., § 1, No. 9, prop. 15). The set A is therefore a cap of C
containing p.

PROPOSITION 5. — Let C be a proper convex cone with vertex 0 in E, a Hausdorff
weak space ; suppose that C is complete for the uniform structure induced by that of E,
and that there is an enumerable fundamental system of neighbourhoods of 0 in C.
Then C is the union of its caps and is the closed convex envelope of the union of its
extremal generators.

The second statement follows from the first and from cor. 2 above. Using prop. 11
of II, p. 52 reduces the proposition to the case when E = R' and C < R/, . For all
o € I, denote the projection pr, in E by f,; then f, is a continuous linear form. On
the other hand let (V,),.n be an enumerable fundamental system of neighbourhoods
of 0 in C. By the definition of the topology of E, for each n € N, there exists a finite
subset J, of I and a number g, > 0 such that V, contains the setW, of the x e C

such that f(x) < g, forallaelJ,; putJ = U J,. Let y # 0 be a point of C, and p
neN

be the function ) A.(f,|C) where the A, > 0 are chosen so that p(y) = 1; this is
ael

n>

possible, since if f(y) = 0 for all a €J, then y eV, for all n, which implies that
y = 0, and this is contrary to hypothesis. Now we remark that for all « eI, the
function £,|C is continuous at the point 0, therefore there is an n € N, such that f,
is bounded in a W,,, therefore bounded above in C by a linear combination of a
finite number of functions f3|C, where B € J. It follows that if A in the set of x e C
such that p(x) < 1, then f, is bounded in A for all o € I. As p is lower semi-continuous
in C, it follows that A is closed and non-empty in C and therefore is compact. Since
it is clear that p verifies the conditions (i) and (ii) of prop. 4 of II, p. 58, we see that
A is a cap in C and contains y.

Remark 2. — There exist proper convex cones that are weakly complete and which
have no extremal generator (II, p. 92, exerc. 31).

3. Convex cones with compact sole

PROPOSITION 6. — Let E be a Hausdorff locally convex space and K a convex compact
set in E which does not contain 0. Then the smallest pointed cone C of vertex 0 which
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contains K is a proper convex cone in E and is a locally compact and complete subspace
of E; also, there exists a closed hyperplane H in E that does not contain 0 and is such
that H meets all the half-lines originating at 0 contained in C and such that H n C
is compact. Further, if D is the half-space containing 0 determined by H, a closed hyper-
plane with these properties, then C N D is a cap of C and C is the union of the M(C n D)
Jor A > 0.

By prop. 4 of 11, p. 38, there exists a closed hyperplane H which separates 0 strictly
from K. Now, the convex envelope A of the union of {0} and of K is compact (I,
p. 14, prop. 15) and is the union of the AK with 0 < A < 1. As 0 and K are strictly
on opposite sides of H, for every x € K there exists A such that 0 < A < 1 and
Ax € H. As C is the union of the AA for A > 1, we see that H meets every half-line
originating at 0 contained in C and that H n A = H n C is compact. Further,
C is also the union of the A(H n C) for A = 0; let C, be the union of the M(H n C)
for 0 < A < n. Clearly C,, is the convex envelope of the union of {0} and of n(H n C),
therefore it is compact. Also, for all x € E, there is a closed neighbourhood V of x
in E and an integer »n such that V.~ C = C,; in fact, if H is defined by the equation
f(2) = a, where a > 0, it is sufficient to take for V the closed half-space determined
by rH and containing 0, where # is so large that not > f(x). This shows that C is locally
compact (taking x € C), and that it is closed in E. We can also consider K as a subset
of the completion E, therefore C is also closed in E and therefore complete.

Given a cone C and a closed hyperplane H in a Hausdorff topological vector
space E, such that H does not contain the vertex s of C and C is the smallest cone
with vertex s containing H n C, then we call the intersection H n C a « sole » of
the cone C. Prop. 6 shows that in a Hausdorff locally convex space E, the smallest
cone of vertex 0, containing a compact convex set K to which 0 does not belong, is
a cone of compact sole, and that every convex cone having a compact sole S, is locally
compact and complete.

Examples. — 1) Every proper closed convex cone in E, a vector space of finite dimen-
sion, has a compact sole. In fact, by II, p. 52, prop. 11 we need only consider the case
where E = R" and C = R, . If (¢), ¢; <, is the canonical basis of R", it is clear that the
compact convex set which is the convex envelope of the ¢, (1 < i < n) is a compact
sole for R%,.

*2) If X is a compact space, then the cone .#  (X) of positive measures on X, with
the vague topology, is a cone with a compact sole (INT, III, 2nd ed., § 1, No. 9, cor. 3
of prop. 15).,

§ 8. COMPLEX LOCALLY CONVEX SPACES

1. Topological vector spaces over C

Let E be a topological vector space over C the field of complex numbers; the
topology of E is also compatible with the structure of the vector space over R,
obtained by restricting the field of scalars to R. We denote by E, the topological
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vector space on R which underlies E (I, p. 2). Note that, in E,, the mapping x > ix
(which is not a homothety) is an automorphism u of the topological vector space
structure of E, such that #?*(x) = — x.

Conversely, let F be a topological vector space over R, and suppose that there exists
an automorphism u of F such that u?> = — 1, (1 is the identity automorphism of F).
We know (A, IX, § 3, No. 2) that it is then possible to define a vector space structure
on F relative to C writing Ax = ax + Bu(x) for all A = o + iBeC and all xeF.
Further since the mapping (o, B, x) — ax + Pu(x) of R? x F in F is continuous the
topology of F is compatible with the vector space structure relative to C defined above
if E denotes the topological vector space on C defined in this manner, then F is the
topological vector space on R which underlies E.

Remark. — Given a topological vector space F over R, it is not always the case that
there exists an automorphism u of F whose square is — 1 ; for example, it is not possible
to define vector space structure relative to C on a vector space over R of finite odd
dimension.

Let E be a topological vector space on C, and E, the topological vector space on R
which underlies E. Every linear variety M in E is also a linear variety in E,, but the
converse is false. To avoid confusion we say that a linear variety for a vector space
structure relative to C (resp. relative to R) is a complex (resp. real) linear variety.
A complex linear variety of finite dimension n (resp. of finite codimension #) is a
real linear variety of dimension 2 (resp. of codimension 2n). In order that a real
vector subspace M of E should also be a complex vector subspace, it is necessary
and sufficient that iM < M.

Recall that, if E and F are two topological vector spaces on C, then a mapping
of E in F is called C-linear (resp. R-linear) if it is a linear mapping for the vector
space structures of E and of F relative to C (resp. R); every C-linear mapping is
evidently R-linear but the converse is false. We say that a C-linear form on E is a
complex linear form and that an R-linear form on E (i.e. a linear form on E,) is a
real linear form. If f is a complex linear form on E, it is clear that the real part g = Zf
and the imaginary part 4~ = #f of f are real linear forms; further, the relation
f(ix) = if(x) implies the identity A(x) = — g(ix); in other words we have

ey () = (%)) () — (Rf) (ix) .

Conversely, if g is a real linear form on E, then f(x) = g(x) — ig(ix) is the unique
complex linear form on E such that £f = g; and f is continuous if, and only if|
g is continuous.

Now let H be a complex hyperplane in E, with the equation f(x) = o + if, where
f is a complex linear form on E; putting g = £f, we see that H is the intersection
of two real hyperplanes H, , H, with equations respectively g(x) = aandg(ix) = — B;
if H is closed, so also are H, and H, (I, p. 13, th. 1). Conversely let H, be a homo-
geneous real hyperplane, with equation g(x) = 0 (where g is a real linear form on E) ;
then H, the intersection of H, and iH,, is a homogeneous complex hyperplane, and
if f is the complex linear form such that #f = g, then f(x) = 0 is the equation
of H; if H, is closed then H also is closed.
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Let G be a topological vector space over R and let G, be the vector space on
C obtained from G by extending the field of scalars to C (A, II, § 5.1). Identify G
as a subset of G ¢, by the mapping x > 1 ® x. The R-linear mapping(x, y) > x + i.y
is then a bijection of G x G on G(,, by means of which we transfer the product
topology of G x G to G- Then G, with this topology is a topological vector
space on C. We say that G, is the complexified topological vector space of G.

2. Complex locally convex spaces

To say that a subset A of a complex vector space E is balanced means that, for
all xe A, we have pxe A for 0 < p < 1 and ¢x e A for all real 9.

We say that a set A of E is convex if it is convex in the real space E, which under-
lies E. In order that a convex set A # &F of E be balanced, it is sufficient that ¢’®A = A
for all real 9; for this implies firstly that — A = A; as A is convex, we see that 0
belongs to A and thus pAc Afor0<p<1.

Let E be a complex topological vector space. The smallest balanced convex
(resp. closed balanced convex) set containing a set A of E is called the balanced
convex envelope (resp. balanced closed convex envelope) of A; the balanced closed
convex envelope of A is the closure of the balanced convex envelope of A. This last
is the convex envelope of the union of the sets e’ A ; we can therefore define it as the
set of linear sums ) A.x,, when (x,) is any finite family of points of A, and (A,) a family

13

of complex numbers such that }| [A,] < 1. If A is precompact so also is its balanced

envelope (I, p. 6, prop. 3).

We say that a complex topological vector space E is locally convex if the real
underlying topological vector space E,, is locally convex, that is to say if every neigh-
bourhood of 0 in E contains a convex neighbourhood of 0; a topology  on E
is locally convex if it is compatible with the vector space structure of E (relative
to C) and if E, with topology 7, is locally convex. As in this case every closed convex
neighbourhood V of 0 contains a balanced neighbourhood W of (I, p. 7, prop. 4),
we see that V also contains U, the balanced closed convex envelope of W ; in other
words the balanced, closed, convex neighbourhoods of 0 form a fundamental system
of neighbourhoods of 0 in E, invariant under every homothety of ratio # 0.

Conversely, let E be a complex vector space and let & be a filter base on E formed
by absorbent, balanced convex sets. We know then (II, p. 23, prop. 1) that the set B,
of the transforms of the sets of S by homotheties of ratio > 0, is a fundamental system
of neighbourhoods of O for a locally convex topology 4 on the real vector space
E, underlying E. Further, as the sets of B are balanced, they are invariant under every
homothety x> e®®x, which shows that J is compatible with the vector space
structure of E (over C) (I, p. 7, prop. 4).

Every locally convex topology on a complex vector space E can be defined by
a set of semi-norms, for the gauge of an open balanced convex neighbourhood of 0
is a semi-norm on E.
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The ideas and results for real locally convex spaces detailed in I, p. 25 to 36, extend
to complex locally convex spaces with no modification other than the replacement
of symmetric convex sets by balanced convex sets.

A complex locally convex space is a Fréchet space if it is metrisable and complete.

3. The Hahn-Banach theorem and its applications

TrHEOREM 1 (Hahn-Banach). — Let V be a vector subspace of E, a complex vector
space, and let f be a (complex) linear form on V and p a semi-norm on E such that
|f(W| < p(») for all y e V. Then there exists a linear form f; on E extending f and
such that |f,(x)| < p(x) for all x € E.

For g = #f is a real linear form defined in V and satisfying |- »)| < p(y) at
every point of V; therefore there exists a real linear form g, in E extending g and
such that |g,(x)| < p(x) for all xe E (IL p. 23, cor. 1). Let f,(x)=g,(x)—ig,(ix)
be the complex linear form on E of which g, is the real part (I, p. 61). For 41l real 9

|2(2f, (| = |2(1,(°x)| = |g,(e*x)| < p(e®x) = p(x)

since p is a semi-norm on the complex space E ; this implies the relation | f1(0)] < p(x),
and the theorem is proved.

COROLLARY 1. — Let x, be a point of a complex topological vector space E and p
be a continuous semi-norm in E; then there exists a continuous (complex) linear form f
defined in E, such that f(x,) = p(x,) and |f(x)| < p(x) for all x€E.

COROLLARY 2. — Let V be a vector subspace of a complex locally convex space E
and f be a (complex) linear form defined and continuous in V ; then there exists a conti-
nuous linear form f, defined in E and extending f. If E is normed there exists such a
form f| that also satisfies | f; || = || fII.

COROLLARY 3. — Let M be a finite dimensional vector subspace of a Hausdorff complex
locally convex space E. Then there exists a closed vector subspace N of E that is a
topological complement of M in E.

The proofs using theorem 1, p. 24 are the same as those of I, p. 23, cor. 2 and cor. 3,
p. 24, prop. 2 and p. 25, cor. 2.

PROPOSITION 1. — Let A be an open non-empty convex set in a complex topological
vector space E and M be a non-empty (complex) linear variety that does not meet A.
Then there exists a closed complex hyperplane H that contains M and does not meet A.

We can suppose that 0 e M. Then there exists a closed real hyperplane H, con-
taining M and not meeting A (I, p. 36, th. 1). As M = iM, the closed complex
hyperplane H = H, n (iH,) has the properties required.

COROLLARY. — In a complex locally convex space E, every closed complex linear
variety M is the intersection of the closed complex hyperplanes which contain it.
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In fact, for all x ¢ M, there exists a convex open neighbourhood V of x that does
not meet M, and thus there exists a closed complex hyperplane H containing M
and not meeting V; a fortiori H does not contain Xx.

PROPOSITION 2. — Let A be a non-empty balanced open convex set of a complex topo-
logical vector space E, and B be a non-empty convex set that does not meet A. Then
there exists a continuous complex linear form f on E and a number o > 0 such that
|/()| <o in A and |f(p)| = o in B.

For, there exists a continuous real/ linear form g on E and a real number o such
that g(x) < o in A and g(y) = o in B (II, p. 37, prop. 1). As 0 A, we have o > 0.
We show that the continuous complex linear form f(x) = g(x) — ig(ix) and the
number o have tae properties required. For, since %f = g, we have | f(y)| > o in B.
On the other hand, for all xe A and all real 9, the point e*x belongs to A, since A
is balanced, and we have f(x) = e~ **f(e”®x); then there exists a number 9 such that
|f(x)] = (e¥f(x)) = g(e”x) < o, and the proposition follows.

PROPOSITION 3. — Let A be a balanced, closed, convex set in a complex locally convex
space E and let K be a non-empty compact convex set in E that does not meet A. Then
there exists a continuous complex linear form f on E and a number o > 0 such that
|/(x)| < oin A and|f(y)| > o in K.

The proposition follows from II, p. 38, prop. 4 as prop. 2 follows from II, p. 37,

prop. 1.

4. Weak topologies on complex vector spaces

The definition and results of I, § 6, Nos. 1 and 2 apply without change to complex
vector spaces. If F and G are two complex vector spaces in duality by a bilinear
form B, then the underlying spaces F, and G, are in duality by #B, and it follows
from II, p. 61, formula (1) that the weak topologies o(F, G) and o(F,, G,) are
identical.

DEFINITION 1. — Let F and G be two complex vector spaces in duality. For any sub-
set M of F, the polar of M in G, denoted by M°, is the set of y e G such that
R(Kx,ydy= — 1 for all xe M.

If M° is the polar of M < F in G then (AM)° = A~ !M?° for all A e C*

If M is a (complex) vector subspace of E, then M° is a closed vector subspace
(for o(G, F)), since the relation Z(A{x, y») = — 1 for every scalar A € C implies
{x,y> = 0; again we say that M° is the subspace of G orthogonal to M.

If M is a balanced set in F, then M° is a balanced set in G ; in this case M° is the
set of y € G such that [{x, y»| < 1 for all xe M for this relation is equivalent to
R(KCx,¥>) <1 for all xeM and all {eC such that |{| = 1.

The results of I1, p. 41 to 51 are also valid without restriction for complex vector
spaces.



Exercises

§ 2

1) A subset A of a vector space E, is starshaped relative to 0 if for all x € A and every A such
that 0 < A < 1, the point Ax belongs to A. Let A be starshaped and such that, for each x € A,
there exists p > 1 such that px € A. Show that if, for every pair of points x, y of A we have
%(x + ») € A, then A is convex. Give an example of a non-convex starshaped set A such that
(A + A) c A

2) Let A be a convex subset of an affine space E and B a set containing A. Show that, amongst
the convex sets that both contain A and are contained in B there exists at least one maximal
set; give an example where there are several distinct maximal sets.

T 3) Let A and B be two disjoint convex sets in a vector space E. Show that there exist two
disjoint convex sets C, D in E such that A ¢ C,B < D and C u D = E. (Apply th. 2 of S, 111,
§ 2.4 to the set of pairs of disjoint convex sets (M, N) such that A « M and B = N and express
the fact that M and N do not meet by the relation 0 ¢ M — N. To show that C U D = E,
obtain a contradiction supposing that x, ¢ C U D; if C’ (resp. D’) is the convex envelope of
C U {x,}(resp. D U {x,}), show that itis impossible thatbothC' " D # gfandC n D’ # )

4) Let C be a convex cone with vertex 0 in a vector space E; if (x;), <; <, is a finite family of

points of C such that ) A.x; = 0 for a family of numbers A; > 0, then C contains the vector
i=1

subspace of E generated by the x;.

5) Suppose that the vector space E has an enumerably infinite basis (e,),.n. Let C be the set
of points x = " &_e, such that for the largest index n for which £, # 0, we have &, > 0. Show

that C is a pointed convex cone such that C n(— C) = {0} and C U (— C) = E; deduce
that C is the set of elements of E that are > 0 for an order structure that is compatible with
the vector space structure of E and for which E is linearly ordered. Show that on this ordered
vector space the only linear positive form is 0.
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6) Let E be an affine space of dimension > 2 and let f be a bijection of E on itself; show that
if the image under f of every convex subset of E is also a convex set, then f is an affine linear
mapping (consider the inverse mapping of f and note that a closed segment is the intersection
of the convex sets which contain its extremities ¢f. A, I, § 9, exerc. 7).

7) Give an example of two convex sets A = R, B = RZ2, such that the image of the convex set
A x B under the bilinear mapping (A, x) — Ax of R x R?in R? is not convex.

8) Let(A)), <;<, be a finite family of convex subsets of a vector space E ; let W, be the subspace
obtained by a translation from the affine linear variety generated by A; (1 <i<p)If

W = i W,, show that the affine linear variety generated by the convex set Z MA; (Where
i=1
); are non-zero numbers) is obtained from W by a translation.

T 9) Let A be a subset of the space R".

a) Show that the convex envelope of A is identical with the set of points Y. A.x;, where x; € A,

i=0

;>0 for 0<i<n,and Y A, = 1. (Establish the following lemma; if p + 1 points x;

i=0

P
(0 < i < p)form an affinely dependent system (that is to say there exists a relation ) B,x; = 0
i=0

where the B, are not all zero and i B; = 0) and if x = i a;x;, where the a; are > 0 and
i=0 i=o

f a; = 1, then there exists an index £ < p and p numbers y; (0 < i < p, i # k) such that

y; = Oforalli, ). y; = landx = ) y;x;; for this compare those of the o;/B; that are defined.)
i*k i*k

b) Let a be a point of the convex envelope of A which does not belong to the convex envelope
of any subset of A with at most # points. Show then that A contains at least n + 1 connected
components. (We can suppose thata = 0;let(b,),<;<, beafamily ofn + 1 affinely independent
points of A such that 0 belongs to the convex envelope of the b, (¢f. a)). For each index i, let
C; be the pointed convex cone of vertex 0 generated by the b; with indices Jj # i; show that A
does not meet the frontier of any of the cones — C;)

¢) IfC 1s a pointed cone with vertex 0 in R”, show that the convex envelope of C is the set of

points Z x;, where x;e Cfor1 < i <n.
i=1

47 10) Let C be the convex envelope of a subset A of R”, and let a be an interior point of C.
Show that there exist 2n points x; € A (1 < i < 2n) such that a is interior to C,, the convex
envelope of the x;. (Suppose a = 0, and argue by induction on », noting that by exerc. 9a)
there exists a set of k + 1 points Y of A0 <j <k 1<k < n), affinely independent and
such that, if V is the affine linear varlety generated by the y;, then 0 € V and, relative to V, 0 is
interior to the convex envelope of the set of the y;. Then prOJect C on E/V and show that 0 is
interior to this projection relative to E/V). Show that in the above statement 2n cannot be
replaced by 2n — 1.

11) a) Show that, in the space R", every convex set A of dimension n contains at least one
interior point (consider an affinely independent system of n + 1 points of A). Deduce that
if A is everywhere dense in R” then A = R".

b) Let E be the normed space /!(N) of absolutely convergent series of real numbers x = ()
(I, p. 4); show that the set P of x, such that £, > 0 for every index n, is a proper convex cone,
which generates E but does not contain any interior point.

¢) Let E be a Hausdorff topological vector space on which there exists a non-continuous
linear form f (c¢f. II, p. 86, exerc. 17, a)). Show that the sets A and B defined by the relations
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f(x) = 0, f(x) < 0 are convex, non-empty, complementary, everywhere dense and that
each of them generates E (algebraically).

12) Show that in the space R", a necessary and sufficient condition that a convex set should be
closed, is that its intersection with every straight line should be closed (¢f. II, p. 74, exerc. 5).

13) Show that in the space R”, every non-empty open convex set is homeomorphic to R”
(use exerc. 12 of GT, VI, § 2).

14) Let A be a non-empty closed convex subset of E, a Hausdorff topological vector space.

a) Show that, for every a € A, theset M AMA — a) is a closed convex cone in E, with vertex 0,
A>0

independent of a. It is called the asymptotic cone of A and written C,. For every a € A, the
seta + C, is the union of {a} and those open half lines that are contained in A and have a as
an end point.

b) If x, y are two points of A such that (x + C,) n (¥ + C,) is a cone whose vertex z € A,
then this cone is necessarily z + C,.

c) If Bis asecond closed convex subset of E such that A n B # (¢, then C 5 = C, N Cp.
d) Let V, be the largest vector subspace (necessarily closed in E) which is contained in C,.
Show that if ¢ is the canonical homomorphism of E on E/V,, then A = ¢ "!(A,), where A, is
a closed convex set in E/V, which does not contain any straight line.

e) In the Banach space #(N) of bounded mappings of N in R (I, p. 4) give an example of a
closed convex non-bounded set A, for which C, = {0} and which is such that for every b # 0
in E, there exists an integer k for which (A + kb) n A = .

15) a) Let A be a closed convex subset of a Hausdorff topological vector space E. If for some
point x, € A there exists a neighbourhood V of x, in E such that V n A is compact, then
show that A is locally compact. Deduce that the closure in E of a locally compact convex set
is locally compact.

b) Let A be a closed convex set that is locally compact but not compact in E; show that the
asymptotic cone (exerc. 14) is not the single point {0}.

4 16) Let A, B be two closed convex subsets of a Hausdorff topological vector space E.
Suppose further that B is locally compact and that C, n Cy = {0}. Show that A — B is
closed in E. (Let b € B, and W be a closed neighbourhood of 0 in E such that B n (b + W) is
compact. Let c e A — B; for every neighbourhood V of 0 in E consider the set My, of those
ye B such that An(c +y + V) # J. Consider two cases according as to whether there
exists a V for which My, is relatively compact, or there does not exist such a V; in the second
case, consider the filter base formed from the sets Py , = My n [} (b + nW) where V varies in
the set of closed neighbourhood of 0 in E and » varies in N ; form the cone with vertex b
generated by Py , and its intersection with the frontier of & + W).

4 17) In a Hausdorff topological vector space E, a closed convex set A is said to be parabolic
if, for every z ¢ A, each half-line originating at z and contained in z + C, meets A.

a) Give an example of a parabolic convex set A in R? such that C, is not just a single half-line.
b) Let A be a closed convex set in E such that C, # {0}, but such that A is not parabolic.
Show that if z ¢ A is such that z + C, contains a half-line D with end point z which does not
meet A, then neither the convex envelope of A U {z} nor the pointed cone with vertex z
generated by A is closed in E.

Further if D’ is the closed half-line originating at z and opposite to D (so that D=2z—D")
then D’ + A is not closed in E, and there exists a plane P containing D and a closed convex
set B = P, such that B n A = (J but that the distance of B from P N A (in any norm on P)
is zero.
¢) InE, let A be a closed convex set that is locally compact and parabolic; show thatif B  E,
is closed and convex then A — B is closed (same method as exerc. 16).

d) Let A, A’ be two closed convex subsets of E that are locally compact and parabolic; show
that the convex envelope of A U A’is closed in E (same method as in exerc. 16). Give an example



TVS 11.68 CONVEX SETS AND LOCALLY CONVEX SPACES §2

in R? where A is parabolic, A’ is non-parabolic and the convex envelope of A U A’ is not closed
in R2,

e) In E, let A be a closed convex set that is locally compact and parabolic ; show that for all
z ¢ A, the pointed convex cone with vertex z, generated by A, is closed in E (use d)).

f) Let E;, E, be two Hausdorff topological spaces, A (resp. A,) a closed convex set in E;
(resp. E,) that is also parabolic. Show that the set A; x A, is parabolicin E; x E,.

* g) Show that a barrelled space of infinite dimension does not contain a parabolic closed
convex set that is both locally compact and not compact.

h) Let E, = [2(N), and in E,, let K be the set of points x = (§,) such that |E,| < 1/(n + 1)
for all n; K is compact. The cone E of vertex 0 generated by K is a vector subspace of E, and
K is absorbent in E. Let p be the gauge of K in E; it is a lower semi-continuous function. In
the normed product space E x R, show that the set A of points (x, {) such that { > (p(x))*
is closed, convex, parabolic and locally compact. Show that A + (— A) and the convex enve-
lope of A U (— A) are not locally compact. ,

18) Let C be a proper closed convex cone of vertex 0 in R”. Show that the complement of the
set C N S,_; on the sphere S,_; is homeomorphic to R"~! (make a stereographic projection
from a point of C n S,_,, and use exerc. 12 of GT, VI, § 2). If C contains an interior point,
show that C n S, _,, is homeomorphic to the closed ball B,_; (same method).

19) a) Let A be an unbounded closed convex set in R”, that does not contain any line, but
does contain an interior point. Show that the frontier of A is homeomorphic to R" ™! (use
exercs. 15, b) and 18).

b) In a Hausdorff topological vector space E, let A be a closed convex set that does not contain
any line and is of dimension > 2. Show that the frontier of A is connected (use a) and GT, VI,
§ 2, exerc. 12).

20) a) In a vector space E, let A be a convex set that generates E and meets every straight line
in a set that is closed relative to the straight line. Show that the following conditions are equi-
valent :

o) There exists a line D such that D meets A in a compact segment that is not empty.

B) There exists a line D such that every line parallel to D meets A in a compact segment.

v) A is distinct from E and is not a half-space determined by a hyperplane of E.
(To show that (y) = (o) use exerc. 14, d) of IL, p. 67, and reduce to the case E = R?2.)
b) In a Hausdorff topological vector space E, let A be a closed convex set which contains an
interior point. Show that if the frontier of A is a non-empty linear variety, then A is a closed
half-space (use exerc. 14, d) of I1, p. 67, to show that the frontier of A is necessarily a hyperplane,
then apply a)).

a 21) a) Let A, (1 <i<r)r>n+ 1, be a family of convex subsets of R” such that any
r — 1 of the A, have a non-empty intersection ; show that the r sets A; have a non-empty inter-
section (Helly’s theorem). (Let x; be a point of the intersection of the A; with indexes j # i;

r r

there exist » numbers A; which are not all zero and are such that ). A; = Oand ) Ax; = 0;

i=1 i=1
in this last equation take to one side those terms with A; > 0 and to the other those with
A< 0)
b) Given a family of compact convex sets in R”, show that the intersection of all the sets of
the family is non-empty if the intersection of any selection of n + 1 sets of the family is non-
empty.
¢) InR" letK bea convex setand(A)), ; <, be afamily of r > n + 1 convex sets. Suppose that
for every selection of n + 1 indices (3,) each less than or equal to r there exists a € R” such that
a + K contains each of the 4, . Show that then there exists b € R"” such that b + K contains
all the A;. Show that similar results hold if « contains » is replaced by « is contained in » or
by « meets in a non-empty set ». (For each index i, consider the set C; of the x € R" for which
x+ K> A;(orx + K< A, or (x + K)nA; # &)). Generalize to any family of compact
convex sets of R".
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22) In R? consider a set of 2m points of the form (a;, b)), (a;, b;) where b; < b} for1 < i < m.
Let n be an integer < m — 2. In order that there should exist a polynomial P(x) of degree < n
such that b} < P(q;) < b! for 1 < i < m, it is sufficient that, for every family (1,‘)1<,‘s,,+2 of
n+2 indices i, there exists a polynomial Q(x) of degree < » such that b, < Q(g,) < b, for
every integer k such that 1 < k < n + 2. (Use exerc. 21, a).)

23) Show that in a topological vector space, the convex envelope of an open set is an open set.

24) Let M be an everywhere dense convex set in a topological vector space E (cf. 11, p. 66, exerc.
11, ¢)); show that, for every closed hyperplane H in E, the set H n M is dense in H (for every
point x, € H, and every balanced neighbourhood V of 0 in E, consider the intersections of
Xo + V and the two open half-spaces determined by H, and deduce that x, + V + V meets
H n M).

25) a) Show that, in a topological vector space, every convex set with an interior point, is
such that its frontier is nowhere dense (use prop. 16 of I1, p. 14).

b) In a Hausdorff topological vector space E, let A be a closed convex set with an interior
point, and let H be a closed hyperplane that contains an interior point of A. Show that the
intersection of H and of the frontier F of A is a set which is nowhere dense relative to F (to
show that in every neighbourhood of a point of H n F there exist points of F not in H, reduce to
the case when E is of dimension 2).

4T 26) In a Hausdorff topological vector space E, let A be a connected closed set with the
following property : for every x € A, there exists a closed neighbourhood V of x in E such that
V n A is convex. Show that A is convex. For this establish the following statements.

a) Show that any two points of A can be joined by a broken line in A (same method as GT, V1,
§ 1, exerc. 6).

b) Show that, if two points in A can be joined by a broken line in A with n > 1 segments, then
they can also be joined in A by a broken line with n — 1 segments. (Induction on n reduces to
the case n = 2 which is equivalent to taking R? as E; then let T be a triangle with vertices
a, b, ¢ such that the closed segments ac, bc are contained in A, but the closed segment ab is
not; consider a point of the closure of the intersection of } A and the interior of T that is
farthest from the line ab, and show that the existence of such a point contradicts the hypo-
thesis.)

47 27) a) Let B be a non-empty closed convex subset of E, a Hausdorff topological vector
space, and let X be a non-empty compact set in E. Show that if A is a subset of E such that
A + X = B + X, then A = B (if a € A, consider a sequence (x,) of points of X defined induc-
tively by the relation @ + x, = b, + x,,,, where b, € B). Deduce that, if A, B are two non-
empty subsets of E, using the distance in E and the proceedure of GT, IX, § 2., exerc. 6. Show
A + X = B + X implies the relation A = B.

b) Let E be a normed space, ¢ the distance function defined on the set F(E) of closed non-
empty subsets of E, using the distance in E and the proceedure of TG, IX, p. 91, exerc. 6. Show
that if A, B, C are three non-empty compact convex sets in E then o(A +C, B+C)=0(A, B)
(if S, is the ball defined by [ x|l < A, note that A + S, and B + S, are closed convex sets and
use a)).

¢) Deduce from a) and b) that the set R (E) of non-empty, compact, convex subsets of a normed
space E, with the distance o, can be identified with a cone in a normed space of which the laws
of composition induce on K (E) the laws (A, B) - A + B and (A, A) — AA.

28) Let f be a convex function defined over the convex subset A of a vector space E.

a) Show that if A is absorbent and f is non-constant then f cannot attain its upper bound
in A at the point 0.

b) Show that the subset of points of A, at which f attains its lower bound in A, is convex.

4T 29) Let E be a Hausdorff topological vector space, and C be a non-empty open convex
non-pointed cone with vertex 0, in E. A convex neighbourhood of 0 in E is denoted by V. If f
is a convex function that is defined and bounded above in C n V, show that f(x) tends to a

finite limit as x tends to 0, where x e C n V. (Let B = lim.sup f(x); obtain a contradiction,
x—0,xeCnV
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supposing that for some o > 0, and every neighbourhood W of 0, there exists a point
yeCn VAW such that f(y) < B — o Show that there exists ae C n V such that
f(pa) = B — 2afor 0 < p < 1; deduce that, on a line joining a point of the form pa (p suffi-
ciently small) to a point y in C n V such that f(y) < B — a, and that is sufficiently close to 0,
there exist points of C n V where f is arbitrarily large.)

30) a) Give an example of a convex function that is defined over a compact convex subset
K of R?, that is bounded and lower semi-continuous in K, but is not continuous at a point
of the frontier of K (consider the gauge of a disc of which 0 is a frontier point).

b) Deduce from a) an example of a convex function defined in an open half-plane D of R?,
not bounded above in D and not tending to a limit at a frontier point of D.

¢) Deduce from @) an example of a convex lower semi-continuous function defined over a
compact convex subset A of R? but not bounded above in A. (Take for A the set of points
(¢, n) such that &* < n < 1 in R?)

41 31) Let x, be a point in the closure of A, a non-empty convex subset of a Hausdorff topolo-
gical vector space E. Let f be a convex function defined over A. Use D to denote the set of
closed half lines D which originate at x,, for which A n D eontains an open segment with
end point x,. The union C of the half lines D € D is a convex cone with vertex x,,.

a) Show that, for each fixed D € D, as x tends to x, such that x e D N A and x # x,, either
f(x) tends to a finite limit or to + oo.

b) Let 3 be the subset of those D € D, for which the limit of f(x) in a) is + oo ; if x, € A then
3 is empty. Show that J cannot contain two opposite half lines ; if D and D’ are two distinct
half lines in 3 and P is the plane determined by D and D’ then, either, every half line D” of D
in P belongs to 3, or D and D’ are the only two half lines of 3 lying in P. Deduce that if I # D,
then no half line D € 3 contains an internal point (I, p. 26) of the cone C relative to the vector
subspace generated by C.

¢) Let & be the set of half lines in D that are not in 3. Show that the union of the half lines
of & is a convex cone, and for each half line D € & the limit of f(x) defined in a) is independent
of D (use exerc. 29 above); further if x, € A this limitis < f(x,), and it is equal to f(x,) when
& contains two opposite half lines.

d) Let f be a non-continuous linear form over E (¢f. 11, p. 86, exerc. 17, a)) and take A = E;
show that every closed half line, originating at x,, belongs to &, but that

lim.inf f(x) = — oo and lim.sup f(x) = + o©

xX—Xx0 X X0

(use prop. 21 of IL, p. 18).

32) Let K be a compact convex set in a Hausdorff topological vector space E and let f be
an upper semi-continuous convex function defined over K. Show that f is bounded over K.
(Observe first that f is bounded above in K; if f is not bounded below show that

lim.inf f(y) = — oo for every point x € K, and that this contradicts Baire’s theorem.) Give
yoX,yEX
an example where f is not continuous.

33) Let E be a finite dimensional Hausdorff topological vector space, and let K be a compact
convex subset of E. Show that every convex function defined over K is bounded below in K
(compare exerc. 31, d)).

34) Let U, V be two open convex sets in a Hausdorff topological vector space E such that
V < U and that U does not contain any half line. Let & be a set of convex functions defined in
U, uniformly bounded above on the frontier of U and uniformly bounded below on the frontier
of V. Show that & is equicontinuous.

35) Let U be a non-empty open convex set in R” and % be a set of convex functions defined
over U. Let @ be a filter on & that converges pointwise in U to a finite function f;; show
that ® converges uniformly to f, in every compact subset of U (use exerc. 34).
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36) Let A be a compact convex set in R” and B its projection on the subspace R"~?! (identified
as the hyperplane with equation §, = 0). Show that there exist two convex functions f}, f,
defined over B, such that A is identical with the set of points (x, {) of R” where x€ B, ye R

and fi(x) < { < — £,(x).

37) Let E be a vector space ; in order that a convex set F of E x R should be formed of pairs
(x, €) such that f(x) < {(resp. f(x) < {)for a convex function f defined over a convex subset
X of E, it is necessary and sufficient that the projection of F on E should be identical with X
and that, for all x € X, the set F(x) of F that projects onto x should be a closed (resp. open)
interval unlimited to the right (i.e. not bounded above).

38) Let X be a convex set of an affine space E and p an affine linear mapping of E in a second
affine linear space E;. Write X; = p(X). For every real-valued function f defined in X and
every x; € X, let

filx) = inf f(x).

p(x)=x1

Show that if f is convex and if fi(x,) > — oo for all x,; € X, then f, is a convex function.

39) Let E be a finite dimensional Hausdorff topological vector space.

a) Let F(E) be the family of closed non-empty sets of E, carrying the uniform structure deduced
from the uniform structure of E by the proceedure of GT, 11, § 1, exerc. 5, a). Show that, the set
C(E) of non-empty closed convex sets of E, is closed in the space &(E). Deduce that if K is a
compact set in E, the set of non-empty closed convex sets in E that are contained in K, is a
compact set in C€(E) (¢f. GT, § 4, exerc. 11).

b) Let 8, (E) be the set of compact convex subsets of E that contain 0 as an interior point.
For every set A € 8,(E), let p, be the gauge of A (II, p. 20). Show that A + p, is an isomor-
phism of the uniform subspace ,(E) of €(E) on a subspace of the space %.(E ; R) of continuous
real valued functions in E, carrying the uniform structure of compact convergence (GT, X,

§1.6).

40) In a topological vector space E, let U be a convex neighbourhood of x, and let f be a
real-valued continuous convex function in U. Show that there exists a convex neighbourhood
V = U of x, and a convex continuous function f; in E such that f,|V = f|V.

T 41) Let H be a hyperplane in a vector space E that does not contain 0 and let S be a convex
set contained in H.
a) Suppose that the intersection of S with each line in H is a compact segment. Let a, b be
two distinct points of E such that there exist two numbers A > 0, p > 0 for which
b 4+ uS < a + AS; show that if ¢ is the point where the line joining @ and b meets the hyper-
plane H' parallel to H which contains @ + AS, then ce b + uS and b + pS is the image of
a + AS by a homothety of centre ¢ transforming a into . (Reduce to the case where E is of
dimension 2.)
b) With the same hypotheses on S, let a, b be two distinct points of E and suppose that there
exists a point ¢ € E and three numbers A >0, p>0, v>0 such that (a +AS) N (b +pS)=c +VS.
Show that if A (resp. B) is the cone with vertex a (resp. b) generated by a+AS (resp. b +uS),
and H” the hyperplane parallel to H passing through ¢, then H' n A n B = {c} (use a)).
c) Suppose that H is the affine linear variety generated by S. Let C be the cone with vertex 0
generated by S. Show that the following two conditions are equivalent :

o) E is a lattice for the order on E of which C is the set of elements > 0.

B) For any points x, y of E and numbers A > 0, p > 0 such that the set (x +AS) N (y +pS)
is not empty, there exists z € E and v > 0 such that this set is z + vS.

(To prove that o) implies B), reduce to the case y = 0 and use the fact that if (s;) is a finite
family of points of Sand (1) is a family of real numbers such that ) A5, = 0, then }_ A, = 0.

To prove that B) implies o) use b)).

When S satisfies the equivalent conditions o) and B), we say that S is a simplex in E. When
E is of finite dimension, the convex envelope of a finite set of points affinely independent in H
and generating H is a simplex * (the converse is also true : ¢f. INT, II, 2nd ed,, § 2, exerc. 7)). ,
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42) Generalise the prop. 18 of II, p. 16 to the case of an ordered set E with a Hausdorff topology
for which the intervals (@, — (and) «, a) are closed for all a € E.

43) Let K be a complete valued division ring of which the absolute value is an ultrametric.
In a left vector space E on K, we say that a set A is u/traconvex if the relations x e A, y € A,
A <1, Jul < 1 imply Ax + py e A

a) Generalize the prop. 1, 2, 5, 6, 7 of I, p. 8 and p. 9. Show that the smallest ultraconvex
set containing a given set M is the set of linear combinations Y A,x,, where x, e M and |A,| < 1

for all .

b) Suppose that E is a topological vector space over K. Show that the closure of an ultra-
convex set is ultraconvex, and that an ultraconvex set with a non-empty interior is open.

¢) Let A be an absorbent and ultraconvex set in E. Show that if, for all x € E, we put
p(x) = inf |p|, then p is an ultra-semi-norm on E (II, p. 2). Generalize prop. 23 of II, p. 20,

xepA
to the case where the absolute value of K is obtained from a discrete valuation.

§3

1) Let P be a proper pointed convex cone, with vertex 0, in E a vector space over R and p
be a semi-norm on E and V the set of points x € E for which p(x) < 1. Let M be a vector sub-
space of E and f be a linear form on M. There exists a linear form g on E, which extends f
and is such that it is > 0 in P and |g(x)| < p(x) for all x€E, if and only if, for all
xeM n (V + P), we have f(x) > — 1. (To see that the condition is sufficient consider a
point x, € M such that, f(x,) = 1, the cone Q of vertex 0 generated by x, + V, and apply the
cor. of the prop. 1 (II, p. 21) to the space E carrying the relation of preorder for which P + Q
is the cone of elements > 0.)

2) For a set S let F = #(S) be the Banach space of the real-valued bounded functions in S
(1, p. 4) and let M be a vector subspace of a normed space E. Show that, for every continuous
linear mapping f of M in F, there exists a continuous linear mapping g of E in F, that is an
extension of f and such that ||g|| = | f].

3) Let E be a vector space over R and let p be a sublinear function on E (I, p. 20). Let A be
a convex set such that inf p(y) > — oo.
yeA

a) Show that the function
q(x) = inf (p(x + tz) — t.in{p(y))
ye

zeA;t=0
is a sublinear function on E such that — p(— x) < q(x) < p(x).
b) Show that there exists a linear form # on E such that A(x) < p(x) in E and that
inf p(y) = inf A(y) (take A such that A(x) < g(x)).

yeA yeA

4) Let A be a non-empty set of E, a vector space over R, and p a sub-linear function on E. Let
B be the set of z € E such that inf p(x — z) < 0; we have A = B and inf p(x) < p(z) for all

xeA xeA
z e B; from which inf p(x) = inf p(z).
xeA zeB
a) Show that the set of the y € E such that inf p(z — y) < 0 is the set B.

zeB
b) Deduce from a) that the intersection of B and any affine line D in E is closed in D (show

that, whatever the points a, b of E, the function ¢ — p(a + tb) is continuous in R).

¢) Suppose that for each pair of points x, y of A there exists z € A such that p(z — 4(x +)) <0.

Show that, for each pair of points u, v of B we have 4(u + v) € B (write
z—3u+0)=(z-3x+y)+ix—w+iy—v

for x, y, z in A). Deduce that B is then convex (use b)).
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d) Under the hypotheses of ¢), show that there exists a linear form 4 on E such that A(x) < p(x)
and that we have inf p(y) = inf A(y) (use ¢) and exerc. 3).
yeA

yeA

5) Let A be a non-empty subset of a vector space E over R aﬁd let p be a sublinear function
on E. Suppose that, for every pair of points x, y of A, there exists z € A such that p(z—(x +)) <0
and that p(x) > Oforall x € A. Show that there exists a linear form % on E such that 4(x) < p(x)

in E and that 4(x) > 0 for x € A. (Apply exerc. 4, ¢) to the union of the % A for n (integer) > 1.)

6) a) Let H be a hyperplane in E a vector space over R and let p be a sublinear function on E.
Let f be a linear form on H, such that f(y) < p(y) in H. Let a be a point of (| H, and let A
be the linear form on E which extends f and is such that 4(a) = 1nf (f(y + p(a — ). Then

h(x) < p(x) in E. Show that for every linear form g on E extending f and such that g(x) < p(x)
in E, we also have g(a) < A(a).

b) Let V be a vector subspace of E and f a linear form on V such that f(y) < p(y)in V. Let
S be a non-empty set of E. Show that there exists a linear form 4 on E that extends f, such that
h(x) < p(x)in E and that there is no other linear form g on E extending f such that g(x) < p(x)
in E that is distinct from 4 and such that g(x) > A(x) in S. (Consider the set & of pairs (V', 1)
where V' is a vector subspace containing V and " a linear form on V' extending f and such that
f'(z2) < p(2) in V' and further such that there is no other linear form f” on V' with the same
properties and such that f”(z) > f'(z2) in S n V. Order & and use @) and th. 2 of S, IIL § 2.4.)

7) Let T be a commutative monoid (A, I, § 2.1) carrying a preorder relation x < y such that
ifx < ythenx + z <y + zforallze T. A mapping f of Tin R U { — o0} is called additive
(resp. subadditive, resp. superadditive) if we have

S +») =) + () (resp. f(x +») < f(x) + f(), resp. f(x +) = f(X) + f(»)

for any x, y in T.
a) If g is subadditive and increasing in T, then the function 4(x) = inf g(nx)/n is subadditive
n>0

and increasing; we have 2 < g and A(0) = 0 if g(0) > 0

b) Under the same hypotheses suppose that there exist two elements x,, x, of T and two
real numbers &,, &, such that §; < g(x,), &, < g(x,) and g(x;, + x,) < &, + &,. Let y,,
Y252y, 2, befour elements of T, let n, , n, be two integers > 0 and let o, , o, be two real numbers
such that

n& +g(z) <oy, y, <nx, +2z
ny&, + 9(z;) < 0y, ¥, < MyX, + 2,

Show that then g(n,y, + n,y,) < n,0; + n,a,.

¢) Let o be a superadditive function on T such that ®w(0) = 0, and let Q be an increasing
subadditive function on T such that o(x) < Q(x) in T. Show that there exists an increasing
additive function f on T such that w(x) < f(x) < Q(x) in T. (Remark that the set of increasing
subadditive functions g on T such that w(x) < g(x) < Q(x) in T is non-empty and inductive
for the relation >, and take a minimal element of this set for f; show using a) that
f() = 0. To show that there cannot exist pairs of elements of T, (x,, x,) such that
f(x1 + x,) < f(x;) + f(x,) remark that if §;eR, and h;(x) = inf(ng; + f()’)) where n
varies in the set of integers > 0 and y in the set of elements of T such that x < nx; + y, then
h; is increasing and subadditive in T (j = 1, 2), hj(x;) < §; and Ay(x) < f(x) for all x eT.
Then use the definition of f and part b) to obtam a contradlctlon)

% *8) a) Let K be a non-discrete valued division ring of which the absolute value is an
ultrametric, non linearly compact (cf. CA, 111, § 2, exerc. 15) ; then there exists a well ordered set I
of numbers > 0 and a family (B(p))pEl of closed balls in K such that the relation p < p’ implies
B(p) = B(p’), that B(p) has radius p and that the intersection of the B(p) is empty (CA, VI, § 5,
exerc. 5). For every x € K, there exists p € I such that x ¢ B(p); show that the number ¢(x) =
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|x—y| for a y € B(p) depends neither on y € B(p), nor on p € I such that x ¢ B(p). If p e I is such
that x € B(p) then ¢(x) < p. This being so, for (x,, x,) € K2, put ||(x,, x,)| = |x,] ifx% = 0,and
[(x1 x2)| = Ix,] d(x5 'x;) if x, # 0. Show that ||(x,, x,)|| is an ultranorm on K? (I, p. 26,
exerc. 12) and show that there does not exist any projection of norm 1 of K2 on K x {0}.
b) Let K be a complete non-discrete valued division ring of which the absolute value is an
ultrametric and which is /inearly compact. Let E be a vector space of dimension 2 on K with
an ultranorm and let D be a line in E; show that for all points x € E, there exists y € D such
that d(x, D) = d(x, y) = ||[x—y| (note that the intersection of D and of a ball of centre x
is a ball in D).
¢) Deduce from a) and b) that for a complete non-discrete valued division ring K, of which the
absolute value is an ultrametric, the following properties are equivalent :

a) K is linearly compact.

B) For every ultranormed vector space E on K, for every vector subspace F of E and every
continuous linear form f on F there exists a continuous linear form g on E that extends f and
is such that |lg|l = [I.f|l. (Reduce to the case where E is of dimension 2 and use b).) ,,

§ 4

1) Let E be a vector space and A a convex symmetric convex subset of E. Let 7, ' be two
locally convex topologies on E and %, %’ be the uniform structures defined by 4, ' on E.
In order that the uniform structure induced on A by %’ should be finer than that induced by %,
it is necessary and sufficient that every neighbourhood of 0 for the topology induced on A by I
should be a neighbourhood of 0 for the topology induced on A by .

2) a) Give an example of a non-compact closed set in R?, whose convex envelope is not closed.
b) Show that, in R”, the convex envelope of a compact set is compact (cf. I, p. 66, exerc. 9, a)).

47 3) Let I be the compact interval [0, 1] of R and F be the vector space €(I, R) of continuous
real valued functions defined in I. Let E be the product space RF; for all a e 1, let g, be the
element of E such that g,(f) = f(a) forall f € F.

a) Show that, when x varies in I, the set K formed b1y the g, is compact in E.

b) Let A be an element of E such that A(f) = f(t) dt for all fe F (Lebesgue measure).

Show that, in E, A belongs to the closure of the coonvex envelope of K but does not belong to
this convex envelope (¢f. FVR, II, p. 7, prop. 5).

4) With the notations of I, p. 72, exerc. 1 suppose also that the space E is locally convex.

a) There exists a positive continuous linear form g in E that extends £, if and only if f is bounded
below in M n (W + P) for at least one neighbourhood W of 0 in E.

b) Given a point x € E, there exists a positive continuous linear form g in E such that g(x) = 1,
if, and only if, — x ¢ P.

5) a) Let E be an infinite dimensional normed space and  be its topology. Show that there
exists on E a normed space topology 7 ' that is strictly finer than that of 7 and a normed space
topology < ” that is strictly coarser than that of 7 (define the neighbourhoods of 0 for these
topologies, using a basis of E put in the form (a, ,) where o varies in an infinite set of indices A
and 7 in the set of integers > 0 and where ||a,,| = 1 for the given norm on E).

b) Let p be the norm defining the topology 7 '. Show that, if E is complete for the topology
7, then p cannot be lower semi-continuous in E for the topology  (use Baire’s th. cf. 111,
p. 25, corollary). Deduce that the convex set A defined by the relation p(x) < 1 does not
contain any interior point for 7~ even though all its points are internal.

¢) Deduce from b), that, if E is complete for the topology 7, then there exists in E convex
sets which are not closed for 7, of which the intersection with every linear variety of finite
dimension is closed for 7 (cf. II, p. 67, exerc. 12).
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6) Let E be a vector space with its finest locally convex topology.

a) Show that every vector subspace of E is closed, and that, if M, N are two subspaces that
are vectorial complements in E, then E is the direct topological sum of M and N. If (¢, is a
basis for E, then E is the direct topological sum of the subspaces Re,.

b) Let F be a locally convex space whose topology is also the finest locally convex topology.
Show that every linear mapping of E in F is a strict morphism.

7) a) Let A be a convex set with at least one interior point in a topological vector space E.
Show that the set of internal points of A is identical with the interior of A (¢f. exerc. 5, b)).

b) Show thatin the normed space E = /!(N), the convex cone P defined in IL, p. 66, exerc. 11, b),
generates E but does not contain any internal point.

8) Let E be a vector space with an enumerable basis and with the finest locally convex topology.
Show that, if A is a set in E whose intersection with every vector subspace of finite dimension
is closed in E, than A is closed in E (cf. exerc. 5, ¢)).

4" 9) Let E and F be two vector spaces each with its finest locally convex topology.

a) Show that if E and F each have an enumerable basis then every bilinear mapping of E x F
in a locally convex space G is continuous (use Du Bois-Reymond’s th. FVR, V, p. 53, exerc. 8)).
b) If one of the spaces E, F has a basis with cardinal equal to that of the continuum, show that
there exists a non-continuous bilinear form in E x F. (Reduce to the case where E = R™),
F = RN, so that F can be identified with E* and the bilinear forms on E x F correspond
bijectively with the linear mappings of E* in itself; then consider the identity mapping of E*,
and note that in RN, a compact set for the product topology cannot be absorbent.)

10) Let (E,) be an infinite sequence of locally convex spaces and let E be the topological direct
sum of the family (E,). Show that the topology of E is identical with the topology .7, defined
in I, p. 24, exerc. 14.

11) Let I be an infinite non-enumerable set. On the vector space E = R®, show that the finest
locally convex topology is distinct from the topology 7, defined in I, p. 24, exerc. 14; for this
prove that the set of the x = () € Esuch that |} &, | < l isopenin 7 butnotin 7,

el
12) Let E be a vector space with an enumerable basis (e,). Let V be the balanced convex
envelope of the set of the e, and let W be the balanced convex envelope of the set of points

a,=¢, +n—1e m=1)

Let 7, (resp. 7,) be the locally convex topology on E for which a fundamental system of
ne1ghbourhoods of 0 is formed by the AV (resp AW) for A > 0. Show that 7, and 7, are
Hausdorff, but that the lower bound of 7, and 7, in the set of locally convex topolog1es on E
is not Hausdorff (¢f. II, p. 80, exerc. 26).

13) With ghe hypotheses of I1, § 6, show that E is complete for topology .2~ which is the inductive
limit of the J,,, if and only if, for each integer n and every Cauchy filter § on E, for the topology
induced by 7, there exists p > n such that § is convergent in E, for the topology

14) Let E be the strict inductive limit of an increasing sequence of locally convex spaces E,
(IL, p. 33). Show that the topology of E is the finest of the topologies compatible with the vector
space structure of E, whether locally convex or not, and inducing on E,, a coarser topology than
the given topology 7,. (Let V, be a neighbourhood of 0 for such a topology Z and(V,),s,, 2
sequence of nelghbourhoods ofO for 7 such that vV, , + V,i1 = V, foralln > 0; for all
n = 1, consider, in E,, a convex neighbourhood W, of 0 that is contained in E,n Vn, and
take the convex envelope of the union of the W, in E)

15) Let I be an infinite non-enumerable set. Let §(I) be the family of finite subsets of I and E
the direct sum space R®. For every J € &(1), let F, be the subspace R’ of E, the product of the
factors whose indices belong to J, with the product topology ; let g, be the canonical injection
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of F; in E. Show that there exists a topology .7, on E that is compatible with the vector space
structure of E, which make the g, continuous and which is strictly finer than the finest locally
convex topology J which makes the g, continuous. (Note that the set V of the x = (§),,
in E such that ) |§|'/? < 1 is a neighbourhood of 0 for a topology compatible with the vector

el
space structure of E, not containing any absorbent, symmetric, convex set.)

16) a) Let E be a vector space with an enumerable basis. Show that the finest locally convex
topology on E is the finest of the topologies on E (compatible or not with the vector space
structure of E) which induces the canonical topology on every finite dimensional subspace
of E.
b) Let E, be an infinite dimensional Banach space. Let E be the vector space that is the direct
sum of E; of R™ and let E, be the subspace of E that is the direct sum of E; and of R” (identified
as the product of the first p factors of R™; we give to E, the product topology of those of its
factor, so that the topology of E, is induced by that of E,, . ;. Show that on E the inductive limit
topology of those of the E is not the finest of the topologies (compatible or not with the vector-
space structure of E) which induces on each E, a coarser topology than that of E,. We can
proceed as follows :

o) Let g be a norm on E, which defines a topology strictly coarser than that of E, (I1, p. 74,
exerc. 5). Forevery € >0 define a mapping f, of E, in R, by the relation f(x) =sup(g(x), € — || x|}).
Show that f; is continuous and > 0 in E; and that inf f(x) = 0.

lixil=¢
B) Let U be the subset of E formed by the (x, (z,)) such that ¢, < f;,,(x) for all n. Show that
UnE, is open in E, for all p.
y) Show that if V = U is an absorbent convex set, then V n E,, cannot contain any ball
with centre 0 in E,.

17) For a subset A of a commutative group G, written additively, and for each » > 0 denote

the set of elements of the form Y, x;, where x; € A for all i by + A. We say that the set A
i=1
of G is convex if, for every integer n > 0 the relation nx € + A implies x € A.
a) Show that if a commutative topological group G (written additively) is isomorphic to
a subgroup of the additive group of a locally convex vector space (with the induced topology)
then there exists a fundamental system of symmetric convex neighbourhoods of 0 in G.
b) Conversely, let G be a Hausdorff topological commutative group (written additively) in
which there exists a fundamental system, B, of symmetric convex neighbourhoods of 0. Show
that G is without torsion, and, hence, can be considered (algebraically) as a subgroup of the
additive group of a vector space on the field Q (A, IL, § 7. 10, cor. 1 to prop. 26). For every set
V e B, let V be the set of elements X where x € V and r varies in the set of rational numbers
such that 0 < r < 1; show that V is symmetric and convex (in the sense defined above).
Deduce, further, that if there is no open subgroup of G distinct from G itself, then the sets V
form a fundamental system of neighbourhoods of 0 for a topology compatible with the vector
space structure of E on Q (Q being given its usual topology) ; conclude that in this case G is
isomorphic to a subgroup of the additive group of a Hausdorff locally convex space.
¢) Let G be the group R x R ordered lexicographically (A, VI, p. 7) ; consider the Hausdorff
topology 7 ,(G) on G that is compatible with its group structure (GT, IV, § 1, exerc. 1). Show
that for this topology there exists a fundamental system of symmetric convex neighbourhoods
of 0, but that G is not isomorphic to any subgroup of the additive group of a Hausdorff topo-
logical vector space over R.

§ 5

1) a) Let E be a vector space. We say that a pointed convex cone C (of vertex 0) in E is maximal
if C is a maximal element of the set of convex pointed cones of vertex 0 and # E, ordered by
inclusion. Show that a pointed convex cone C is maximal if, and only if, it is a closed half-space
defined by a hyperplane which passes through 0. To establish this result, prove successively the
following properties of a maximal pointed convex cone C;
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o) We have C U (— C) = E (argue by obtaining a contradiction).

B) Ifzisanon-internal (II, p. 26) point of C then — z € C(same method). Deduce that C con-
tains internal points.

v) The largest vector subspace H = C n (— C) contained in C is a hyperplane. (Passing to
the quotient space F = E/H, this reduces to demonstrating, using B) that if all the points of C
other than the vertex are internal, then E is necessarily of dimension 1.)

b) Give an example of a maximal non-pointed convex cone (in the set of non-pointed convex
cones of vertex 0) which has no internal point (cf. II, p. 65, exerc. 5).

2) Let N be a hyperplane in a vector subspace M of a vector space E and let A be a convex
set in E, such that all the points of A n M are on the same side of N and which also possesses
the following property; for any y # 0 in E, there exists x€ A n M such that x + Ay e A
for all A such that |A| is sufficiently small. Show that there exists then, a hyperplane H of E such
that all the points of A are on the same side of H and such that H n M = N. (Reduce to the
case N = {0}; if a # 0 belongs to A n M, consider the set U of pointed convex cones with
vertex 0 containing A and not containing — «; show that there exists a maximal element C
of U and that C is a maximal pointed convex cone (exerc. 1)). Deduce a new proof of the Hahn-
Banach theorem.

3) Let A be a convex set in a topological vector space E and x, be a point of E. Then, there
exists a closed hyperplane H, containing x,, and such that all the points of A lie on the same
side of H if and only if there exists a non-pointed convex cone C with vertex x,, which contains
at least one interior point and does not meet A. (For an example of a convex set A # E which
is not contained in any half-space defined by a hyperplane, see II, p. 65, exerc. 5.)

4T 4) Let E be a normed space and A a complete convex set for the uniform structure induced by
that of E.

a) Let x’ be a continuous linear form on E that is bounded in A. Consider a number k > 0
and the closed convex cone P in E, with vertex 0 and formed by the x € E such that
x| < k< x, x" );itis pointed and proper. Show that for the order on E for which P is the set
of elements > 0, the set A is inductive (use the fact that the restriction of x’ to A is increasing
and bounded).

b) Deduce from a) that the set of points of the frontier F of A which belong to a support hyper-
plane of A is dense in F (Bishop-Phelps th.). (For each point z € F, consider a point ye} A
arbitrarily close to z, and separate y strictly from A by a closed hyperplane of equation
{x, x'> = o, with ||x'|| = 1 and use a) with k& > 1, also exerc. 3 above.)

5) Let A be a closed convex set in R” and x, be a point of (} A ; denote the euclidean distance
in R" by d.

a) Show, without using th. 1 of I, p. 36, that there exists one and only one point x € A such
that d(x,, x) = d(x,, A), and that the hyperplane orthogonal to the line joining x, and x,
and passing through x is a support hyperplane of A.

b) Deduce from a) a new proof of th. 1 of I, p. 36 when the space E is finite dimensional.
(Reduce to the case when M is a frontier point x, of A ; note that the lower bound of the distance
of x, from support hyperplanes of A, is zero, and use the compactness of S, _,.)

4T 6) Let A be a closed set in R” with the following properties ; for every x € R”, there exists
one and only one point y € A such that d(x, y) = d(x, A), where d is the euclidean distance.
Show that A is convex. (Argue by reductio ad absurdum, considering a closed segment with
end points @, b in A containing a point ¢ € [} A ; there is a closed ball B of centre ¢ contained
in j A ; consider the set B of closed balls S which contain B and whose interiors do not meet
A; show that the radii of these balls is bounded above, and deduce that there exists one of
these balls S, whose radius p is the largest possible. Then get a contradiction by proving that
S, can only meet A in a single point, and that this implies the existence in B of a ball
of radius > p.)

7) In a Hausdorff locally convex space E, let A be a complete, convex set and let B be a pre-
compact closed convex set such that A n B = (. Show that there exists a closed hyperplane
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separating A from B (argue in the completion E). Consider the case when A is finite dimen-
sional.

8) Ina Hausdorfflocally convex space, let A and B be two closed convex sets, without common
points, such that C, n Cy = { 0 } (I, p. 67, exerc. 14), and such that B is locally compact. Show
that there exists a closed hyperplane separating A from B (¢f. I, p. 67, exerc. 16). Similarly, if
A and B are two closed convex cones of vertex 0, such that A » B = {0} and B is locally
compact, then there exists a closed hyperplane passing through 0 and separating A from B
(use lemma 1 of II, p. 39).

9) Deduce from exerc. 8 that if V is a finite dimensional vector subspace of E and C is a closed
convex cone of vertex 0 in E such that C n V = {0}, then there exists a support hyperplane
of C that contains V (use lemma 1 of II, p. 39).

10) In the normed space E = /!(N) of summable sequences of real numbers x = (£,),.n
let D be the line defined by the relations £, = 0forn > 1. Show that there exist two increasing
sequences (a,), (B,) of real numbers > 0 such that the convex set A defined by the inequalities
&o = |o,E, — B,lforn = 1is closed, non-bounded does not meet D and that there is no closed
hyperplane separating A from D (choose o, and B, so that A — D is everywhere dense).

*11) a) Let E be a Hilbert space and F an everywhere dense subspace of the dual E’ of E
that is distinct from E’; the unit ball B of E is compact for the weak topology o(E, F), and
there exists a point a of the unit sphere through which passes no closed (in o(E, F)) support
hyperplane of B.

b) Give E the topology o(E, F) and consider, in the product space G = E x R the set A of
pairs (x, {) such that ||x|| < 1, = [x|/1 — [x]). Show that A is closed and locally compact,
but that if D is the line with equation x = ain G then D n A = ¢ and there does not exist
any closed hyperplane in G separating A from D.

¢) Show that, when we give E the topology o(E, F), there exists a continuous affine real valued
function in the subspace B of E, that is not the restriction to B of a continuous affine function
in E.

12) Consider in R3, the closed convex cone C defined by the relations £, 20, &,=0,
£2 < £,&,. Show that the line D of equations &, = 0, £; = 1 does not meet C, but that there
is no plane through the origin 0 containing D and not meeting C—{0}.

13) Let A and B be two closed convex sets in the space R”, such that if V and W are affine
linear varieties generated by A and B respectively, then no point of A n B is both interior
to A relative to V and interior to B relative to W. Show that there exists a hyperplane separating
A from B. (By taking quotients, reduce it to the case where either one of the varieties V, W is
contained in the other or V and W are complementary vector subspaces in E.)

14) Let A be a parabolic closed convex set (II, p. 67, exerc. 17) not containing a line. Show that
if B is a closed convex set not meeting A then there exists a hyperplane in R” that separates
A strictly from B (if d is the Euclidean distance prove that d(A, B) > 0)(cf. exerc. 12.)

15) LetS, T two finite sets in R” with no common points, and such that Card(S U T) > n + 2.
In order that there exists a hyperplane separating S strictly from T, it is necessary and suffi-
cient that for every finite set F = S U T of n + 2 points, there exists a hyperplane separating
F S strictly from F n T (use Helly’s th. (II, p. 68, exerc. 21)). Show that in this statement we
cannot replace the number » + 2 by n + 1, and that the statement does not extend to the
case where S and T are infinite.

16) Let A be a compact set with interior points in R"”. Show that if each frontier point of A
lies on at least one support hyperplane of A, then A is convex. (Obtain a contradiction, showing
that if x and y are two points of A such that the segment with end points x, y is not contained
in A, and if z is an interior point of A not situated on this segment, then there exists a frontier
point of A, distinct from x and y in the triangle with vertices x, y, z.)



§5 EXERCISES TVS 11.79

17) In R let A be a symmetric convex set of which 0 is an interior point and of which the
frontier does not contain any genuine segment. Let H be a homogeneous hyperplane and D
a line complementary to H. Show that there exists a point « € H n A such that at a there is
a hyperplane of support to A that is parallel to D.

18) In a topological vector space E, let A; (1 < i < n) be n open non-empty convex sets.
a) Show that if the union of the A, is distinct from E, then every point x € E not belonging
to any of the A;, belongs to a closed linear variety of codimension #, that contains x and does
not meet any of the A, (argue by induction on n).

b) 1If the intersection of the A; is empty, show that there exists, in E, a closed linear variety of
codimension n — 1 that does not meet any of the A; (same method).

19) Let C, C’' be two closed convex sets in a Hausdorff topological vector space E that are
strictly separated by a closed hyperplane H. Let H' be a closed hyperplane of support to
both C and C’ such that C and C' lie on the same side of H'. Show that H' is the only hyper-
plane with these properties which contains H n H' and that H n H' is a support hyperplane
of the trace P on H of the convex envelope of C U C'. Conversely, if C and C’ are compact,
then for every support hyperplane D of P in H, there exists a hyperplane H' that supports both
C and C’, which contains D and such that C and C’ lie on the same side of H'.

4T 20) Let A, B be two disjoint closed convex sets in a HausdorfT locally convex space E and
let H be a closed hyperplane separating A from B; suppose that A n H # ¢ and that the
intersection of A n H and of every line is compact. Show that, if A or B is locally compact,
then there exists a neighbourhood V of 0 in E such that (A + V) n B is empty. (Consider
two cases according to whether A or B is locally compact; in the first case, note that there
exists a hyperplane H' parallel to H such that, if S is the set of points between H and H’, then
A N S is compact. In the second case, suppose for example that 0 € B n H; for every neigh-
bourhood V of 0 in E, consider the set (A + V) n B and consider successively the case where
this set is re)latively compact for at least one V or the case when this is not so, as in exerc. 16
of II, p. 67.

4 21) a) InR"letq, (1 < i < n + 1)ben + 1 points that are affinely independent. Denote
the convex envelope of the g; by S and the convex envelope of the a; with i # k by F,

for1 < k < n + 1.Foreachk let C, be a compact convex set containing F,, and suppose that
n+1

S is contained in the union of the C,; show then that N C, # . (Argue by reductio ad
k=1

absurdum and induction on n, considering the intersection C,, ; of the C; with indices i < n
and supposing that C,,;, n C,,, = &, which would allow the strict separation of the two
convex sets by a hyperplane.)

b) Let X be a compact convex set in a Hausdorff topological vector space E, and (C,),, a
family of compact convex sets contained in X, such that for every set H = L having n (resp. m)
elements, the intersection (resp. the union) of the C, with indices A € H is not empty (resp. is

equal to X). Show that if m < n + 1 the intersection M C, is not empty. (This is effectively
AeL

proving that for any finite set H of p > m indices of L, we have N C, # (. Argue by induc-
reH

tion on p assuming that the result has been proved for p — 1 indices. Argue then by reductio
ad absurdum, considering for each index ie H a point ;€ N C,, and showing by the
AeH =i}

aid of Helly’s th. (IL, p. 68, exerc. 21) that the a; generate a linear variety of dimension p — 1,
then finally apply a).)

47 22) In R" let (C); <;<,, be a finite family of closed convex cones with vertex 0, such that
the sum of any # of them is distinct from R". Show that there exists a hyperplane H, passing
through 0, such that, for any index i no pair of points of C; are strictly separated by H. (Dis-
tinguish two cases :
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o) Either there exists a number r < »n and r indices, say, 1, 2, ..., r such that Cfori<r
generates a cone which contains a vector subspace V of dimension > r. Argue by induction
on n, projecting on the orthogonal to V.

B) Or, forallr < n, any r of the C, generate a cone C such that the maximal vector subspace
C n (= O) contained in C is of dimension < r. Consider then a set of the cones C;, maximal
with respect to being contained in a half-space ; there are at least » cones in a maximal set. Let
[ be the cone generated by the union of the cones belonging to this maximal set. If C; is a cone
which does not belong to the maximal set considered, show that C; ¢ — I'. For this, argue
by reductio ad absurdum, showing that in the contrary case there exists a frontier point of
— T (relative to the vector subspace generated by I') that is interior to C; (relative to the vector
subspace generated by C;). Write such a point as the sum of the least number s of vectors, of
which each belongs to a cone — C;, among those C; used in defining I ; then s < n — 1. Prove
finally that these cones and C; generate a convex cone containing an s + 1 dimensional vector
subspace, contradicting the hypothe51s for this use exerc. 4 of II, p. 65.)

23) Let E be a topological vector space, and let J be the locally convex topology on E that
is the finest of all those that are coarser than the given topology 7, on E. If F is a locally convex
space, then the continuous linear mappings of E in F are the same for 7, as for 7. There
exists a continuous linear form on E that is distinct from the null form if, and only if, there
exists a neighbourhood of 0 for 7, whose convex envelope is not everywhere dense (for 7,)
(cf I, p. 25, exerc. 4).

24) Let E be an infinite dimensional, metrisable, locally convex space.

a) Show that there exists a sequence (a,) of points of E tending to 0 and a decreasing sequence
(L,), of closed vector subspaces of E, such that L, is of codimension » in E and that, for all »,
the point a, belongs to L,—~L, ;.

b) Suppose further that E is complete. Show that we can then find sequences (a,) and (L,)
verifying the conditions «), and such that in addition, for every bounded sequence of real
number (1,), the series, whose general term is A,a,, is commutatively convergent in E, and that
the linear mapping (§,) — Z &,a, of the Banach space #(N) in E is injective and continuous.

¢) Deduce from b) that when E is an infinite dimensional Fréchet space then every basis of
E on R has cardinal at least equal to 227®™ (¢f I, p. 22, exerc. 5).

If there exists an enumerable set that is dense in E, then every basis of E has the cardinal
of the continuum.

25) Let E be an infinite dimensional Fréchet space of enumerable type (therefore having an
enumerable everywhere dense subset) (cf. I, p. 25, exerc. 1). Show that there exists an everywhere
dense hyperplane H of E which meets every closed, infinite dimensional linear variety of E.
(Use the existence of a basis, having the cardinal of the continuum, in each of the direction
subspaces of these varieties (exerc. 24, ¢)) and the fact that the set of closed, infinite dimensional,
linear varieties of E also has the cardinal of the continuum (GT, IX, § 5, exerc. 17); then apply
a method of construction of a linear form on E following from S, III, § 6, exerc. 24.) The hyper-
nlane H does not contain any infinite dimensional, closed, vector subspace.

41 26) Let E be an infinite dimensional Fréchet space of enumerable type.

a) Show that there exists a sequence (a,) of linearly independent elements of E such that
each sequence (a,,) and (a,,, ) is total (use exerc. 24, ¢)).

b) Let F be the vector subspace of E generated by the a,,,, (n € N). For every n > 0 let M,
be the subspace generated by the a,, with k < n. For each n, let ¢, be the restriction to F of
the canonical homomorphism of E on E/M,, and let 7, be the topology on F which is the
inverse image under ¢, of the quotient topology, on E/M,. Show that each of the topolo-
gies 7, on F is a Hausdorff locally convex topology, but that the lower bound of the .7, in the
set of locally convex topologies on F is the coarsest topology on F.

* ¢) Take E to be a Hilbert space; show that we can choose the sequence (a,) so that if G
is the closed vector subspace generated by the a,,,,, then G has infinite codimension and
so that the images of the a,, and the a,, , ; in E/G are still linearly independent. Write G,, for
the subspace of E that is the sum of G and of the subspace generated by the a,, , ; with k < n,
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and give to G, the topology which is the inverse image under the canonical mapping res-
tricted to G,,, of the quotient topology on E/M,. Show that the sequence (G,) is an inductive
system of topological vector spaces such that G, is closed in G, , for the topology of G, ;,
but that G, is not closed in the inductive limit space of this sequence. ,,

4" 27) LetE, F be two Hausdorff topological vector spaces, and X (resp. Y) a compact convex
set in E (resp. F). Let f be a real valued function defined in X x Y with the following pro-
perties :

(i) For all x € X, the mapping y — f(x, ) is lower semi-continuous in Y, and for all ce R,
the set of the y e Y such that f(x, y) < ¢ is convex.

(i) For all y €Y, the mapping x — f(x, y) is upper semi-continuous in X, and for all
c e R, the set of the x € X such that f(x, y) > c is convex.

Show that, in these conditions, we have

sup(inf f(x, y)) = in‘f(su’lg fx ).

xeX yeY

(Argue by reductio ad absurdum, supposing that there exists a number ¢ such that

sup(inf f(x, y)) < ¢ < inf(sup f(x, »)).
xeX yeY yeY xeX

Forall x e X (resp. all y € Y) let A, be the set ofy € Y such that f(x, y) > c(resp. B, the set of
the x € X such that f(x, y) < ¢), Wthh is open in Y (resp in X); the A, (resp. the B ,) form a
covering of Y (resp. X) when x varies in X (resp. y varies in Y). Show that there exist two finite
sets X, = X, Y, = Y such that : 1° for all y belonging to the convex envelope B, of Y,,, there
exists x € X, such that f(x, y) > ¢, and X, is minimal for this property ; 2° for all x belonging
to the convex envelope A, of X,, there exists y € Y, such that f(x, y) < ¢, and Y, is minimal
for this property. Then for all y € Y, let C, be the set of x € A, such that f(x, y) > c¢; using
exerc. 21, a) of I, p. 79, show that the intersection of the C, for y € Y, is not empty. Proceed
in the same way in B, and obtain a contradiction.)

4 28) Let X be a compact convex subset of E a Hausdorff locally convex space, and let f
be an upper semi-continuous convex function in X. Show that the set L of continuous convex
functions g in X such that g(x) > f(x) for all x € X is decreasing directed and that its lower
envelope is equal to f. (Let u, v be elements of L. To construct an element of L which is less
than u and v, use reasoning analogous to that of prop. 6, II, p. 40. Interpret the set K, analogous
to the set K in this argument as the set of points situated above the graph of a lower semi conti-
nuous function that is less than « and v and strictly larger than f at every point; apply prop. 5
of I, p. 39 and Dini’s th. to this function. To show that the lower envelope of L is f, note that
S is bounded above by a constant b; (x, ) being a point of E x R situated above the graph
of f, let K’ be the convex envelope of { (x, #) } U (X’ x {b}), where X’ is a convenient compact
neighbourhood of x in X; argue with K’ as above for K, .)

29) Let X be a compact convex set in a Hausdorff locally convex space E. Let u be a lower
semi-continuous convex function in X and v an upper semi-continuous concave function in
X such that u(x) > v(x) for all x € X. Then there exists an affine linear function f that is
continuous in E and such that v(x) < f(x) < u(x) for all x e X.

30) Let X be a compact convex set of a Hausdorff locally convex space E. Show that the set
of lower semi-continuous convex functions in X is a lattice.

§ 6

1) Let F, G be two vector spaces in duality, such that o(F, G) is Hausdorff. Show that if 7 is a
Hausdorff topology compatible with the vector space structure of F and coarser than o(F, G)
(but not necessarily locally convex a priori), then J = o(F, G,), where G, is a vector sub-
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space of G, dense in the topology o(G, F). (Consider on F the locally convex topology 7
in which a fundamental system of neighbourhoods of 0 is formed by the closed, convex, balanced
sets in J which are neighbourhoods of 0 for o(F, G).) Deduce that if 7, is a Hausdorff locally
convex topology on a vector space E, that is minimal in the set of Hausdorff locally convex
topologies on E (II, p. 85, exerc. 13) it is also minimal in the set of topologies (locally convex
or not) that are Hausdorff and compatible with the vector space structure of E.

2) In R", let (C)), <;<,, be a family of m = n + 1 convex cones with vertex 0; show that if,
for any n + 1 of these cones there exists a hyperplane H through 0 and such that the cones
lie on the same side of H, then there exists a hyperplane H, such that a// thecones C;(1 < i < m)
lie on the same side of H, (¢f. 11, p. 68, exerc. 21, a)).

3) In R” let (D,); <i<m be a family of m > 2n closed half-spaces determined by hyperplanes
passing through 0. Show that if, for any 2» of these half spaces, there exists a point # 0 in their
intersection, then there exists a point # 0 in the intersection of all the D; (1 < i < m) (¢f. 11,
p. 66, exerc. 10).

4) Let S, T be two finite sets in R”, without common points, such that their union contains
at least 2n + 2 points. Then there exists a hyperplane separating S from T if, and only if, for
every finite set F < S U T of 2n + 2 points, there exists a hyperplane separating F n S from
F n T (use exerc. 3 and the method of 11, p. 78, exerc. 15).

5) Let E be the vector space of quadratic forms on R”, which is identified with the vector
subspace of symmetric square matrices in the space M,(R) of square matrices of order n on R.
We endow M, (R) with the scalar product Tr(*X.Y), which enables us to identify it with its
dual and similarly for E.

a) Let P < E be the set of quadratic forms for which the matrix has all elements > 0, and let
S < E be the set of positive quadratic forms in R”. Show that we have P = P° and S = S°.

b) Let B be the set of quadratic forms on R” that can be written in the form Z x’2 for same m,

where x} is a linear form that takes values > 0for all x = (x;), ¢;<, of coordmates x;all = 0;
let C be the set of quadratic forms that are > O for all the vectors x =(x;) with coordmates
x; all = 0. Show that B = C° and C = B° (prove that B is closed, showing that every element

of B can be written in the form Z x}Z, with x; positive for all x with coordinates > 0, and
i=1

m < 2").

6) Let F, G be two vector spaces in separating duality, and A a weakly compact convex set
in F. Let C be a convex cone with vertex 0, that is weakly closed in G. Suppose that, for all
y e C, there exists x € A such that {(x, y> > 0. Show that there exists x, e A such that
{xq,y> = 0for all y e C (apply prop. 4 of I, p. 38, to A and C°).

M 7) a) Let F, G be two vector spaces in separating duality and C a weakly closed convex
cone in F. Let M be a finite dimensional vector subspace of G. Show that, either there exists
Yo € C such that y, € M° and y, # 0, or there exists z, € M such that z, € C° and z, # 0
(argue by induction on the dimension of M). If C does not contain any line and if the two pre-
ceding properties are simultaneously satisfied, show that z, cannot be an internal point of C°.
b) Let the two matrices (a;;), (b;;) with real entries in n rows and m columns, be such that

. > 0 for every pair (i, j ). Show that there is a unique value of A € R such that there are two
vectors x = (x;) e R™, y = (y;) e R" satisfying the relations x # 0, y #0, x; 20, y, > 0
for all i, j and ﬁnally such that

(1) AY ax;= Yy byx; for 1<i<n
j j=1

) AZ a,y; < Zbuyl for 1<j<m.

i=1 i=1
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(Putting ¢;; = Aaq;; — b;; for 1 <i<n 1<j<m and ¢,,,;; = §; (Kronecker’s index)
for 1 < i < m show that the problem reduces to finding a vector x e R™ and a vector
z = (z;) e R**™ which are non null and satisfy the relations

cijijO for 1 <i<n+m

3

C))

¢;zz=0 for 1 <j<m

ANoERNat

I
-

i

and z; > Ofor 1 < i < n + m. Remark that, if (3) has a solution for one value A, of A, then
it also has a solution for A > A, and that if (4) has a solution for A, then it also has a solution
for A < A,. Finally use a).)

4 8) Let T be a compact space and L a vector subspace of (T ; R), that is of finite dimen-
sion r; give to L the norm induced by that of (T; R) and to its dual L* the norm
x|l = sup <x, x'),so thatif B is the ball x| < 1in L, then B° is the ball |[x'|| < 1 in L*.

Ixll<1
a) Forall t € T, write e, for the linear form x — x(#) on L. Show that B° is the convex envelope
of the set of the + e, where ¢ varies in T (obtain a contradiction using prop. 4 of I, p. 38).

Deduce that every linear form x’ € L* such that ||x'|| = 1 we can write x’ = Z Ae;,, where

i=1

the ¢, are r points of T and the A, are real numbers such that Y |A;] = 1(cf. 1L, p. 66, exerc. 9, a)).
i=1
b) For every y € 4(T; R), there exists a unique x € L such that ||y — x| = d(y, L), if and
only if for every non null z € L, there exist at most r — 1 distinct points ¢; € T such that z(¢;) = 0
(Haar’s th.). (To show that this condition is sufficient, observe first that it is equivalent to
saying that for r distinct points t;€ T (1 < i < r) the ¢;, are linearly independent in L*. Now
argue by assuming the conclusion is false and obtaining a contradiction. If there exist two dis-
tinct points x’, x” of L such that |y — x|l = [ly — x"|| = d(y, L) then there exists x, € L and
z € L such that, for all sufficiently small real A, we have ||y — (x, + Az)| = d(», L). Apply the
last part of a) to the subspace L @ Ry of €(T ; R) and to a suitable linear form on this space
which vanishes in L. To see that the condition is necessary, note that if it is not true, then there
exist r distinct points ¢; € T (1 < i < r) such that the e;, are linearly dependent and there exists
a function z € L that is not null and vanishes at the points ¢;. If o; (1 < i < r) are numbers

not all zero such that Zr: oe;, = 0, consider a function we 4(T; R) such that |w| =1,

w(t) = sgn(a;) for 1 < i< r, and the function y = w(l — |Bz|) with |B| sufficiently small and

# 0.) .

¢) Suppose that T is a compact interval in R and that L satisfies the condition of Haar’s th. ; let

(1), <i<,+1 be a strictly increasing sequence of r + 1 points of T ;then there exist » + 1 real
r+1

non zero numbers }A; such that Y Ae), = 0. Show that then sgn(};) sgn(r;,;) = — 1 for
i=1

1 < i < r.(Consider separately the case r = 1 and the case r > 1. In the second case, suppose
on the contrary, that for some index i < r — 1, the number A; is of the same sign as A;_,
oras ), and that A;_, and A, ; are of opposite signs. If, for example, A; > 0, take o,_; > 0,
;4 >0 such that o, _ A, _; +0o;,  A;,; =0, then ze L such that z(¢,_ )=o,_, 2(f;, ) =0,
and z(¢;) = O for j distinct from i — 1, i and i + 1. Deduce that z(z;) < 0 and show that this
contradicts the given hypotheses.)

d) With the same hypotheses and notations as those of ¢), suppose that there exists y € €(T ; R)
and z € L such that y(,) — z(t;) = (— 1)'o; witho; > Ofor 1 < i < r + 1. Show that we then
have d(y, L) > infa;. (Use a) applied to L @ Ry, and ¢).)

e) With the hyplotheses of ¢) let ye@(T; R), and z be the unique point of L such that
ly — z| = d(y, L). Show that there exists a strictly increasing sequence (f);<;<,+, In T
such that

W) — 2(t) = (= Dielly — z||
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with ¢ = + 1. Conversely if z has this property, then z is the unique point of L such that
ly — z|l = d(y, L). (Use c) and d)). Consider the case when T is an interval of R and when L is
the set of the restrictions to T of polynomials of degree < r (T chebycheffs th.).

9) Let Fand G be two vector spaces in separating duality and A be a convex subset of F which
contains 0. For every y € G, write

Hu(») = sup(— (%)),

XeA

so that 0 < H,(y) < + oo; we call H, the support function of A.

a) Show that H, is the gauge of A° (II, p. 20).

b) If A is weakly compact, then, forall y € G, the hyperplane with the equation{x, y> = H,(»)
is a support hyperplane of A.

¢) H, is finite and continuous for the topology (G, F) if, and only if, A is finite-dimensional
and bounded (in the finite dimensional vector subspace that it generates).

d) LetA,; (1 < i < p)beconvex setsin F which contain 0 and A, be real numbers >0(1 <i<p);
show that the support function of the convex set A = ) LA is Hy = Y AH, . fye G is

such that the intersection C,;, of A; with the hyperplane] {x,y > = Hu( yl), is non-empty for
1 < i < p, show that the intersection of A and the hyperplane with equation { x, y > = H,(»)
is the set Y, 1,C;.

e) Suppose that A is locally compact and does not contain any line. Then the set which is the
union of {0} and the set of y # 0 such that Hy(¥) = + oo, Hy(— ») # + oo is the polar cone
of the asymptotic cone C, (consider the case when A is the convex envelope of {0} and of one
half-line).

/) Suppose that F is finite dimensional. Show that, A is parabolic(IL, p. 67, exerc. 17) if and only
if H, is a continuous mapping of G in R (if there exists a line paralle to a half-line of C,, which
does not meet A, note that there exists a hyperplane separating this half-line from A).

10) To each compact convex set A in E = R” containing 0, we make correspond its support
function H, by the duality between E and E* : H, belonging to the space ¥(E*; R) of conti-
nuous real valued functions in E*. We ascribe to the space ¥(E*; R) the uniform structure of
compact convergence and, to the set K;(E) of the compact convex sets in E containing 0, the
uniform structure defined in the exerc. 39 of I1, p. 71. Show that A — H, is an isomorphism of
K, (E) on a uniform subspace of ¥(E*; R).

Deduce that the mapping A — A° of the set R (E) of compact convex sets in E which contain
0 as an interior point, on the set R ,(E*), is an isomorphism for the uniform structures of these
two spaces (¢f. II, p. 71, exerc. 39).

11) LetF, G be two vector spaces in separating duality. An ultrafilter 2 on F converges weakly
to a point x, if, and only if, x, belongs to the intersection of all the weakly closed convex sets
which belong to M (note that if x, is a point of this intersection that is not a cluster point of 11,
then there exists a closed half-space belonging to U and not containing x,).

Deduce from this result that, for a sequence of points (x,) of F to be weakly convergent to a
point g, it is necessary and sufficient that a belongs to all the weakly closed convex envelopes of
the sets formed by an infinity of the terms of the sequence (use prop. 7 of GT, 1, § 6 .4).

12) a) Let E be a vector space and (E,),.» be an increasing directed family of subspaces of E,
whose union is E ; each E, is supposed to carry a locally convex topology 7, such that for
o < P the canonical injection E, — E; is continuous. Let 7~ be the topology on E, which is the
inductive limit of the 7, (II, p. 29, Example 1) ; show that the dual E’ of E (for ) with the
topology o(E’, E) can be canonically identified with the projective limit of the duals E;, with
topology o(E,, E,).

b) Let (X,, d,p) be a projective system of non-empty sets corresponding to a directed set of
indices A, such that ¢, are surjective and that lim X, =& (S, IIL, § 7, exerc. 4). Put F,=R*®
and denote by f,; : Fy — F,for o < B the linear mapping deduced canonically from ¢,
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(A, IL § 1.11. cor. 1).If, we give to each F, the topology which is the direct sum topology of its
factors, the dual E, = F, of F,, with the weak topology o(E,, F,), can be identified with the
product space R** and 'f,, is an isomorphism of E, on a closed subspace of Eg, having a topo-
logical complement in E;. Show that on E = lim E, (for the ‘f,;) the topology which is the
inductive limit of those of E, is the coarsest topology (therefore non-Hausdorff) (using @) and
noting that li}ll F, = {0}).

13) Let E be a vector space. We say that a Hausdorff locally convex topology 7 on E is
minimal (and that E, with 7, is a space of minimal type) if there exists no Hausdorff locally
convex topology on E, that is strictly coarser than 7 (cf. II, p. 81, exerc. 1).

a) Let.J be a minimal topology on E, and let E’ be the dual of E (when E has the topology 77);
show that 7 = o(E, E') and E = E'* (note that there cannot be an everywhere dense hyper-
plane in E’ for the topology o(E’, E) using the cor. 3 of II, p. 43). Deduce that spaces of mini-
mal type are products of lines.

b) Show that in a Hausdorff locally convex space F, every subspace E of minimal type has a
topological complement, and in particular is closed (use a) and the Hahn-Banach th. for
extending the identity mapping of E in itself to a mapping of F in E).

¢) Let u be a continuous linear mapping of a space E of minimal type in a Hausdorff locally
convex space F. Show that u(E) is closed in F and that u is a strict morphism of E in F (use b)
and the definition of a space of minimal type).

d) Let F be a Hausdorff locally convex space and M be a closed vector subspace of F. Show
that, if there exists a complement N of M in F that is a subspace of minimal type, then N is
a topological complement of M in F (use ¢)).

e) Let M be a subspace of minimal type in a Hausdorff locally convex space F; show that,
for every closed vector subspace N of F the sum M + N is closed in F (consider the quotient
space F/N and use ¢)). If further N is of minimal type, then M + N is of minimal type.

14) Let E be a Hausdorff locally convex space and F a locally convex space of minimal type
(exerc. 13).

a) Show that if M is a closed vector subspace of the product space E x F, its projection on E
is closed in E (use exerc. 13, ¢e)).

b) Let u be a linear mapping of E in F. Show that if the graph of u is closed in E x F, then u
is continuous (use a)).

¢) Suppose that, in E, every closed vector subspace has a topological complement (cf. V, p. 13).
Show that, in E x F, every closed vector subspace M has a topological complement. (If N, is
the projection of M on E and N, a topological complement of N, in E, if P, = M n F, and
P, is a topological complement of P, in F, show that N, + P, is a topological complement of
M in E x F, using b))

*15) LetE, F be two Hausdorff locally convex space. We say that a continuous linear mapping
u:E — F is linearly proper if, for every Hausdorff locally convex space G and every closed
vector subspace Vof E x G theimageof Vbyu x 15:E x G —» F x G is closed. Show that
this condition is equivalent to the following : u~!(0) is a subspace of minimal type of E and
for every closed vector subspace W of E, the set (W) is closed in F. (To show that the first
condition implies the second, consider the mapping v : E — {0} and, giving E the topology
o(E, E’), so that E is immersed in E’* with o(E'*, E’), take the image under the projection
v X lga:E x E™ — E™* of the closure in E x E’* of the diagonal A of E x E. To show that
the second condition implies the first, show that it implies that, for the topologies o(E, E’) and
o(F, F’), the mapping u is a strict morphism and use exerc. 13, e).) ,

16) Let F be a product of lines and C a closed convex set in F.

a) Show that there exists x, € F, two sets [ and J and a topological isomorphism u of F on
R' x R’ such that u(x, + C) is of the form R' x A, where A is a closed convex set of R,.
(Note that we have F = G* where F has the topology o(G*, G); consider the polar C° of
Cin G, the vector subspace of G generated by C° and a complement of this subspace.)

b) If C does not contain any affine line, the mapping(x, y) — x + yof C x Cin F is proper.

¢) Suppose that C is a cone with vertex 0 and that the uniform structure induced on C by that
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of F is metrisable. Then if the sets I and J, the point x, and the mapping u satisfy the conditions
of a) then I is enumerable and there exists an enumerable subset H of J such that the restriction
of the canonical projection p:R' x R’ - R' x R" to u(x, + C) is an isomorphism of the uni-
form subspace u(x, + C) of R' x R’ on the uniform subspace p(u(x, + C)) of R' x R"

17) Let E be an infinite dimensional vector space.

a) Show that there exist hyperplanes in E* that are everywhere dense for the topology o (E*, E).
b) If H' is such a hyperplane, show that, in E, the only linear subvarieties # E that are every-
where dense for the topology of(E, H') are the hyperplanes.

47 18) a) In a normed space E, let A be a closed convex set # E; show that the function
x> d(x, } A) is concave in A (use the fact that A is the intersection of closed half-spaces).
b) Define inductively a sequence of closed convex sets A, = R" in the following manner;
A, = R, ; if R"*! is identified with R" x R, then A, ., is the set of pairs (x, &) such that

xXe /in and that
£ = (dx (A" + lIx]?,

where | x| is the Euclidean norm. Show that A, ,, does not have any support hyperplane of
the form H x R, where H is a hyperplane of R" and that its asymptotic cone is {0} x R.
o) If p,,, is the canonical projection R” — R" (R™ being identified with R* x R™™") form > n,
show that when RN is identified with the projective limit of the projective system (R”, p,,)
the A, form a projective system of sets and that A = l(il_n A, is a closed convex set not relatively
compact in RN, having no closed hyperplane of support and such that C, = {0}.

19) a) Let A be a closed convex set in E, a product of lines, that is non-compact and such
that C, = {0} (exerc. 18). Show that if B = A — A and if M is the convex closed envelope
of A U (— A), then B and M contain lines (use exerc. 16, b) of IL, p. 85).

b) Let A,, A, be two closed convex sets in E such that A, + A, is closed and none of A,
A,, A| + A, contain affine lines. Show that C, , 5, = C,, + C,, (use exerc. 16, b) of I1, p. 85).
¢) Let A be a closed convex set in E that does not contain any affine line and M,, ..., M,
closed convex sets contained in A. If B is the convex envelope of U M;, show that B=B +Z Cy,

and Cy = Y Cy, (same method).

T 20) Let F = R®, G = R* where A is any infinite set; suppose that F and G are put in
separating duality by the bilinear form {x, y> = Y. x(ot) »(o0).

acA
a) Let N be an additive subgroup of G; we denote by N* the subgroup of the x € F such that
{x, y) is an integer for all y € N and by N** the subgroup of the z e G such that {x, z) is
an integer for all x e N*. If N is the closure of N for the topology o(G, F), show that N* is
closed in F for o(F, G) and that N** = N (to establish this last point, use GT, VII, § 1.3,
prop. 6, projecting N on the finite dimensional coordinate varieties of G).
b) Suppose that A = N. Let M be a closed subgroup of F for o(F, G) ; show that if V is the
largest vector subspace contained in M, then M is the topological direct sum of V and of a
closed subgroup P that is a free Z-module having an enumerable base. (Consider F as the
union of an increasing sequence (F,) of finite dimensional vector subspace and apply GT,
VIIL, § 1.2, th. 2 and § I, exerc. 7.) P is discrete (for the topology induced by o(F, G)), if, and
only if, P is of finite rank.
¢) Deduce from a) and b) that when A = N, every closed subgroup of G (when G carries the
product topology o(G, F)) can be transformed, by an automorphism of the topological
group G, in a product R' x Z', where I and J are two sets of N without common elements.
d) In the space E = RN, carrying the topology o(E, E*), show that the subgroup ZN is closed
and does not contain any line, even though it is not a free Z-module (A, VII, p. 59, exerc. 8);
the results of b) do not therefore extend when A is not enumerable.
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§ 7

1) Let A be a convex set. Then, a point x € A is extremal in A if, and only if, for any subset
B of A, the statement x belongs to the convex envelope of B, implies that x € B.

2) With the notation of I1, p. 74, exerc. 3, let G be the vector subspace of E generated by K U {1 }.
Show that, in G, the point A is an extremal point of the closed convex envelope of K, but
that A does not belong to K (¢/. II, p. 25, corollary).

“ 3) Let A bea convex set in a vector space E, and let x be a point of A. We call the set formed
by x, and the y # x in A such that the line passing through x and y contains an open segment,
that is contained in A and contains x, the facet of x in A. The internal points relative to the
linear variety generated by A (II, p. 26) (resp. the extremal points) of A are the points whose
facet in A is equal to A (resp. is a single point).

a) Show that the facet F_ of a point x € A is the largest convex set B = A such that x is an
internal point of B (relative to the linear variety generated by B).

b) For every point y € F_, the facet F, of y in A is identical with the facet of y in F_. In order
that F, = F_, it is necessary and sufficient that y is an internal point of F_ (relative to the
linear variety generated by F ). Deduce that, if F_ is finite dimensional, and if y is a non-
internal point of F_ (relative to the linear variety generated by F,), then the dimension of F,
is strictly less than that of F,.

¢) A linear variety V in E which meets A and is such that for every x € A n V, every open seg-
ment contained in A and containing x, is necessarily contained in V, is called a support variety
of A. Show that, for all x € A, the linear variety M generated by the facet F, of x in A is the
smallest support variety of A which contains x, and that M n A = F_. For every support
variety V of A, the intersection V n A is the facet in A of each of its internal points (relative
to the linear variety generated by V n A).

d) Let A and B be two convex sets in E. For every point x € A n B, the facet of x in A n B
is the intersection of the facets of x in A and in B.

e) Let B be a closed convex set in a Hausdorff topological vector space E, and let B contain
a closed linear variety M of finite codimension #; then every facet in B of a point of B contains
a closed linear variety of codimension n (11, p. 67, exerc. 14, d)). If A is a convex set then the
facet in A n B of a point x in A n B is of finite dimension if, and only if, the facet of x in A
is of finite dimension : further if p and g are the dimension of the facet of x in A and of the facet
of x in A n B, then p < g + n. In particular if xe A n B is an extremal point of A n B,
then its facet in A is of dimension < n.

/) Deduce from e) that if A is compact, and V is a closed linear variety in E, of finite codimen-
sion », then every extremal point of V n A is a linear combination of at most n + 1 extremal
points of A.

4) In the plane R?, consider the convex set A formed by the points (£, 1)) satisfying — 1 < & < 1,
—1— /1 -8 <mn<1+,/1 — &% Show that there exist frontier points of A for which

the facet is distinct from the intersection of A and of the lines of support of A passing through
this point.

5) In the Banach space /®(N) of bounded sequences x = (§,) of real numbers, let A be the
closed convex set defined by the inequalities — 1/n < §, < 1forn > 1land — 1 <&, < 1.
Show that A has a non-empty interior, that the origin is a frontier point of A and that the
facet of 0 in A is not closed. If we give to A the topology induced by that of the product space
RN, show that A is compact but that the facet of 0 in A is not closed in A.

6) Let E, E’' be two vector spaces in separating duality, and A be a convex set in E containing 0
and closed for o(E, E'). For all a € A, the set F, of points x' € A° such that {a, x'> = — 1
is a closed (for o(E’, E)), convex set of A°. Show that F/, is the facet in A° of each of the internal
points of F), relative to the linear variety generated by F,. We say that F, is the dual jacet
of a in A°. If F, is the facet of a in A, show that F, is also the dual facet in A° of each of the
internal points of F, relative to the linear variety generated by F,; further, if A is identified
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with A°°, the dual facet in A of each internal point of F, relative to the linear variety generated
by F/, contains F,. When F, is not empty (which is always the case when E is finite-dimen-
sional and a # 0, ¢f. IL p. 78, exerc. 13), we say that each of F,, F, is the dual facet of the other.

We say that a point a € A is smooth point of A if F, is a single point (in other words if there
exists one closed hyperplane of support of A passing through a); we say that a is a point of
strict convexity (or is an exposed point) if there exists a closed hyperplane H supporting A
so that H n A = {a}; this is the same as saying that there exists an internal point of F,
(relative to a linear variety generated by F,) which is a smooth point of A°.

T 7) Let E be a vector space of finite dimension » and let A be a closed convex set in E of
which 0 is an interior point.

a) Let F and F’ be two dual facets of A and A° (exerc. 6); if F is of dimension p and F’ of
dimension ¢, then show that p + g < n — 1. For every frontier point x of A, the dimension
of the facet of x in A is called the order of x, and the dimension of its dual facet in A° is called
the class of x. The order (resp. the class) of a facet F of A is by definition the order (resp. the
class) of one of the internal points of F relative to the linear variety generated by F. An extremal
point of A is a point of order 0 ; a smooth point of A (exerc. 6) is a point of class 0.

b) A frontier point of A of class » — 1 (and hence of order 0) is called a vertex of A. Show
that the set of vertices of A is enumerable (consider the set of dual facets of the vertices of A,
GT, VI, § 2, exerc. 12).

¢) Let F be a p-dimensional facet of A, and M a linear variety of dimension n — p, which
meets F in the single point g, such that a is an internal point of F and which contains an interior
point of A. Show that, if V is a support hyperplane of M n A in M, that passes through q,
then the hyperplane H generated (in E) by F U V is a support hyperplane of A.

d) We say that a facet F of A of order p and of class g is an u/trafacet if p + q = n — 1; the
dual facet is then also an ultrafacet of A°. If a linear variety M of dimension » — p meets an
ultrafacet F in a single point that is an internal point of F (relative to the linear variety gene-
rated by F), show that this point is a vertex of the convex set M n A, and conversely (use ¢)).
Deduce that the set of ultrafacets of order p of A is enumerable. (Identify E with R", consider
the projection of A on each of the coordinate varieties of R” of dimension p; if the set of ultra-
facets of order p of which the projection on V is p-dimensional, is not enumerable, show that
there exists a point of V which is an interior point to a non-enumerable infinity of these pro-
jections considering the points of V with rational coordinates ; then use b).) Give an example
of a convex set with a non-enumerable infinity of facets, each of which is not a single point
nor an ultrafacet.

e) If all the frontier points of A are smooth, show that the mapping, which puts each point x
of the frontier G of A in correspondence with the unique point of the dual facet of x, is a con-
tinuous mapping of G on the frontier of A° (¢f. TG, I, § 9.1, corollary). In what case is this
mapping bijective ?

8) Let E be a vector space of finite dimension n and A be a compact convex set in E.

a) Let H be a hyperplane in E. Show that in an open half-space determined by H and contain-
ing at least one point of A, there exists a point of strict convexity of A (I, p. 87, exerc. 6). (Con-
sider, in H, a closed euclidean ball C of dimension n — 1 and of sufficiently large radius that
contains H n A, then the euclidean balls B of dimension » and of larger radius containing A
and such that BN H = C)

b) Show that A is the closed convex envelope of the set of points of strict convexity (use a)).
¢) Show that every extremal point of A is a cluster point of the set of points of A of strict
convexity. (Using b) and the exerc. 9, a) of I, p. 66, note that an extremal point is the limit of

n n
a sequence of points of the form ) A,,x,,, where 1, > 0, Y A,, = 1 and the x,,, are points
i i=0

i=0
of strict convexity of A; next use the compactness of A.)

9) Show that in the product space E = RN, the cube IV, where I = (0, 1}, is a compact convex
set with no point of strict convexity.

10) In the space R? show that the set of extremal points of a closed convex set A is closed
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(show that the set of points of A whose facet in A is of dimension 1 form an open set relative
to the frontier of A).

11) a) In the space R3, consider the compact convex set A which is the convex envelope of
the union of the circle { = 0, £ + n? — 2 = 0 and the two points (0, 0, 1) and (0, 0, — 1).
Show that the set of extremal points of A is not closed in A.

b) Let A be a metrisable compact convex set in a Hausdorff topological vector space E.
Show that the set of extremal points of A is the intersection of a sequence of open sets in A.
(If d is a distance defining the topology of A, then for each integer » consider the set of points
x = 3y + 2), where y, z are in A and d(y, z) > 1/n.)

12) In the Banach space /®(N), let ¢, be the sequence all of whose terms are zero except the
n-th which is 1. Let A be the convex closed envelope of the set formed from 0 and the points
e /(n + 1) (n = 0). Show that A is compact but that it is not identical with the convex enve-
lope of the set of its extremal points.

*13) In the Hilbert space /*(N), let A be the set of points x = (£,) such that we have
Y 22"¢2 < 1. Show that A is convex, compact and that it is the closure of the set of its extremal

n

points.

14) Let E be a closed vector subspace of the Banach space /*(N), formed of the sequences
x = (§,) such that lim §, = 0.

a) Show that, in the Banach space E, the closed unit ball B does not have any extremal points.
b) Let u be the continuous linear form (§,) — ). 27"¢, on E. Show that there does not exist

any support hyperplane of B that is parallel to the closed hyperplane with the equation u(x)=0.

15) Let A be a compact set in the normed space E.

a) Show that the distance apart of two parallel support hyperplanes of A is at most equal
to the diameter & of A.

b) Show that there exist pairs of points (a, ) of A such that |a — b|| = &; for such a pair of
points, there exist two parallel support hyperplanes of A passing respectively through a
and b and whose distance apart is 8 (consider the closed ball of centre a and radius §).

16) a) Let A be an n-dimensional compact convex set in the space R”, normed with the Eucli-
dean norm; for every z € S,_, denote by p(z) the upper bound of lengths of segments parallel
to the vector z and contained in A. Show that there exist two points u, v of A such that the
segment with end points u, v is parallel to z and is of length p(z); deduce that there exist two
support hyperplanes of A that are parallel and pass respectively through « and v (consider
the set A’ = A + p(2) z, and separate the sets A and A’ by a hyperplane).

b) Let d be the lower bound of the distances between two parallel support hyperplanes of A ;
show that there exist two points a, b of A such that ||a — b|| = d, and that the hyperplanes
passing respectively through a and b and orthogonal to a — b, are support hyperplanes of A
(use a)).

17) In the space /*(N), let A be the compact convex set defined in the exerc. 12 of I1, p. 89 and
let E be the closed vector subspace of /*(IN) generated by A. Show that the lower bound of
the distance between two parallel closed support hyperplanes of A in the space E is equal
to 0, even though A is not contained in a closed hyperplane of E.

18) In a Hausdorff locally convex space E, let (K,),; be a decreasing directed family of convex
sets that are compact and non-empty. For all « € I, denote the set of extremal points of K,
by A,, and by F, the closure of the union of the Ay for B > «, so that(F,) is a decreasing directed
family of compact sets. Let A be the intersection (non-empty) of the F,, and K the intersection
(non-empty) of the K,. Show that K is the closed convex envelope of A. (If f'is a continuous
linear form on E, and x, a point of F, where / attains its maximum in F,, show that f(») < f(x,)
for all y € K; then take a cluster point of the family (x,) following the filter of sections of 1.)
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T 19) In the space R" let (K,) be a family of compact sets, in number > n + 1, and such
that none of them is contained in an affine hyperplane. Suppose that for every family (u,)
of affine automorphisms of R”, if any n + 1 of the sets u,(K,) have a common point, then all
the u,(K,) have a common point. Show that under these conditions the K, are convex. (Sup-
pose on the contrary that there existn + 1 points x,, ..., X, ,, in the same set K and a point x,
which belongs to the convex envelope of the set of the x; (i > 1) but does not belong to K,,.
Note that for every index i > 1, there is an affine automorphism #, of R" and an index «;
such that x, and the x; of index j # i are extremal points of #,(K, ), and show that the n + 2
sets K, and »(K,,) have no points in common.

20) Give an example of a compact convex set K in R?, containing 0 and such that the cone
of vertex 0 generated by K is not closed in R

e 21) a) In a Hausdorff locally convex space E, let A be a locally compact closed convex
cone, that does not contain any line. Show that A is a cone of compact sole (apply prop. 2
of II, p. 55, to the vertex of A, which is an extremal point of A). Deduce that there exists a
closed support hyperplane H of A, which contains the vertex s of A and issuch that H n A = {s}.
b) Let A, B be two closed convex cones with vertex 0 in E, that are locally compact and do
not contain a line. Show thatif A n B = {0}, then A — B is a closed, locally compact, cone
not containing any line (method as in II, p. 67, exerc. 16). Deduce that there exists a closed
hyperplane that supports both A and B, that separates A from B and such that
HnA=HnB={0}.

¢) Give an example of a locally compact closed convex cone A such that A — A is not locally
compact (¢f. II, p. 78, exerc. 11).

d) Let A be a locally compact closed convex set in E, which does not contain a line. Let x,
be a point of A, C, the asymptotic cone of A (¢f I, p. 67, exerc. 14) and H a support hyper-
plane of x, + C, passing through x, and such that (x, + C,) " H = {x,}. If f(x) = a is
the equation of H and if f(x) > a in x, + C,, then show that for every real number b, the
set of the y € A such that f(y) < b is compact.

4 22) By an extremal ray of a convex subset A of a vector space E we mean a closed half
line D contained in A, such that, for all x e D and every open segment with end points a, b
in A, and which contains x, it is necessarily the case that a e D and b € D the end point of
D is an extremal point of A.

a) In a Hausdorff locally convex space E, show that every locally compact closed convex
set, not containing a line, is the closed convex envelope of the union of its extremal rays and
its extremal points. (Suppose the contrary, and writing B for this closed convex envelope,
note first that by exerc. 21, d), there exists a closed hyperplane H so that H n A is compact
and non-empty and H n B = . Show then that ifa € H n A is an extremal point of H n A
(therefore not an extremal point of A by hypothesis) and if the open segment S with end
points b, ¢ contained in A and not contained in H, contains a, then the line D containing S
necessarily contains a segment containing @ and whose end points are extremal points of A,
or contains an extremal ray of A containing a.)

b) Prove that if E is finite dimensional, then every closed convex set in E, that does not contain
any line, is the convex envelope of the union of its extremal points and its extremal rays (argue
by induction on the dimension of E).

23) In R3, consider a closed convex set A with an interior point, whose fonction F contains
two open segments S, T lying in two non-parallel lines D, D’ (the points of S, T are thus non-
extremal in A), and all of whose other frontier points are extremal (one shows how to define
such convex sets). For every x € R, put f(x) = (d(x, D))%. Let B the convex closed set in
R* = R3 x R formed by the pairs (x, {) such that x € A and { > f(x). Show that in B the set
of extremal points, the union of the extremal rays, the set of end points of extremal rays, and
all the unions of two or three of these sets are not closed and non-empty.

47 24) In R", every intersection of finitely many closed half spaces (resp. of closed half-spaces
determined by hyperplanes passing through the same point) is called a polyhedron (resp. a
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polyhedral cone). A convex set C = R" is locally polyhedral in a point x € C if there is a neigh-
bourhood V of x in C which is a polyhedron.

a) Show that, if a closed convex set C = R" is locally polyhedral at a point x € C, then the
cone with vertex x generated by C is polyhedral.

b) Show that a compact convex set in R” that is locally polyhedral at each of its points is a
polyhedron (use a)).

c) Let P = R” be a closed convex set with an interior point. Show that the following condi-
tions are equivalent :

a) P is a polyhedron.

B) P has only a finite number of facets (II, p. 87, exerc. 3).

v) P is the convex envelope of a set which is the union of finitely many points and finitely
many closed half lines.

(To show that o) implies B) take P as the intersection of the smallest possible number of closed
half spaces, and show that the hyperplanes defining these half-spaces are generated by facets
of dimension n — 1 of P. To show that B) implies y), argue by induction on ». Finally, to see
that y) implies o), consider the polar P° of P.)

d) Show that every convex polyhedron P can be written in the form Q + C,, where Q is a
compact polyhedron and C, the asymptotic cone of P. A non compact polyhedron cannot
be parabolic.

e) Show that every facet of a convex polyhedron is an ultrafacet (II, p. 88, exerc. 7, d)) (argue
by induction on n).

4 25) a) Let C = R” be a closed convex cone with vertex 0. Show that the projections of C
on every 2-dimensional subspace of R” are closed if and only if C is a polyhedral cone (exerc. 24).
(Reduce to the case when C contains no line : argue by induction on n using the existence
of a compact sole S of C (II. p. 90. exerc. 21, a)), and project onto a hyperplane parallel to a
line joining 0 to an extremal point of S, and deduce that S is locally polyhedral (exerc. 24).
b) Deduce from a) that, if we give R” the order for which C is the set of elements > 0, then,
every positive linear form on any vector subspace F of R" can be extended to a positive linear
form on R" if, and only if, C is a polyhedral cone (apply a) to the polar cone C°). If C is the
cone in R? generated by the (&, &,, £3) such that &, = 1, &5 > (£3) 7, and F is the subspace
3 = 0 give an example of a positive linear form on F that cannot be extended to a positive
linear form on R?3.
¢) Let A be a polyhedron in R". Then, the convex envelope of A U B is closed for every poly-
hedron B, if and only if, A is compact (use exerc. 24, d)).

26) a) Let E be a Hausdorfl, locally convex space and let A be a cap of a convex set C in E.
If se C is a point not belonging to A and if B is the cone with vertex s generated by A show
that the closure of B " (C n [JA) is a cap in B.

b) Suppose that E is finite dimensional. Show that every cap A of a closed convex set C in E
can be obtained in the following manner : consider a facet F of C (II, p. 87, exerc. 3) and a
hyperplane H in the affine linear variety V generated by F, such that F is entirely on one side
of H, take as A the set of points of F contained between H and a hyperplane H' of F parallel
to H (use a) and prop. 4 of I1, p. 38). Every extremal point of a facet of C is an extremal point
of C.

¢) Give an example of a compact convex set C in a Hausdorff locally convex space E and
of a cap A of C such that A and C n [JA each generate E and that A and C n [JA cannot be
separated by a closed hyperplane of E (¢f. II, p. 78, exerc. 11).

27) Let C be a closed convex set in a product of lines, E, and let a be an extremal point of C.
Show that for every neighbourhood V of a in C, there exists an open half-space F in E such
that ae F n C = V. (Reduce to the case when C is compact.)

28) Let I be a non enumerable infinite set. Show that every cap of the cone RY, in R! is con-
tained in the sum of subspaces of the form R’, where J is an enumerable subset of I (use prop. 4
of I, p. 38). Deduce that there are points of R, which do not belong to any cap of R, , even
though R, is the convex closed envelope of the union of its extremal generators.
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29) a) Let(E,) be a sequence of Hausdorff locally convex spaces and E = [ | E, their product.

Ineach E ., let C, be a convex cone with vertex 0 and A, a cap of C,. Show that there exists a cap
of C = [| C, which contains [| A, (argue as in prop. 5 of I1, p. 59).

b) Let (E,, ¢,,) be an enumerable directed projective system of Hausdorff locally convex
spaces and let E = lim E, be its projective limit. For all n, let C, be a convex cone of vertex 0
such that (C,) is a projective system of sets. Show that if, for each », the set C, is the union
of its caps, then this is also true of C = Jl_m C, (use a)). In particular, if the C, are cones with
compact soles then C in the closed convex envelope of the union of its extremal generators.

30) Let E be a Hausdorff locally convex space and A a cap of C, a closed convex set in E.
Show that if @ € A is an extremal point of A then the facet F of a in C (I, p. 87, exerc. 3) is of
dimension < 1 (use exerc. 26 of II, p. 91). Deduce that F n A is a cap of C.

o *31) Let X be the compact interval (0, 1} of R and @ the set formed from the continuous
real valued functions defined in X and the functions ¢ — |t — a| ™% whereae X and 0 < o < 1
(we put 07 = + oo for o > 0). In the space .# (X) of measures on X, let .#," be the set of
the measures p = 0 such that all the functions of ® are p-integrable.

a) Give .44 the uniform structure induced by the product structure of R®. Show that .,
is a proper convex complete cone for this uniform structure. (Note that for every function
J € @ there exists g € @ such that, for all >0, there exists u € 6 (X ; R) such that 0< /' —u<eg.)
b) Show that the cone .#," has no extremal generator. (Observe that if p e .#, , then all
the measures A such that 0 < A < p belong to ,‘i/‘;.)

¢) Show that the set S of the p e .#," such that p(1) = 1 is a sole of the cone .#, and a sim-
plex in R® (II, p. 71, exerc. 41).

32) Let E and F be two Hausdorff locally convex spaces, let A be a convex subset of E, and
u a linear mapping of E in F.

a) The inverse image under u of a support variety of u(A) (II, p. 87, exerc. 3, ¢)) is a support
variety of A.

b) If A is compact and u is continuous, then every extremal point of u(A) is the image under
u of an extremal point of A.

¢) If A is a locally compact cone with vertex 0 and if u is continuous then every extremal
generator of u(A) is the image under u of an extremal generator of A.

@7 33) Let E be a Hausdorff locally convex space and A a subset of E.

a) Denote by I'((A) the set of points x € E such that, for every continuous linear mapping
u of E in a finite dimensional vector space, the image u(x) belongs to the convex envelope
of u(A). This comes to the same as saying that for every closed linear variety V of E con-
taining x and of finite codimension n > 0. there exists a subset of A having at mostn + 1 ele-
ments, and of which the convex envelope meets V. Show that I',(A) is a convex set containing
A, that T'j(I'y(A)) = I',(A) and that T'j(A) is contained in the closed convex envelope of A
(use prop. 4 of II, p. 38).

b) Let (x,),q be a family of elements of A and (),),., a family of positive numbers such that
Y A, = 1 and that the family (A,x,) is summable in E. Show that the sum s = ) A,x, belongs

ael

ael

to T'y(A). (With the aid of @) reduce to the case where E is of finite dimension and identical
with the linear variety generated by the A,x, ; then argue by reductio ad absurdum, considering,
for every finite subset J of I, a closed hyperplane H, that passes through s and does not meet
the convex envelope of the set of the x, such that ceJ, then using the compactness of the
unit sphere in a finite dimensional space.)

¢) Show that if A is compact. then I';(A) is identical with the convex closed envelope of A.
d) If K is a compact convex set in E, and A the set of its extremal points show that K = I'((A)
(use exerc. 22, b) of 11, p. 90, and exerc. 32).

e) With the notations of II, p. 74, exerc. 3, let A be the set formed of the €., where x varies in
the set of rational numbers such that 0 < x < 1. Show that I',(A) is distinct from the convex
envelope of A and from the convex closed envelope of A.
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e 34) Let S be a closed convex set of E, a Hausdorff locally convex space, and A a subset
of S such that S = [',(A) (exerc. 33), and let S, be the convex envelope of A (so that S = S,).
Let N be a closed convex subset of E containing a closed linear variety of finite codimension,
M =SnNand My, =S, N.

a) Show that M = M,,. (Note, using exerc. 33, ), that every closed linear variety of finite
codimension in E, containing a point x € M, meet M, and use the prop. 4 of I, p. 38.)

b) Suppose that for every finite subset F of A, the intersection of N and of the facet (in S)
of each point of the convex envelope of F, is compact or of finite dimension and does not
contain a line. Show then that M is the convex closed envelope of the set of its extremal points.
(By the aid of a), this reduces to proving that every point of M, is contained in the convex
closed envelope of the set of extremal points of M. Use exerc. 3. e) of I, p. 87, the Krein-Milman
th. (I, p. 55) and exerc. 22, b) of 11, p. 90.) Deduce that every closed support hyperplane of
M contains an extremal point of M.

35) Let I be a non enumerable set, write E = R and E' = E x R. Denote the canonical
basis of E by (e,),; and let s be the element (0, 1) of E'. Define a separating duality between
E and E', by <e,, ey> = 8,4, {e,, s> = 1 for all a € 1. Let C be the pointed cone R, in E.
a) Show that the topologies induced on C by o(E, E’) and by the norm p(x) = ) |x,] on E
coincide. ael
b) Show that the uniform structure induced on C by o(E, E’) is not metrisable.

36) Consider the space E = R™, with the weak topology 6(R™, RY); let C be the closed
convex cone in E formed by the points x = (x,) such that x, > 0 for all n.

a) Let x = (x,) be a point of C and let J be the finite set of integers n for which x, > 0; if
m is the number of elements of J, then let A be the set of the points y = (y,) of C such that
y,=0fornel and ) yx;' < m. Show that A is a cap of C containing x.

kel
b) Show that there does not exist a cap B in C such that C is the union of the sets #nB for n > 0.
(Let p be the restriction of the gauge of B to C; p will be finite in C and, if (e,) is the cano-
nical basis of E, we have p(e,) > 0 for all n (II, p. 58, prop. 4), and the points z™ = ¢, /p(e,)
belong to B; but show that there exists z’ € RN such that the sequence ({ z™, z' }) is not bounded.)

37) Let F be the Banach space /*(N) of summable sequences x = (x,) of real numbers and
let E be the space of sequences y = (,) which tend to 0; we give F the weak topology o(F, E)
where E and F are in separating duality using the form B(x, y) = Y x,,.

a) Let C be the convex cone in F formed of the points x = (x,) suc'il that x, = 0 for all n.
Show that C is closed in F.
b) Let A be the set of the x = (x,) € C such that ) x, < 1. Show that A is a cap of C, that

is metrisable for the topology induced by that of F:I and that C is the union of the sets nA for
n > 0.

¢) Show that a sole of C is not compact (such a set S would be the set of the x = (x,) e C
such that ) z,x, = I, where (z,) € E and z, > 0 for all n. If e,, = (3,,,),50, the points z e

belong to S, but do not form a relatively compact set in F).

d) Show that C is not metrisable for the topology induced by that of F (use Baire’s th., noting
that there is no point in A that is an interior point relative to the subspace C).

38) Let E be a HausdorfT locally convex space and X a compact convex set in E. Denote by
o/ (X) the set of continuous affine functions in X (not necessarily restrictions to X of conti-
nuous affine functions in E, ¢f I, p. 78. exerc. 11). For every real valued function fthat is bounded
above in X, put f(x) = inf(/(x)) for all x € X where / varies in the set of function of .« (X)
such that /1 > f. "

a) Show that f is an upper semi-continuous concave function. If f itself is upper semiconti-
nuous and concave, then f = f (cf. 11, p. 39, prop. 5).
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b) Suppose that f is upper semi-continuous. Show that f is the lower envelope of the func-
tion g, when g varies in a set of functions that are continuous in X of which f is the lower
envelope.

¢) For all xeX, write .#, for the set of finite families p = ((i;, x;)) where the x; are points
of X, the u; are numbers > 0 satisfying Z p; = 1, such that x = Z u;x;. For each real valued

function f bounded above in X, put f (x) = sup Y, W f(x;) for all xeX. Show that f’ is
aconcave function in X and that f’ < f. pett

d) Suppose that f is continuous in X. Given & > 0, let (U,), <, <n be a covering of X by convex
open sets such that the relations xe U,, y e U, imply the inequality |f(x) — f(»)| < &. Put
A, =U, and, for k> 1, A, = U, n (U, uU, U U;u...u U,_),). Show that, for all xeX,
there exlsts a family p = ((pk, A,()) of N terms belongmg to ., with x,eU, for ] <k <N
such that Z pef(x) = f'(x) — 2¢ (if we have the inequality ZA S() = f’(.\') — €. group

the y; belongmg to the same A, together).

e) Deduce from d) that when f is continuous then /" is upper semi-continuous and f’ = f.
(If 20 is an ultrafilter on X finer than the filter of the neighbourhoods of a point x € X and
if f'(») > r for all the points y of a set belonging to 1, show that f'(x) > r — 2g, by making
a family p e .#, correspond to each y, which satisfies condition d) and proceeding to the
limit through 21

39) Let H be a closed hyperplane in a Hausdorff locally convex space E, that does not con-
tain 0 and let S be a compact simplex contained in H (IL, p. 71, exerc. 41).
a) Let C be the cone with vertex 0 generated by S. Show that lf(x )ier and (1)), are two finite

families of points of C such that Z x; = Zy then there exists a finite famlly (Zi)gjyerx s

of points of C such that x; = ) z; for all 72T and y; = z;forall jeJ (argue by induction
jel iel

to reduce to the case I = J = {1, 2}).

b) Let f be a convex, upper semi-continuous function in S. Show that the function f (defined
in exerc. 38) is an affine function. (First reduce to the case where f is continuous by using
exerc. 38, b) and II. p. 81, exerc. 28. Next use the fact if f is continuous, then f = f’ (exerc. 38,
¢)), and show that f” is convex using @) to bound f"(a;x; + a,x,) above whena, > 0, &, > 0
o, +o, =1)

>

40) Let X be a compact convex set in E, a Hausdorff locally convex space, and let f be an
upper semi-continuous function that is bounded below. Let g be a lower semi-continuous
concave function, such that g > f Show (with that notations of exerc. 38) that g > f (Reduce
to the case where in)t;(g(x) — f(x)) > 0. If (f,) is a decreasing directed family of continuous

functions such that f = inf(f,), show that then also inf(g(x) — f,(x)) > 0 for « > «,, and
xeX

so reduce the problem to the case where f is continuous. Then use exerc. 38, e).)

41) Let S be a compact simplex contained in a Hausdorff locally convex space E (II. p. 71
exerc. 41), and f an upper semi-continuous convex function that is bounded below. Let g
be a lower semi-continuous function that is concave and such that g > f.

a) If we write u = f v=—(—9) ]" then u and v are affine functions such that u < v (use
exerc. 39, b) and exerc. 40).

b) Show that there exists an affine function A, continuous in X and such that f<h <

(D. Edwards’ th.). (We can replace f by u and g by v. Construct three sequences (u,,), (b,,,)
(h, ) of affine functions such that in X, the function u,, is upper semi-continuous, the function

v,, is lower semi-continuous and the function 4, is continuous and

1 1 1
u-z—msum<hm<vm<v+2—m and ||h,,, — h,| gz”“'

Use exerc. 29 of I, p. 81, for this.)
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§8

1) Extend the results of exerc. 8 of I1, p. 83 to the spaces € (T ; C) and to their finite dimensional
subspaces.

2) Show that, when z varies in the unit disc |z] < 1 in C, then the convex cone generated by
the points (z, z2, ..., z") in the spaces C", is the whole of the space C". (Note that there cannot
- n

exist complex numbers ¢, not all zero (I < k < n) such that Z( Y. ¢,e*®) > 0for0 < 0 < 27,
k=1

2n
using the fact that J eM%d@ = 0 for every integer k # 0.)

0
3) For the topological vector spaces on H, the division ring of quaternions, give the defi-

nitions and properties corresponding to those of this paragraph.



CHAPTER III

Spaces of continuous linear mappings

In this chapter, all the vector spaces under consideration are vector spaces over a
field K, which may be R or C.

We recall (I, p. 2) that a semi-normed space is a vector space E endowed with a
semi-norm p and with the topology defined by p. Let  be a real number > 0. The
set of all x € E such that p(x) < r is called the ball (closed) of radius r of E (or of p).
When r = 1, this ball is also called the unit ball.

§ 1. BORNOLOGY IN A TOPOLOGICAL VECTOR SPACE

1. Bornologies

DEFINITION 1. — A4 bornology on a set E is a subset B of the set of all subsets of E
satisfying the following conditions (c¢f. GT, X, § 1.2, Remark 2).
(B1) Every subset of a set of B belongs to B.
(B2) Every finite union of a set of B belongs to B.

We say that B is covering if every element of E is contained in a set which belongs
to B, or. which is the same, if B is a cover of E.

Example. — Let E be a metric space; the set of all bounded subsets of E (GT, IX,
§ 2, No. 2) is a covering bornology on E. Let G be the group of isometries of E ; the set
of all subsets M of G such that for every x € E, the set M.x is a bounded subset
of E, is a covering bornology on G.

If B is a bornology on a set E, a subset B, of B is said to be a base of B if every
set of B is contained in a set of B,.

The intersection of a family of bornologies on E is a bornology: consequently
for every subset © of ‘B(E), there exists a smallest bornology containing &; this
bornology is said to be generated by S and admits as a base the set of finite unions
of sets of S. If E and E’ are two sets. and B (resp. B’) a bornology on E (resp. E’),
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the product bornology is the bornology on E x E’ which admits the sets M x M’
as a base, where M € B and M’ e B".

DEFINITION 2. — Let E be a vector space. A bornology B on E is said to be convex,
if for every X € B and t € K, the homothetic set tX and the convex balanced envelope
I'(X) (II, p. 10) of X belong to B.

If X and Y are two subsets of E, we have

X+Yc2I(XUY)
AX < tI'(X) for |A| < t.

Consequently, if B is a convex bornology on E, if A is a bounded subset of K
and if X, Y belong to B, then X + Y e B and A. X e B.

2. Bounded subsets of a topological vector space

DEFINITION 3. — Let E be a topological vector space. A subset A of E is said to be
bounded if it is absorbed by every neighbourhood of 0 in E (I, p. 7, def. 4).

In order that A be bounded, it is sufficient that A be absorbed by every neigh-
bourhood of a fundamental system of neighbourhoods of 0. Since there exists a
fundamental system of balanced neighbourhoods of 0 (I, p. 7, prop. 4), this is the
same as saying that, for every neighbourhood V of 0 in E, there exists A € K such
that A = AV.

Suppose the topology of E is defined by a fundamental system I' of semi-norms
(IL, p. 3); then a subset A of E is bounded if and only if every semi-norm p € I' is
bounded on A.

In particular, if E is a semi-normed space, a subset A of E is bounded if and only
if it is contained in a ball. In other words, if E is normed this means that A is bounded
for the metric space structure of E (GT, IX, § 2, No. 2).

Remarks. — 1) If E is a semi-normed space, the balls form a fundamental system
of bounded neighbourhoods of 0 in E. Conversely, if E is a locally convex topological
vector space, and if there exists a bounded neighbourhood of 0 in E, this neighbourhood
contains a convex balanced neighbourhood W, and the gauge of W is then a semi-
norm defining the topology of E.

Thus, if E is locally convex and metrizable, and if its topology cannot be defined
by a single norm, then there exists no distance on E defining its topology and such
that the bounded subsets for d (GT, IX, § 2, No. 2) are the bounded subsets of E. More

2 precisely, for every distance @ on E, which is translation invariant and which defines
the topology of E, the bounded subsets of E are bounded for 4 (III, p. 38, exerc. 3),
but the converse is false.

2) Let M be a vector subspace of E endowed with the induced topology. In order
that a subset of M be bounded in M, it is necessary and sufficient that it be bounded
in E.

3) Let N be the intersection of all neighbourhoods of 0 in E, so that E = E/N is the
Hausdorff vector space associated with E. Then N is bounded ; if t :E — E is the canoni-
cal homomorphism then a subset B of E is bounded if and only if &(B) is bounded.

4) Let E be a Hausdorff locally convex space ; then for every x # 0 in E, there exists
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a continuous semi-norm p such that p(x) # 0; this semi-norm is not bounded on the
real half-line R, .x generated by x. Hence no non-null subspace of E is bounded. In
particular, a bounded subset does not contain any line.

DEFINITION 4. — Let E be a locally convex space. A bornology B on E is said to be
adapted to E, if it is convex, is composed of bounded subsets of E and if the closure of
every set of B belongs to B.

PROPOSITION 1. — Let E be a locally convex space. The set of bounded subsets of E
is an adapted bornology.

We need to establish the following properties :

a) If B is a bounded subset of E, every subset of B is bounded.

b) The union of two bounded subsets is bounded.

¢) Every set that is homothetic to a bounded set is bounded.

d) The closed convex balanced envelope (11, p. 13) of a bounded subset is bounded.

If p is a continuous semi-norm on E, the balls of p are convex, balanced, closed
and the set homothetic to a ball is a ball. Hence, if p is bounded on two subsets X
and Y of E, it is also bounded on the closed convex balanced envelope of X U Y,
and on the sets homothetic to these. This establishes properties b), ¢) and d), and a)
is obvious.

DEFINITION 5. — Let E be a locally convex space. The set of all bounded subsets
of E is called the canonical bornology of E.

If B is a set of bounded subsets of E, then there exists a smallest bornology ‘B
adapted to E and containing B. The sets of B are those that are contained in a
set homothetic to the closed convex balanced envelope of a finite union of sets of B.

Every adapted bornology is contained in the canonical bornology.

PROPOSITION 2. — In a locally convex space E, every precompact set is bounded.
Let A be a precompact subset of E, and V be a convex balanced neighbourhood
of 0. There exists a finite sequence (a,), <;<, of points of A such that

Ac U (g +V).
1<i<n
Since B = {a,,...,a,} is bounded, there exists a scalar A such that 0 < A < 1

and AB = V; we have AA < AB + AV = V + V, from which the proposition
follows.

COROLLARY. — In a locally convex space, the set of points of a Cauchy sequence is
bounded.

In fact, this set is precompact (GT, IL, § 4, No. 2).

Remark 5. — In general the bounded subsets of a locally convex space E are not all
precompact (for example, if E is an infinite dimensional normed space, its unit ball
is not compact (I, p. 15, th. 3)). However, this is so if E is a weak space (I1, p. 42) : for
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the Hausdorff topological vector space associated with E is then isomorphic to a sub-
space of a product K! whose bounded subsets are precompact (cf. I11, p. 4, cor. 2).
For other examples, see IV, p. 18.

PROPOSITION 3. — Let A be a subset of a locally convex space E. Suppose that A
is bounded; then for every sequence (x,) of points of A and for every sequence (X,)
of scalars tending to 0, the sequence (\,x,) tends to 0. Conversely, if there exists a
sequence (\,) of non-zero scalars such that for every sequence (x,) of points of A, the
sequence (\,x,) is bounded, then A is bounded.

Suppose that A is bounded. If (A,) is a sequence of scalars tending to 0, and V is
a neighbourhood of 0, we have A,A = V whenever » is large enough, and the first
assertion follows.

Conversely, if A is not bounded and if (A,) is a sequence of scalars # 0, then there
exists a continuous semi-norm p and a sequence (x,) of points of A, such that
n

2l

n

. We have then that p(A,x,) > n, and the sequence (A, x,) is not bounded.

P(X,,) 2 n“‘n n’n
COROLLARY. — A subset A of E is bounded if and only if every countable subset of A
is bounded.

3. Image under a continuous mapping

PROPOSITION 4. — Let E and F be two locally convex spaces and f:E — F a conti-
nuous mapping. Assume that f(0) = 0 and that there exists a real number m > 0
such that f(Ax) = A"f(x) for every . > 0. Then, if A is a bounded subset of E, f(A)
is bounded in F.

In fact, if V is a neighbourhood of 0 in F, then f~!(V) is a neighbourhood of 0
in E. If A is bounded in E, there exists A > 0 such that A = Af ~!(V) and this implies
that f(A) = A™V.

COROLLARY 1. — Let E and F be two locally convex spaces, and u:E — F be a conti-
nous linear mapping. If A is a bounded subset of B, then u(A) is bounded in F.

COROLLARY 2. — Let E = [] E; be the product of a family of locally convex spaces.
iel
Then a subset of E is bounded if and only if all its projections are bounded.
More generally :

COROLLARY 3. — Let E be a vector space, (F)),, a family of locally convex spaces
and f; a linear mapping from E into F, (for iel). Suppose E is assigned the coarsest
topology (locally convex) for which all the f; are continuous (11, p. 26). Then, for a
subset A of E to be bounded, it is necessary and sufficient that f(A) is bounded in F,
for all iel.

In fact, if A is bounded, so are the f,(A) (cor. 1). Conversely, if the f{(A) are bounded

and if p is a continuous semi-norm on E, then there exists a finite subset J of I and
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a family (g;),.,, where g; is a continuous semi-norm on F;. such that p < sl}:}) (q;°f)

consequently p is bounded on A.

COROLLARY 4. — Let E, (1 < i < n) and F be locally convex spaces. and f be a

n
continuous multilinear map from || E, into F. If B, is a bounded subset of E,, for
i=1

1 < i< n. then f(][] B,) is bounded in F.

i=1

COROLLARY 5. — Let E and F be two locally convex spaces and u:E — F be a conti-
nuous polynomial mapping. If A is a bounded subset of E, then u(A) is bounded.

4. Bounded subsets in certain inductive limits

PROPOSITION 5. — Let (E,), be a family of Hausdorff locally convex spaces. and
let E be the topological direct sum of this family (11, p. 29). In order that a subset B
of E be bounded, it is necessary and sufficient that there exists a finite subset J of 1
such that pr(B) is bounded in E, for i€ J and pr(B) = {0} for all i ¢ J.
Let J be a finite subset of I. Since the topology of E induces the product topology
on][ [ E;(IL, p. 30, prop. 7 and p. 31, prop. 8), it follows from I11, p. 4, cor. 2 that the con-
g

dition is sufficient.

Conversely, let B be a bounded subset of E. Then pr,(B) is bounded for all i (II1,
p. 4, cor. 1). Therefore it is enough to prove that there exists a finite subset J of I
such that pr(B) = {0} for all i ¢ J. If not, then there exists an infinite sequence (i,)
of distinct elements of I and an infinite sequence (x,) of elements of B such that
pr; (x,) # 0. Since E; is Hausdorfl, there exists a continuous semi-norm p, on E,

such that p,(pr; (x,)) = n. Hence p = ) p,opr; is a continuous semi-norm on

n=1

E and p is not bounded on B, which is a contradiction.

PROPOSITION 6. — Let E be a locally convex space which is the strict inductive limit
of an increasing sequence (E,) of closed vector subspaces of E (I, p. 33). A subset B
of E is bounded if and only if it is contained in one of the subspaces E,, and is bounded
in this subspace.

The condition is sufficient, since the topology induced on E, by that of E is preci-
sely the given topology of E, (IL, p. 32, prop. 9). To see that the condition is necessary,
it is enough (III, p. 4, prop. 3) to prove that if a sequence (x,,) of points of E is not
contained in any of the subspaces E,, then it cannot tend to 0. By extracting a sub-
sequence of the sequence (x,,), we can assume that there exists a strictly increasing
sequence (n,) of integers such that, for every index k, we have x, ¢ E, and x, € E, .
Then there exists (II, p. 33, lemma 2) an increasing sequence (V,) of convex sets
such that V, is a neighbourhood of 0in E, ,V, ., n E, = V,andsuch thatx, ¢ V,,
for every index k. The union V of the V, is then a neighbourhood of 0 in E, and we
have x, ¢ V for all k. This proves that the sequence (x,) does not tend to 0.
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The conclusion of prop. 6 is not necessarily true for a space E which is the inductive
limit of a non-denumerable directed set of closed subspaces of E (¢f. 111, p. 38, exerc. 7).

PROPOSITION 7. — Let (E,),», be a sequence of Hausdorff locally convex spaces,
and for every n, let u,:E, — E, .| be an injective linear mapping which is compact
(i.e. such that there exists a neighbourhood of 0 in E, whose image under u, is relatively
compact; this implies that u, is continuous). Let E be the inductive limit of the system
(E,, u,) (1, p.29), and let v, be the canonical mapping from E, into E. Then the locally
convex space E is Hausdorff. Moreover, for every subset A of E, the following condi-
tions are equivalent :

(i) A is bounded,

(ii) there exists an integer n such that A is the image under v, of a bounded subset
of E,;

(iii) A is relatively compact.

We identify E, with a vector subspace of E (endowed with a topology finer than
the induced topology).

Lemma 1. — Under the hypothesis of prop. 7, the topology of E is the finest topology
for which all the mappings v,:E, — E are continuous.

We need to prove that, if U is a subset of E such that U n E, is open in E, for
every n, then U is open in E; in other words, we must prove that, for every x € U,
there exists a convex balanced set V such that x + V < U and that VN E, is a
neighbourhood of 0 in E, for every large enough » (IL, p. 27, prop. 5). For every n,
let W, be a convex balanced neighbourhood of 0 in E, such that the closure H,
of W, in E, , , is compact. Let x € U and let n, be an integer such that x e E, . We
shall construct, by induction, a sequence (g,),», of scalars > 0 such that
x + ) gH; is contained in U for n > n,. Suppose that the g; for i < n have

no<i<n

been constructed. If n = ny, set V,_, = {0}; if not, set

Vn— 1= Z SiHi .
no<isn—1
Then V,_, is compact in E, and a fortioriinE,, ;. Since UNE, , ;isopeninE, _,
there exists a scalar g, > 0 such that x + V, = x + V,_, + g,H, is contained
in U (GT, 1I,§ 4, No. 3,cor.). Let V= U V,. Then V is convex and balanced ; for

n=ng

n = n,, wehave VN E, o gH, nE, o¢,W,, hence Vn E, is a neighbourhood
of 0 in E,. This completes the proof of the lemma.

The set U = E — {0} is such that the set UnE, = E, — {0} is open in E,
for every n, hence U is open in E, which proves that E is Hausdorff (GT, 111, § 1, No. 3,
prop. 2). It is clear that property (ii) implies (iii) and that (iii) implies (i). Finally
we show that (i) implies (ii). For this it is enough to show that if a subset A of E is
not absorbed by any of the sets ) H,, then A is not bounded. But then there

0<i<n
exists a sequence(x,), » , of points of A such that, for every n, wehave x, ¢ n> Y H,.

O0<i<n
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Then the set of the x,/n is closed by virtue of lemma 1, since its intersection with E,,
is discrete for every integer m. The complement of the set of the x,/n is then an open
neighbourhood of 0 which does not absorb the sequence (x,,), hence A is not bounded.

Remarks. — 1) With the above notations, let F, be the vector space generated by
H,, with a norm equal to the gauge of H,. We shall see (III, p. 8, cor.) that F, is a
Banach space. The injection from F, into E, , | is compact, hence a fortiori also the
injection w, from F, into F, , . Further, E is the inductive limit of the inductive system
(F,, w,) of Banach spaces. For, a convex balanced neighbourhood V of 0 in E is
such that V. n E, absorbs H,_, for all » > 1, and conversely, if a convex balanced
set W in E is such that W n E, absorbs H, _,, then W n E,_, contains a set homo-
thetic to W, _, for all » > 1, and hence W is a neighbourhood of 0 in E.

2) Let F be a locally convex space, k an integer > 0 and f:E* - F a
multilinear mapping. For f to be continuous, it is necessary and sufficient
that the restriction of f to EFf is continuous for every n. We verify imme-
diately that E* has the final locally convex topology for the family of linear
mappings v, x - x v,:E, x -+ x E, - E x =+ x E (II, p. 28, cor. 2 and p. 30,
prop. 7) and that u, x -~ x u, is a compact injective linear mapping from (E, )*
into (E, ., ,)* It is now enough to apply lemma 1.

5. The spaces E, (A bounded)

Let E be a locally convex space and A be a convex balanced subset of E. We
recall that E, denotes the vector space generated by A, with p, the gauge of A,
as the semi-norm (II, p. 26, Example 3). We verify immediately that the canonical
injection of E, into E is continuous if and only if A is bounded. If, in addition, E is
Hausdorff, a bounded set A does not contain a line (III, p. 2, Remark 4) and so p,
is a norm (II, loc. cit).

We shall say that a uniform space X is semi-complete if every Cauchy sequence
in X is convergent. A complete uniform space is semi-complete ; but the converse
is not always true (GT, 11, § 4, exerc. 4) ; however, a metrizable semi-complete space
is complete (GT, IX, § 2, No. 6, prop. 9).

PROPOSITION 8. — Let E be a Hausdorff locally convex space and let A be a closed,
balanced, bounded and convex subset of E. Let (x,) be a Cauchy sequence in E,. Then
this sequence converges in E, if and only if it converges in E.

The canonical injection from E, into E is continuous. Hence, if (x,) converges
in E4, it converges in E. Conversely, suppose (x,) converges to y in E. There exists
an increasing sequence of integers (1) such that p,(x,, — x,) < 27" ' if m > n,
and n > n,. Therefore the sequence (x,, + 27*A) is decreasing. Since A is closed
in E, we have yerk] (x, + 27*A), which proves that (x, ), hence (x,), converges

Ny Ny

to y in E4.
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COROLLARY. — If A is semi-complete (in particular, complete) then E, is a Banach
space.

In fact, a Cauchy sequence in E, is also a Cauchy sequence for the topology of
E and is contained in a set homothetic to A, hence converges in E.

6. Complete bounded sets and quasi-complete spaces

DEFINITION 6. — A locally convex space E is said to be quasi-complete if every closed
and bounded subset of E is complete (for the uniform structure induced by that of E).

A complete locally convex space is quasi-complete, but the converse is not always
true. * For example, if E is an infinite dimensional Hilbert space, or more generally,
an infinite dimensional reflexive Banach space, then E with its weakened topology
is quasi-complete but not complete (II, p. 51, prop. 9). ,

A quasi-complete space is semi-complete, since every Cauchy sequence is con-
tained in a closed and bounded subset (IIL p. 3, corollary and prop. 1). In particular,
a locally convex metrizable and quasi-complete space is complete.

In a Hausdorff quasi-complete space, the closure and the closed convex balanced
envelope of a precompact subset are compact; in fact, they are precompact (II,
p. 25, prop. 3), and complete being closed and bounded (111, p. 3, prop. 2).

PROPOSITION 9. — (i) A4 closed vector subspace of a quasi-complete locally convex
space is quasi-complete.

(ii) The product of quasi-complete locally convex spaces is quasi-complete.

(iii) The topological direct sum of quasi-complete locally convex spaces is quasi-
complete.

(iv) 4 locally convex space which is the strict inductive limit of a sequence of closed
quasi-complete subspaces is quasi-complete.

Assertion (i) follows from Remark 2 (I11, p. 2), (ii) from III, p. 4, cor. 2, (iii) from
prop. 5 (IT1, p. 5) and (iv) from prop. 6 (II1, p. 5).

We shall see later that the quotient space of a quasi-complete locally convex space
by a closed vector space is not necessarily quasi-complete (IV, p. 63, exerc. 10).

PRrOPOSITION 10. — Let E be a locally convex space, M a vector subspace of E such
that every point of E is in the closure of a bounded subset of M. Then every continuous
linear mapping f from M into a Hausdorff quasi-complete locally convex space F
uniquely extends to a continuous linear mapping from E into F.

The hypothesis implies that M is dense in E, hence f extends uniquely to a conti-
nuous linear mapping £ from E into the completion F of F (GT, III, § 3, No. 4, corol-
lary). Butevery x € F lies in the closure ofa bounded subset B of M ; hence f(x) is in the
closure of f(B) in F. But f(B) is bounded in F, hence its closure in F is complete,
and coincides with its closure in F. This proves that f(x)e F.
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7. Examples

a) Let X be a topological space. Let 2(X), the vector space of numerical (finite)
functions on X be assigned the topology of compact convergence (GT, X, § 1, No. 3) :
this is the coarsest topology for which the restriction mappings Z(X) —» 2(H)
are continuous (where H runs through the family of compact subsets of X and
where Z(H) is assigned the topology of uniform convergence). Cor. 3 of 111, p. 4 shows
that a subset A of 2(X) is bounded if and only if, for every compact subset H of X,
the set of restrictions to H of functions belonging to A is uniformly bounded.

* p) (Spaces of infinitely differentiable functions.) Let n > 1 be an integer. For
every open set U in R”, let € *(U) denote the vector space of infinitely differentiable
functions on U(VAR, R, 2.3). Let f be in € °(U). For every multi-index aa = (o, ..., o)
in N", 0*f denotes the partial derivative 0!*!f/ox?' ...0x*1 ; this is a continuous function
on U (VAR, R, 2.3 and 2.4). For every integer m > 0, and every compact subset
H of U, set

(1) Pun(f) = sup |0*f(x)| .

ol <m
xeH

Then p,, 4 is a semi-norm on € *(U).

Let & *(U) be assigned the topology defined by the semi-norms p,, ;. This is
the coarsest of the topologies for which the mappings f— 0% from € *(U) into
A(U) are continuous, where £(U) is assigned the topology of compact convergence.
There exists an increasing sequence of compact subsets (H,), >, of U whose interiors
cover U ; the family of semi-norms p,, ; defines the topology of ¥ *(U), which then
becomes a locally convex metrizable space. The space ¥ *(U) is complete ; in other
words, it is a Fréchet space (11, p. 24) : in fact, let (f,) be a Cauchy sequence in € ©(U) ;
for every o € N", the sequence (0%,) converges in the complete space Z(U) (TG, X,
§ 1, No. 5, th. 1) to a continuous function g,. By induction on ||, we deduce from th. 1
of FVR, II, p. 2 that g, = ¢°g, for every o € N". In other words, the sequence (f;)
converges to g, in € *(U).

Let A be a subset of € *(U). In order that A be bounded, it is necessary and suffi-

cient that the number sup p,, 4(f) is finite for every integer m > 0 and for every
SeA

compact subset H of U ; this condition means that for every o € N”, the set of func-
tions ¢*f|H for f € A is uniformly bounded for every compact H < U.

Let H = U be compact. We denote by €7(U) the subspace of ¥ “(U) consisting
of those functions whose support lies in H. The space € °(U) of infinitely differen-
tiable functions with compact support in U is the directed increasing union of
subspaces %;;(U) where H runs through the family of compact subsets of U. Each
space € (U) will be assigned the topology induced by that of € *(U), and 4 *(U)
with the corresponding inductive limit topology. If the sets H, are such that their
interiors form a cover of U, then the space ¥ *(U) is the strict inductive limit of
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the Fréchet spaces 4,7 (U); it is therefore complete (IL, p. 32, prop. 9) and every
bounded subset of ¢(U) is contained in one of the subspaces %7 (U) (111, p. 5,
prop. 6).

¢) (Gevrey’s spaces.) Let 1 be a compact interval in R. For every integer n > 0,
D"f denotes the nth derivative of a numerical function f defined on I (whenever
this derivative exists). Let s > 1 and M > 0 be two real numbers. Let % \(I) denote
the vector space of those infinitely differentiable functions f on I (FVR, I, p. 28)
for which the sequence (|[D"f|/M"(n!)), s, is bounded in the space € (I) of all conti-
nuous functions on I (with the topology of uniform convergence). The space ¥, \(I)
is a Banach space with the norm

I fllom = sup_ D (x)|/M"(n!)° .

n=0,x

For M < M/, we have 4 () c %\ (I), and

I s < 1S Tm

for every fe % y(I). Let 4 (1) denote the union of the spaces % (I) and endow
it with the inductive limit topology of the topologies of % \(T).

Let M < M’ and let B be the unit ball (closed) in ¥ \(I). We will prove that B
is a compact subset of the Banach space % \;(I)- It is clear that B is closed in & ,,(I)
and so it is enough to prove that B is precompact in ¥\ (I). Let € > 0 and let N
be a positive integer such that (M/M")N < /2. Let k be a positive integer; the set
of all functions D**!f, as f ranges over B, is bounded in %(I), hence the set of all
functions D¥f, as f ranges over B, is relatively compact in % (I) : this follows from
the theorem of finite increments (FVR, I, p. 23, cor. 1) and from Ascoli’s theorem
(GT, X, § 2, No. 5). We define a norm on %, \(I) by

a(f) = sup_|DYCO|/M "ty

<n<
xel

The above argument shows that B is precompact for the topology associated with
the norm g ; in other words, there exists a finite subset C of B such that for every
f e B, there exists g € C such that g(f — g) < &. Finally, for every n > N, we have

ID"f(x) — D"g(x)|/M"(n!)* < 2(M/M)" < e,

from which we get || f — g| < e. This proves that B is precompact in ¥ (I).

The space 4 (1) is the inductive limit of the spaces ¥ (1) as k ranges over N ; by
prop. 7 (III, p. 6) every bounded subset of ¥ (I) is contained in one of the spaces
%, (1) and is relatively compact in this space.

* d) (Spaces of holomorphic functions.) Let n > 1 be an integer. For every open
subset U of C", #(U) denotes the space of functions holomorphic in U, and is
assigned the topology of compact convergence in U. For every compact subset L
of C", # (L) denotes the space of germs of holomorphic functions in a neighbourhood
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of L; we endow this space with the finest locally convex topology for which the
canonical mappings ny:# (U) - # (L) are continuous, where U ranges over the
set of open neighbourhoods of L.

For every integer m > 1, let U,, be the set of points of C" which are at a distance
< 1/m from L. It can be shown that the canonical mapping =y, from #(U,) into
H (L) is injective, and that the restriction mapping from #'(U,,) into #(U)) is
compact for p = m. We can then apply prop. 7 (II1, p. 6). Let A be a bounded subset
of # (L) ; then there exists an integer m > 1 such that A consists of germs of func-
tions in a neighbourhood of L, belonging to a bounded set B in #(U,,). Moreover,
a mapping ¢ from # (L) into a topological space T is continuous if and only if
the mapping ¢ o ny, from #(U) into T is continuous for every open neighbourhood
UofL.,

§ 2. BORNOLOGICAL SPACES

In this paragraph, E denotes a locally convex space, and B its canonical bor-
nology (I1I, p. 3, def. 5).

Lemma 1. — Let G be a semi-normed space, p its semi-norm, and u a linear mapping
from G into E. The following conditions are equivalent :

(1) u is continuous ;

(ii) the image of the unit ball of G under u is bounded in E;

(iii) for every sequence(x,) of points of G tending to 0, the sequence (u(x,)) is bounded
in E.

It is immediate that (i) implies (i1) (III, p. 4, cor. 1) and that (ii) implies (iii). Let V
be a neighbourhood of 0 in E ; if #~ 1(V) is not a neighbourhood of 0 in G, then there

exists a sequence (y,) of points of G — u~ (V) such that p(y,) < -1—2 Hence the
n

sequence x, = ny, tends to 0 in G and u(x,) ¢ nV, which implies that the sequence
(#(x,)) is not bounded. Therefore (iii) implies (i).

PROPOSITION 1. — The following conditions are equivalent :

(1) Every semi-norm on E which is bounded on bounded subsets of E is continuous.

(") Every convex balanced subset of E which absorbs the bounded subsets of E
(L p. 7, def. 4) is a neighbourhood of 0 in E.

(ii) E is the inductive limit of the semi-normed spaces E,, where A ranges over the
directed increasing set of closed, convex, balanced and bounded subsets of E.

(1) There exists a family (E,), of semi-normed spaces, and for every i € 1, a linear
mapping u, - E; — E such that the topology of E is the finest locally convex topology for
which the u; are continuous.

(iii) For an arbitrary locally convex space F, a linear mapping u : E — F is continuous
if and only if for every sequence (x,) of points in E tending to 0, the sequence (u(x,)) is
bounded in F.



TVS III.12 SPACES OF CONTINUOUS LINEAR MAPPINGS §2

(iii") For an arbitrary semi-normed space F, a linear mapping u:E — F is conti-
nuous if and only if u(X) is bounded in F for every bounded set X in E.

It is immediate that (1) and (i') are equivalent in view of the correspondence
between semi-norms and convex, balanced, absorbent subsets (II, p. 20). If p is a
semi-norm on E, which is continuous on each E,, then p is bounded on bounded
subsets of E ; hence (i) implies (ii) (IL, p. 27, prop. 5). It is clear that (ii) implies (ii’).

Now let (E;, u;), be as in (ii") and let u be a linear mapping from E into a locally
convex space F, such that (u(x,)) is bounded in F for every sequence (x,) of points of
E tending to 0. It follows from lemma 1 of I11, p. 11 that thelinear mappinguou, :E,—»F
is continuous for all i e I. Hence, if the topology of E is the finest locally convex
topology for which the u; are continuous, then u is continuous (II, p. 27, prop. 5).
This proves that (ii") implies (iii).

It is immediate that (iii) implies (iii") (I11, p. 3, cor.) Finally, if p is a semi-norm on E,
which is bounded on bounded subsets of E, the condition (iii’) asserts that the identity
map is continuous from E into the semi-normed space (E, p); in other words, p is
continuous. This proves that (iii") implies (i).

DEFINITION 1. — A locally convex space is said to be bornological if it satisfies the
equivalent conditions of prop. 1.

Examples. — 1) Every semi-normed space is bornological.

2) In particular, every finite dimensional locally convex space is bornological.

3) On account of the transitivity of final locally convex topologies (11, p. 28, cor. 2),
we deduce at once from condition (i1') that if (E;),., is a family of locally convex borno-
logical spaces and if E is assigned the finest locally convex topology for which the
linear mappings u;:E, - E (for i e I) are continuous, then E is bornological. In
particular, an inductive limit, a direct sum, a quotient space of bornological spaces are
bornological spaces.

On the other hand, a closed subspace of a bornological space is not necessarily
bornological (IV, p. 63, exerc. ).

COROLLARY . — Every Hausdorff and semi-complete bornological space is an inductive
limit of Banach spaces.

In fact, the spaces E,, where A is closed and bounded are Banach spaces (III,
p. 8, corollary).

PROPOSITION 2. — A locally convex metrizable space is bornological.

Suppose E is metrizable, and p a semi-norm on E which is bounded on bounded
subsets of E, but which is not continuous. Let A be the set of all x € E such that
p(x) < 1. Let (V,),», be a decreasing sequence forming a fundamental system of
neighbourhoods of 0 in E. Since p is not continuous, A is not a neighbourhood of 0;
hence for every n > 0, we have A  n~ 'V, and there exists a point x, in V,, such
that n~'x, ¢ A, that is, p(x,) = n. The sequence (x,) tends to 0, hence is bounded
(IIL, p. 3, corollary) ; this contradicts the hypothesis on p.
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COROLLARY. — Every Fréchet space (11, p. 24) is the inductive limit of Banach spaces.

§ 3. SPACES OF CONTINUOUS LINEAR MAPPINGS

1. The spaces ¥ (E; F)

Let F be a topological vector space, E an arbitrary set, and & a family of subsets
of E. Consider the vector space FE with the uniform structure of S-convergence
(GT, X, § 1, No. 2). We know that this structure is compatible with the commutative
group structure of FE (GT, X, § 1, No. 4, cor. 2). The topology so deduced is called the
S-topology. If X is a subset of FE, or more generally, a set with a mapping j: X — FE,
then the unverse image under j of the S-topology on FE is called the S-topology on X.

Remarks. — 1) The S-topology is identical with the &'-topology, where &’ denotes
the bornology generated by S (111, p. 1).

2) Let M € & and let V be a neighbourhood of 0 in F; let T(M, V) denote the set
of all fe FE such that f(x) eV for every x e M. If & is stable under finite unions,
the sets T(M, V) form a fundamental system of neighbourhoods of 0 for the &-
topology of FE

PROPOSITION 1. — Let E be a set, S a family of subsets of E, F a topological vector
space and H a vector subspace of ¥*. In order that the S-topology be compatible with
the vector space structure of H, it is necessary and sufficient that u(M) is bounded in F
for every u € H and every M € €. If, moreover, F is locally convex, then the S-topology
on H is locally convex.

On account of Remarks 1) and 2) above, we see that a necessary and sufficient
condition for the S-topology to be compatible with the vector space structure of H
is that the sets H n T(M, V) are absorbent in H (1, p. 7, prop. 4) ; but this implies
that for every u € H, every subset M € &, and every balanced neighbourhood V of 0
in F, there exists A # 0 such that (M) < AV, that is to say (III, p. 2) that u(M) is
bounded in F. Finally, the last assertion of the proposition follows from the fact
that if V is convex, so is T(M, V).

COROLLARY. — Let E and F be two locally convex spaces, S a family of bounded sub-
sets of E, and ¥ (E ; F) the vector space of continuous linear mappings from E into F.
Then the G-topology is compatible with the vector space structure of % (E; F) and
is locally convex.

It is enough to remark that if « is a continuous linear mapping from E into F and M
is a bounded subset of E, then u(M) is bounded in F (III, p. 4, cor. 1).

Given two locally convex vector spaces E and F, and a family € of bounded
subsets of E, let #; (E; F) denote the locally convex space obtained by assigning
the S-topology to Z(E; F).
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Examples. — 1) If € is the set of all finite subsets of E, then the &-topology is
the topology of simple convergence and the space % (E; F) is also denoted by
Z(E; F). Abounded subset of Z,(E ; F) is called a simply bounded subset of #(E ; F).

2) If S is the set of compact (resp. precompact, compact convex) subsets, then the
&-topology is called the topology of compact (resp. precompact, compact convex)
convergence and the space % (E; F) is also denoted by Z/(E; F) (resp. &, (E; F),
ZL.(E; ). (Cf. 1V, p. 48, exerc. 7.)

3) If € is the set of all bounded subsets of E, we say that the S-topology is the
topology of bounded convergence and the space ¥ (E; F) is denoted by %,(E; F).

4) When F = K, the space Z(E; F) is the dua/ E’ of E. We denote by E’;, E. etc.
the space ¥ (E; K), Z,(E; K) etc. The space E; (resp. E;) is called the weak dual
(resp. strong dual) of E. A bounded subset of E. (resp. E;) is said to be weakly (resp.
strongly) bounded. We observe that the weak topology on E’ is none other than
o(E, E)(L, p. 42).

When E = F, we denote by Z(E), £ (E) etc. the space Z(E; F), Z;(E; F) etc.

Let p be a continuous semi-norm on F and M a bounded subset of E. Let

(1 Pu(®) = sup p(u(x)) .

xeM
It is immediate that p,, is a semi-norm on #(E; F) and that if I" is a fundamental
system of semi-norms on F, the family of semi-norms p,,, where p ranges over I" and
M ranges over a base for the bornology generated by &, is a fundamental system of
semi-norms of %= (E; F).

In particular, if E and F are semi-normed spaces, and if p (resp. ¢) denotes the
semi-norm of E (resp. F), then the topology of bounded convergence on Z(E; F)
is defined by the semi-norm
2 r(w) = sup g(u(x))

p(x)<1
(¢f. GT, X, § 3, No. 2). When we consider ¥, (E; F) as a semi-normed space, we
shall always, unless the contrary is expressly stated, mean the semi-norm (2). If F
is a normed space, the semi-norm (2) is a norm.

Remarks. — 3) Let A be a dense subset of the unit ball of E. In view of the continuity
of u, we also have

3) ru) = su[? q(u(x)) .
For example
(4) Hu) = sup, q(u(x)) .

Since we have u(tx) = tu(x) for t € R, we also have,

(5) r(u) = sup q(u(x)) = sup q(u(x))

p(x)=1 p(x)#0 p(x)

whenever p # 0.
4) Theformula(2) shows that the map u +— r(u) is lower semi-continuous on %,(E ; F).
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PrROPOSITION 2. — Let E and F be two locally convex spaces and let S be a set of
bounded subsets of E.

1) The S-topology on £ (E; F) is identical with the S-topology, where & denotes
the smallest adapted, bornology (111, p. 3) on E which contains .

2) Suppose that {0} is not dense in F and let &' be another set of bounded subsets
of E. Then the S'-topology is coarser than the S-topology if and only if & < &.

Let ue Z(E; F), M e & and let p be a continuous semi-norm on F. Since pou
is a continuous semi-norm on E, this is the same as saying that p o u is bounded
above by 1 on M or on the closed, convex balanced envelope M of M ; in other words,
we have py = pg. Moreover, it is clear that we have p,y = Apy for all L > 0 and
Prom = SUP(Pys Py), from which the first assertion follows, since & has the set
of homothetics of the closed convex balanced envelopes of finite unions of sets of S
as a base.

We now prove the second assertion : first, if F is the base field, it follows from the
definition that the S-topology on E’ = #(E; F) has as a fundamental system of
neighbourhoods of 0, the set of polars of the sets of &. Let A be a bounded subset
of E, whose polar A° is a neighbourhood of 0 for the &-topology ; then there exists
a closed convex balanced set B e & such that A° > B°, and so A = B°°; but by
cor. 3 of II, p. 45, we have B°° = B, and hence A = B and A € &. Therefore if S
is a set of bounded subsets of E, the &'-topology is coarser than the S-topology
on E’ if and only if & < &. The general case follows immediately, since if y € F
is not in the closure of 0, we can verify that the mapping which makes f e E’ cor-
respond to the mapping x — f(x) y is an isomorphism of the locally convex spaces
E’s onto its image in %z .(E; F).

=

2. Condition for Z;(E ; F) to be Hausdorff

ProPOSITION 3. — Let E and F be two locally convex spaces, ¥ being assumed
Hausdorff, and let S be a family of bounded subsets of E. If the union A of the sets of S
is total in E, then the space ¥z (E; F) is Hausdorff.

Let u, be a non-zero element of Z(E; F); since u, is continuous and A is total
in E, there exists an x, in A such that u,(x,) # 0. Since F is Hausdorff, there exists
a neighbourhood V of 0 in F such that u,(x,) ¢ V. Let M € & be such that x, e M.
Then the set U of all ue # (E; F) such that (M) = V is a neighbourhood of 0 in
ZL(E; F), and we have u, ¢ U, hence #(E; F) is Hausdorff.

In particular, the following topologies on Z(E; F) are Hausdorff whenever F is
Hausdorff : simple convergence, compact convergence, precompact or compact
convex, and bounded convergence.

3. Relations between ¥ (E; F) and Z(E ; F)

Let E and F the two Hausdorff locally convex spaces, and suppose F is com-
plete; let E be the completion of E. Since every continuous linear mapping u from E
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into F extends uniquely to a continuous linear mapping # from E into F, we can
identify the spaces Z(E; F) and £ (E; F) by the mapping u — u. In addition, let
& be a family of bounded subsets of E ; the S-topology on Z(E ; F) coincides with
the S-topology on #(E: F) and also with the &-topology, where & denotes the
family of closures in E of sets of &.

For example, if E is normed, the topology of bounded convergence on Z(E; F)
is identical with the topology of bounded convergence on Z(E; F) : for, every
bounded subset of E is contained in the closure of a bounded subset of E. Since the
unit ball of E is the closure of the unit ball of E, it follows from formula (3) (IIL, p. 14)
that if F is a Banach space, the map u — uis an isometry from ¥ (E ; F) onto Z(E ; F).

We observe that if E is not a normed space, then there may exist bounded subsets
of E which are not contained in the closure of any bounded subset of E (for example,
if E is the weak dual of an infinite dimensional Banach space) ; however, this is so
if E is metrizable and satisfies the first axiom of countability (III, p. 39, exerc. 16).

4. Equicontinuous subsets of Z (E ; F)

Let E and F be two locally convex spaces. For a subset H of #(E : F) to be equi-
continuous it is necessary and sufficient that it is equicontinuous at the point 0 in E
(I, p. 9, prop. 6); this implies that for every neighbourhood V of 0 in F, the set

N u~ (V) is a neighbourhood of 0 in E; or that for every continuous semi-norm
ueH

p on F, the function sup (p o u) is a continuous semi-norm on E. Moreover (I, p. 5),
ueH

H is uniformly equicontinuous. We note that the convex balanced envelope of an
equicontinuous subset is equicontinuous, since if p is a continuous semi-norm on
F and H the convex balanced envelope of H, we have, for the ; in H, the inequality
po (X hu) < Y IM|.(pou), hence sup(p o u) = sup(p o u).

i i

ueH ueH
Consequently, the family of equicontinuous subsets is a convex bornology on
Z(E; F) (I11, p. 2, def. 2).

PrOPOSITION 4. — Let E, F be two locally convex spaces, and ¥ be Hausdorff. Let
the space FE of all mappings from E into F be assigned the topology of simple conver-
gence. Then

(i) The set of linear mappings from E into F is closed in FE.

(i) If H is an equicontinuous subset of ¥ (E ; F), the closure H of H in FE is con-
tained in L (E ; F) and is equicontinuous.

We know that H is equicontinuous (GT, X, § 2, No. 3, prop. 6). It remains to prove
the assertion (i). Let x, y be in E and A, pin K, and let A(x, y, A, p) be the set of all
u € FE such that

u(hx + py) — Au(x) — pu(y) = 0.

This set is closed in FE since the mapping u — u(x) from FE into F is continuous
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for every x € E and since F is Hausdorff. But the set of linear mappings from E into F
is equal to

N A,y A .

X, ¥,

Thus this set is closed in FE.

COROLLARY 1. — For an equicontinuous subset H of #(E ; F) to be relatively compact
in #(E; F), it is necessary and sufficient that for all x € E, the set H(x) of all u(x)
as u ranges over H, is relatively compact in F.

In fact, this condition is necessary and sufficient for H to be compact in FE(GT, I,
§ 9, No. 5, cor.).

COROLLARY 2. — Every equicontinuous subset of the dual E' of E is relatively compact
for the weak topology o(E’, E) on E' (111, p. 14, Example 4).
For, if H is an equicontinuous subset of E’, sup |u| is a continuous semi-norm on E ;
ueH

in particular, for every x € E, the set H(x) is bounded, hence relatively compact in
the field of scalars.

COROLLARY 3. — In the strong dual E, of a semi-normed space E, every closed ball
is compact for the weak topology o(E', E).
This ball is also closed for o(E’, E).

PRrOPOSITION 5. — Let E and F be two locally convex spaces and let T be a total subset
of E. The following uniform structures coincide on every equicontinuous subset H of
Z(E;F):

1) the uniform structure of simple convergence in T;

2) the uniform structure of simple convergence in E;

3) the uniform structure of convergence in the precompact subsets of E.

We recall (I11, p. 15, prop. 2) that the S-topology on #(E ; F) coincides with the
&-topology, where & is the smallest bornology adapted to E and containing S.

In the statement of prop. 5, we can therefore replace the word « total » by « every-
where dense ». The proposition then follows from the general properties of equi-
continuous sets (GT, X, § 2, No. 4, th. 1).

Examples. — * 1) Let p be the Lebesgue measure on R, and let E be the semi-normed
space ZP(u) (1 < p < o) (INT, IV). For every numerical function f and every real
number 4, let f, be the function x — f(x — k). Clearly the mapping f + f, defines a
linear isometry from E onto itself. If f is continuous and has compact support, then f,
converges to f uniformly, hence also in the mean of order p, as 4 tends to 0. Since the
set 4 (R) of all continuous functions with compact support is dense in E, and the set
of linear isometries of E is equicontinuous, it follows from prop. 5 that for every f € E,
f, converges in the mean of order p to f as 4 tends to 0.

For p = 1, consider the Fourier transform, which associates to each f e £ (u) the
function f on R defined by

T = Je’”"""f(x) du(x) .
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The set of linear forms f — f(y) is an equicontinuous subset of the dual of L.
On the other hand, we know that the set T of all characteristic functions of closed
bounded intervals is a total subset of £ (u); and we verify easily that for all f e T,
the Fourier transform fis a contmuous function tending to zero at infinity. We deduce
that this is true for all e #!(n) (« Riemann-Lebesgue theorem »).
The relation sup lj »| < /1, shows that the map f — f is a continuous map

from #'(p) into the space #(R) of all bounded functions on R, with the structure of
uniform convergence Since fis continuous for all f e T, it follows that fis continuous
for all f € L'(u). The fact that ftends to zero at infinity follows from the fact that the
subspace %,(R) of all continuous functions tending to zero at infinity is closed in Z(R).

2) Let E be the space of all continuous numerical functions on R endowed with the
topology of compact convergence. Let K be a compact subset of R and let (u,) be a
sequence of measures on R with support in K. Suppose |, || < 1 for all n. The set of
the p, is then an equicontinuous subset of E’. Therefore, if for every function f € E,

we have lim p,(f) = 0, the sequence of functions x — | ¢**dy () converges to 0,

n— o

uniformly on every compact subset of R (since the set of functions 7 — ¢"*, as x ranges
over a compact subset of R, is compact in E).

COROLLARY. — Suppose F is Hausdorff. Let H be an equicontinuous subset of ¥ (E ; F).
If a filter ® on H converges simply to a mapping u, fromE into F, then u, is a continuous
linear mapping from E into F, and ® converges uniformly to u, on every precompact
subset of E.

The first assertion follows from prop. 4 (I1I, p. 16) and the second from prop. 5

(111, p. 17).
PROPOSITION 6. — Let H be an equicontinuous subset of £ (E ; F). If F is metrizable
and if there exists a countable total set in E, then the uniform structure on H of simple
convergence in E is metrizable. If in addition, there exists a countable total set in F,
then there exists a countable everywhere dense set in H (for the topology of uniform
convergence on compact subsets of E).

Let (a,) be a total sequence in E. Then the mapping u — (u(a,)) is an isomorphism
from Z(E; F), where Z(E; F) has the uniform structure of simple convergence
on the set of the g,, onto a uniform subspace of F™. If F is metrizable (resp. metrizable
and satisfies the first axiom of countability) then this is also true for F~ (GT, IX, § 2,
No. 4, cor. 2 and § 2, No. 8, corollary), and the proposition follows from prop. 5
(I1L, p. 17).

COROLLARY 1. — Let E be a locally convex metrizable space, and ¥ a normed space.
Suppose that E and F both satisfy the first axiom of countability. Then ¥ (E ; F) is the
union of a countable family of equicontinuous subsets and there exists a countable
set in #(E ; F) which is dense for the topology of uniform convergence on precompact
subsets of E.

Let B be the unit ball of F and (V,) a countable fundamental system of neighbour-
hoods of 0 in E. For every integer n, the set H, of all u € Z(E ; F) such thatu(V,) = B
is equicontinuous and ¥ (E; F) is the union of the H,. The corollary then follows
from prop. 6.
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COROLLARY 2. — Every closed ball in the dual E' of a normed space satisfying the first
axiom of countability, is a compact metrizable space for the weak topology o(E’, E),
and for this topology there exists a countable dense subset in E'.

This follows from prop. 6 and from III, p. 17, cor. 3.

5. Equicontinuous subsets of E’

In this section, E denotes a locally convex space and E’ its dual. Whenever we
talk of the polar M° of a set M in E (resp. E’), we shall always mean, unless otherwise
stated, the polar of M relative to the duality between E and E’. Recall that if V is a
closed convex balanced neighbourhood of 0 in E, we have V°° = V (I, p. 45, cor. 3).

PROPOSITION 7. — Let M be a subset of E'. The following conditions are equivalent :

(i) M is equicontinuous

(i) M is contained in the polar of a neighbourhood of 0 in E;

(iii) the polar of M is a neighbourhood of 0 in E.

If M is equicontinuous, there exists a convex balanced neighbourhood V of 0
such that [u(x)| < 1for all xe V and all e M; then we have that M = V° and (i)
implies (ii). With the same notations, f M < V°then V = V°° = M and (ii) implies
(iii). Finally, if M° contains a convex balanced neighbourhood V of 0, then
M < M°®° = V° and the relations x e €V, ue M imply |u(x)| < ¢ for all € > 0,
which proves that (iii) implies (i).

We remark that every x € E defines a mapping j(x):u — u(x) from E’ into K.
Hence we can talk of the S-topology on E, where & is a family of subsets of E’ : this
is the inverse image under j of the S-topology on KF. We verify immediately that
if € is a convex bornology on E’, then the polars of sets of € form a fundamental
system of neighbourhoods of 0 for the S-topology on E. This is so, in particular,
when & is the family of equicontinuous subsets of E’ and prop. 7 implies :

COROLLARY 1. — The topology of E is identical with the topology of uniform conver-
gence on equicontinuous subsets of E'.

More generally, let F be a locally convex space; every u € Z(E ; F) defines a map
Jj@):(x, f)— f(u(x))from E x F’ into K (i.e. into R or C). This enables us to define,
on the space ¥ (E; F), the topology of uniform convergence on a set of subsets of
E x F'. In particular :

COROLLARY 2. — Let & be a family of bounded subsets of E. The S-topology
on ¥(E; F) is the topology of uniform convergence on sets of the form A x B<E x F’,
where A is in S, and B belongs to the family of equicontinuous subsets of F'.

Forevery ue Z(E; F), every A € € and every closed convex balanced neighbour-
hood V of 0 in F, the relation u(A) < V is equivalent to « j(u) (A x V°) is contained
in the unit ball of K ».

PROPOSITION 8. — Let H be a family of linear mappings from E into a locally convex
space F. For H to be equicontinuous, it is necessary and sufficient that for every equi-
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continuous subset X in the dual ¥’ of F, the set of linear forms f o u, for f € X andu € H,
is equicontinuous.

It is obvious that the condition is necessary. Suppose it is verified, and let V be
a closed convex balanced neighbourhood of 0 in F. Since V° is equicontinuous,
there exists a neighbourhood W of 0 in E such that | f(u(x))| < 1forallxe W,ue H
and f e V°;in other words, u(W) = V°° = Vforallu € H, hence H is equicontinuous.

6. The completion of a locally convex space

THEOREM 1 (Grothendieck). — Let E be a locally convex space, and let S be an adapted
and covering bornology on E. Let F < E* be the space of those linear forms on E
whose restriction to each set belonging to < is continuous. If ¥ is assigned the -
topology, then the canonical injection from E'g into F extends to an isomorphism firom
the completion E’e of E'z onto F.

Since every simple limit of linear forms on E is a linear form (III, p. 16, prop. 4)
and since the bornology & on E is covering, it follows from GT, X, § 1, No. 6, cor. 2
that the space F with the S-topology is Hausdorff and complete. It is clear that E; isa
topological vector subspace of F; hence it is enough to prove that E’; is everywhere
dense in F. This follows from the following lemma :

Lemma 1. — Let A be a closed convex balanced subset of E and let u be a linear form
on E whose restriction to A is continuous. Then for every € > 0, there exists an x' € E/
such that

[u(x) — (x.x'y| <& forevery xeA.

Let ¢ > 0. There exists a closed convex balanced neighbourhood U of 0 in E such
that Iu(x)| < gforall xe U n A. We know that the polar U° of U in E* is contained
in E’ and is compact for the topology o(E*, E) (IIL, p. 17, cor. 2). Since the polar
A° of A in E* is closed for o(E*, E), it follows that A° + U° is a closed convex subset
of E* (GT, IIL, § 4, No. 1, cor. 1).

Let C be a closed convex balanced subset of E. Then C is closed for o(E, E)
(I1, p. 45, cor. 3), hence also for o(E, E*), and as a consequence, we have C = C°°
(for the duality between E and E*). As a result, we have

AnU=A""nU" =AU U) o (A° + U°)

from which, we get
(AN U)° = (A° + U°)° = A° + U°.

Since the linear form €~ '« belongs to (A N U)", there exist v € A° and w € U° such
that u = g(v + w). Hence X’ = ew belongs to E’ and u — x’ = ¢v is bounded above
in absolute value by € on A: hence the lemma.

Now let E be a locally convex Hausdorff space and E its completion. Every conti-
nuous linear form f on E extends to E by continuity: hence we have (E) = E’



No. 7 SPACES OF CONTINUOUS LINEAR MAPPINGS TVS III1.21

(I1L, p. 16) and every element of E defines a linear form on E'; that is, an element of
the algebraic dual E'* of E'. In addition, the duality between E (resp. E) and E’ is
separating (II, p. 24, cor. 1). Consequently E and E can be identified with vector
subspaces of E'*.

THEOREM 2. — Let E be a locally convex Hausdorff space and E its completion: we
identify E and E with vector subspaces of E'*. Then for an element f € E'* to belong to
E. it is necessary and sufficient that the restriction of f to every equicontinuous subset
of E’ is continuous for the topology o(E', E).

The space E can be identified with the topological dual of E’ when E' is assigned
the topology o(E’, E) (IL, p. 43, prop. 3); on the other hand, if & is the set of equi-
continuous subsets of E’, the given topology on E is the S-topology (111, p. 19, cor. 1).
Then it follows from III, p. 13, prop. 1, that the sets of & are bounded for o(E’, E)
(cf. later on, III, p. 22, prop. 9); in other words, & is an adapted and covering bor-
nology for the topology o(E’, E). Theorem 2 is then a consequence of th. 1 if we
replace E by E’ and E'; by E.

COROLLARY 1 (Banach). — Let E be a Hausdorff and complete locally convex space.
In order that a linear form on E’ be continuous for the weak topology o(E', E) (i.e.
arises from an element of E) it is sufficient that its restriction to every equicontinuous
subset of E' is continuous for o(E’, E).

Remark. — Suppose in addition, that there exists a countable total set in E; then
every equicontinuous subset of E’ is metrizable for the topology o(E’, E) (II1, p. 18,
prop. 6): therefore to verify that a linear form » on E’ is weakly continuous, it is
enough to verify that for every equicontinuous sequence (x,) in E' which converges
to 0 for o(E’, E), we have lim u(x,) = 0.

COROLLARY 2. — Let (E;), be a family of Hausdorff locally convex spaces and let E
be their topological direct sum. Then the canonical mapping from the direct sum of the
E, into E is an isomorphism. In particular, E is complete if and only if all the E,; are
complete.

We know that the dual of E can be identified with the product of the duals of the
E, (I1, p. 30. formula (1)). Let u € E, and let i, € E/* be the restriction of u (considered
as an element of E'*) to E; < E'. It is immediate that it is enough to prove that u, = 0
except for a finite number of indices i € I. Suppose on the contrary that there exists
a sequence (i,),.y of distinct indices such that u; # 0. Then there exists x; € E;
such that u; (x; ) = n. The set H of all x; is equicontinuous in E’ and the restriction
of u to H is not bounded, which is impossible.

7. &-bornologies on ¥ (E ; F)

Let E and F be two locally convex spaces and & a family of bounded subsets of E.
To say that a subset H of #(E; F) is bounded for the S-topology means that for
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every M € &, every neighbourhood V of 0 in F absorbs the set HM) = U u(M):

ueH

this is the same as saying that for every M € &, the set H(M) is bounded in F. Equi-

valently, this means that for every neighbourhood V of 0 in F, the set N u~ (V)
ueH

absorbs every subset M of &.

PrROPOSITION 9. — Let E and F be two locally convex spaces and S a family of bounded
subsets of E. Then every equicontinuous subset of ¥ (E; F) is bounded for the S-
topology.

For, if H is an equicontinuous subset of #(E; F) and V a neighbourhood of 0

in F, the set N »~ (V) is a neighbourhood of 0 in E, hence absorbs every bounded
ueH
subset of E.

A subset of Z(E; F) which is bounded for a S-topology is not necessarily equi-
continuous, even if & is covering and & is the canonical bornology on E (IV, p. 50,
exerc. 17). In the following paragraph we shall study, under the name barrelled
spaces, the spaces E such that every simply bounded subset of Z(E ; F) is equiconti-
nuous. For the present note the following result :

PROPOSITION 10. — Let E be a bornological space (in particular, a metrizable locally
convex space) and F a locally convex space. Every subset H of Z(E; F) which is
bounded for the topology of bounded convergence is equicontinuous.

For every convex balanced neighbourhood V of 0 in F, the set | u~ (V) absorbs
ueH

every bounded subset of E, hence is a neighbourhood of 0 in E; this proves that H
is equicontinuous.

8. Complete subsets of Z_(E;F)

PROPOSITION 11. — Let E and F be two locally convex spaces, © a cover of E con-
sisting of bounded subsets. If ¥ is Hausdorff and quasi-complete (111, p. 8), then every
equicontinuous subset H of £ (E ; F) which is closed for the S-topology is a complete
uniform subspace of %z (E; F).

Since H is bounded in ¥ (E ; F) (I11, p. 22, prop. 9) and closed in FF for the S-
topology (II1, p. 16, prop. 4), this follows from cor. 3 of GT, X, § 1, No. 5.

Remark 1. — Let M be a complete uniform subspace of % (E; F). For every set
of bounded subsets S’ > & of E, the &'-topology is finer than the &-topology on
Z(E; F); on the other hand, there exists a fundamental system of neighbourhoods
of 0 for the &'-topology which are closed for the topology of simple convergence
(IT1, p. 13, Remark 2), and a fortiori for the S-topology. We conclude (GT, III, § 3,
No. 5, cor. 1) that M is complete for the &'-topology.

COROLLARY. — Let E and F be two locally convex spaces, H an equicontinuous subset
of #(E; F). If F is Hausdorff and quasi-complete and if a filter ® on H converges
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simply at all points of a total subset T of E, then there exists a continuous linear mapping
u from E into F such that ® converges uniformly to u on every precompact subset of E.

For, by virtue of prop. 5 (I1, p. 17) @ is a Cauchy filter for the uniform structure
of precompact convergence in E; by prop. 11, the closure H of H in Z,(E; F) is
complete and so @ converges uniformly on every precompact subset of E to a mapping
ue H.

Remark 2. — Let (u,) be a sequence of continuous linear mappings from a Banach

space E into a Banach space F; it may happen that (u,(x)) has a limit at every point

of an everywhere dense vector subspace T of E, without the sequence (u,) being

bounded in the normed space #(E; F). For example, take E to be the space of all

continuous numerical functions on R, tending to zero at infinity, with the norm

| £ = sup |f(x)| and let T be the subspace of continuous numerical functions
xeR

with compact support. The sequence of continuous linear mappings f +— nf(n)
from E into R converges to 0 for all fe T, but is not bounded in %, (E; R). The
same example shows that in the space ¥ (T; R), a sequence (v,) may be simply
convergent and non-bounded for the topology of bounded convergence.

On the other hand, the sequence of continuous linear mappings f+ > f(k)
k=1

is a Cauchy sequence in #(T; R) for the topology of simple convergence, but does
not tend to a limit in £ (T ; R) for this topology.

PROPOSITION 12. — Let E be a bornological locally convex space, F a complete locally
convex Hausdorff space and S a family of bounded subsets of E containing the image
of every sequence converging to 0. Then the space ¥z (E; F) is complete.

Let @ be a Cauchy filter in £z (E; F). Then @ is a Cauchy filter for the topology
of simple convergence, hence converges in F¥; moreover, its limit « is a linear mapping
from E into F and @ converges to u uniformly on every set of € (GT, X, § 1, No. 5,
prop. 5). It follows that the image under « of a sequence converging to zero is a sequen-
ce converging to zero, hence, that u is continuous, since E is bornological (III, p. 11,

prop. 1, (iii)).
COROLLARY 1. — The strong dual of a bornological space is complete.

COROLLARY 2. — Let E be a semi-normed space, and ¥ a Banach (resp. Fréchet)
space. The space %,(E; F) is a Banach (resp. Fréchet) space. In particular, the dual
of a semi-normed space is a Banach space.

§ 4 THE BANACH-STEINHAUS THEOREM

In this paragraph E denotes a locally convex space and E' its dual. Whenever we
talk of the weak topology on E', we shall mean o(E’, E).
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1. Barrels and barrelled spaces

PROPOSITION 1. — Let T be a subset of E. The following conditions are equivalent :

(1) T is convex, balanced, closed and absorbent.

(i1) T is the polar of a convex, balanced and weakly bounded set M in E'.

(iii) There exists a lower semi-continuous semi-norm p on E, such that T is the set
of all x € E satisfying p(x) < 1.

(i) = (ii) : under the hypothesis of (i), let M = T°; then M is convex and balanced
in E. For every x € E, there exists a real number r > 0 such that »x e T, hence

lu(x)| < 'l for all e M ; in other words M is weakly bounded. From cor. 3 of II,

p. 45, we have T = M°, hence T satisfies (ii).
(i) = (iii) : under the hypothesis of (ii), let p(x) = sup |u(x)| for all xe E. It is
ueM

immediate that T = M° consists of all x € E such that p(x) < 1. The semi-norm
p on E’ is lower semi-continuous, being the superior envelope of a family of conti-
nuous functions (GT, IV, § 6, No. 2, corollary).

(iii) = (1) : this is clear.

COROLLARY. — The following conditions are equivalent :
(i) every weakly bounded subset of E’ is equicontinuous:
(ii) every convex, balanced, closed and absorbent set in E is a neighbourhood of 0;
(iii) every lower semi-continuous semi-norm on E is continuous.

DEFINITION 1. — A set T satisfving the equivalent conditions of prop. 1 is said to
be a barrel in E.

DEFINITION 2. — A space E is said to be barrelled if it satisfies the equivalent condi-
tions of the corollary of prop. 1.

We know (III, p. 22, prop. 9) that every equicontinuous subset of the dual E’ of E
is strongly and weakly bounded. We can therefore restate the definition of barrelled
spaces as follows :

Scholium. — In the dual of a barrelled space, the class of equicontinuous sets, the class
of strongly bounded sets, the class of weakly bounded sets and the class of relatively
compact sets for the weak topology are all identical. If E is Hausdorff and barrelled,
and if E; is its strong dual, the polars of the neighbourhoods of 0 in one of the spaces
form a base of the canonical bornology of the other, and the polars of bounded subsets
of one of the spaces form a base for the filter of neighbourhoods of 0 of the other space.

PROPOSITION 2. — Every locally convex space E which is a Baire space (GT, IX, § 5,
No. 3) is barrelled.

Let T be a barrel in E; since T is absorbent, E is the union of closed sets nT (n
integer > 0); since E is a Baire space, at least one of these sets contains an interior
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point, hence T itself has an interior point x. If x # 0, since — x € T, and 0 is a point
of the open segment with extremities x and — x, 0 is an interior point of the convex
set T (II, p. 14, prop. 16). Therefore T is a neighbourhood of 0.

COROLLARY. — Every Fréchet space (and in particular, every Banach space) is barrelled.
This follows from Baire’s theorem (GT, IX, § 5, No. 3, th. 1).

ProposITION 3. — Let (F,), be a family of barrelled spaces, and for every i€ 1, let f;
be a linear mapping from F, into a vector space E. The space E with the finest locally
convex topology for which the f; are continuous (11, p. 27, prop. 5), is a barrelled space.

Let T be a barrel in E. Since f; is continuous, f;~!(T) is a convex, balanced, closed
and absorbent set in F,; in other words, a barrel in F,; since F, is barrelled, f,” *(T)
is a neighbourhood of 0 in F,, for all i e I. This implies that T is a neighbourhood
of 0 in E (11, p. 27, prop. 5).

COROLLARY 1. — Every quotient space of a barrelled space is barrelled.

COROLLARY 2. — Let (E,), be a family of locally convex spaces and let E be the topo-
logical direct sum of this family. For E to be barrelled, it is necessary and sufficient that
each E; is barrelled.

The condition is evidently sufficient by virtue of prop. 3; it is also necessary, by
cor. 1, since each E, is isomorphic to a quotient space of E (II, p. 31, prop. 8).

COROLLARY 3. — Every inductive limit of barrelled spaces is a barrelled space.
We shall prove later (IV, p. 14, corollary) that every product of barrelled spaces
is barrelled.

2. The Banach-Steinhaus theorem

THEOREM 1. — Ler E be a barrelled space, ¥ a locally convex space. Every simply
bounded subset H of ¥ (E; F) is equicontinuous.

For, let p be a continuous semi-norm on F; let g = sup (p o u). Since H is simply
ueH

bounded, we have g(x) < + oo for all x € E and ¢ is a lower semi-continuous semi-
norm, being the finite superior envelope of continuous semi-norms. Since E is
barrelled, g is a continuous semi-norm and therefore H is equicontinuous.

COROLLARY 1. — Let E and F be two Banach spaces, H a family of continuous linear
mapping from E into F; if, for all x € E, we have sup |ju(x)| < + oo, we also have
ueH

sup Jlu|| < + oo.
ueH

In fact, the hypothesis says that H is simply bounded and the conclusion that it is
equicontinuous. In addition, every Banach space is barrelled (I1, p. 25).

COROLLARY 2. — (Banach-Steinhaus theorem). — Let E be a barrelled space. F a
locally convex Hausdorff space, and let (u,) be a sequence of continuous linear mappings
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fromE into F, which converges simply to a mapping u from E into F. Thenu e £ (E ; F),
and (u,) converges to u uniformly on every precompact subset of E.

The sequence (u,) is, in fact, simply bounded, hence equicontinuous, and the
corollary follows from the cor. of prop. 5 of III, p. 18.

Remarks. — 1) The property expressed by cor. 2 does not imply that E is barrelled :
we shall see later that the strong dual of a Fréchet space possesses this property,
while not necessarily being barrelled (IV, p. 23, cor. to prop. 2 and p. 58, eXercy.

2) Let E and F be two Banach spaces, and (u,) a sequence of continuous linear
mappings from E into F such that sup ||u,|| = + oco. Then the set X of all x € E such
that sup |u,(x)| = + o is dense in E and is the intersection of a sequence of open sets
in E. For, let X, denote the set of all x € E such that sup ||u,(x)| > k(for k integer > 0).
Each X, is open and X is the intersection of the X,. Since E is a Baire space, it is enough
to show that each X, is dense in E. But, if the complement of X, contains a non-empty
open set U, we would have |u,(x)|| < 2k for xe U — U and, since U — U is a neigh-
bourhood of 0, we would have sup |lu,|| < + oo.

COROLLARY 3. — Let E be a barrelled space, ¥ a locally convex Hausdorff space
and ® a filter on ¥ (E ; F) which converges simply in E to a mapping u from E into F.
If © contains a simply bounded subset of ¥ (E; F), or if ® has a countable base, then
u is a continuous linear mapping from E into F and ® converges uniformly to u on
every precompact subset of E.

Suppose first that ® contains a simply bounded set H ; since H is equicontinuous
(th. 1), the corollary follows from the corollary of prop. 5 (IIL, p. 18). If ® has a coun-
table base, every elementary filter W associated with a sequence u, (GT, L § 6, No. 8)
which is finer than ® is then simply convergent to « in E and it follows from cor. 2
that u is a continuous linear mapping from E into F, and that ¥ converges to u for
the topology of uniform convergence on precompact subsets of E. Consequently,
the same holds for @, since the latter is the intersection of elementary filters, each
finer than ® (GT, L, § 6, No. 8).

We observe that a filter on #(E ; F) which converges simply and has a countable
base does not necessarily contain a simply bounded set : to see this consider the
example of the filter of neighbourhoods of 0 in #(K ; F) when the topology of F
is metrizable, but cannot be defined by a single norm.

Example. — Let E be the Banach space (over C) consisting of continuous complex
functions with period 1 in R, with the norm | f| = sup | f(x)].

1
For every integer n € Z and every function feE, let ¢ (f) = f f(x) e 2imnxdx
0

(n-th Fourier coefficient of f); each of the mappings f — ¢,(f) is a continuous linear
form on E. Let (a,) be a sequence of complex numbers such that, for every function
f € E, the serie with the general term o,c,(f) + a_,c_,(f) is convergent. Under these

n-n

conditions, the mapping u: f — o,co(f) + >, [o,c,(f) + a_,c_,(f)]is a continuous
nz1

linear form on E; * in other words, there exists a measure p on [0, 1] such that

u(f) = f/'(x) dp(x) for every function f € E, and o, is the n-th Fourier coefficient

of u. . In fact, for every integer m > 0, the mapping f — > ol f) is a continuous

k=-m
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linear form u,, on E, and for all f € E, the sequence (u,,( f)) converges to u( f), by hypo-
thesis. The assertion then follows from Banach-Steinhaus theorem, since E is barrelled.

COROLLARY 4. — Let E and F be two locally convex spaces, S a cover of E consisting
of bounded subsets. If E is barrelled and ¥ Hausdorff and quasi-complete, the space
% (E; F) is Hausdorff and quasi-complete.

In fact, every bounded and closed subset of % (E ; F) is simply bounded (because
S is a cover of E), hence equicontinuous (IIL, p. 25, th. 1) and consequently is a
complete subspace of % (E; F) because of prop. 11 (III, p. 22).

COROLLARY 5. — The strong dual and the weak dual of a barrelled space are quasi-
complete.

3. Bounded subsets of # (E ; F) (quasi-complete case)

THEOREM 2. — Let E be a locally convex Hausdorff space, F a locally convex space
and S a family of closed, convex, balanced, bounded and semi-complete subsets of E
(I1L, p. 7). Every simply bounded subset H of ¥ (E ; F) is bounded for the G-topology.

Let A € S. The space E, is then a Banach space (III, p. 8, corollary), hence bar-
relled. On the other hand, the canonical image of H in #(E, ; F) is simply bounded,
hence equicontinuous (III, p. 25, th. 1). Consequently, the set of all u(x) for ue H
and x € A, is bounded in F, which proves that H is bounded for the S-topology.

COROLLARY 1. — Let E be a locally convex Hausdorff space, F a locally convex space,
and S a family of bounded subsets of E. If E is semi-complete, then every simply bounded
subset of ¥ (E; F) is bounded for the S-topology.

It is enough to apply th. 2, after replacing the sets of & by their closed, convex,
balanced envelopes, since this does not change the S-topology.

When E is semi-complete (for example quasi-complete), we can talk of the bounded
subsets of Z(E ; F) without specifying the S-topology, since these are the same for
all the S-topologies whenever & is a cover of E.

COROLLARY 2. — Every semi-complete bornological space is barrelled.
Every simply bounded subset of the dual of such a space is strongly bounded
(cor. 1), hence equicontinuous (III, p. 22, prop. 10).

CoROLLARY 3. — Let E be a locally convex space. Every subset of E which is bounded
for o(E, E") is bounded.

Let A be a subset of E. Saying that A is bounded for o(E, E’) means that every
continuous linear form on E is bounded on A ; Saying that A is bounded means that
every continuous semi-norm on E is bounded on A. Let N be the closure of 0 in
E and = the canonical mapping from E onto E/N. The continuous linear forms on
E are the mappings of the form fon with fe (E/N) and we have an analogous
characterization of continuous semi-norms on E. Replacing E by E/N and A by
n(A) we can thus limit ourselves to the case where E is HausdorfT.
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Let & be the set of equicontinuous subsets of E’; when E’ is assigned the topo-
logy o(E’, E), E can be identified with (E')'s (I11, p. 19, cor. 1). Every closed equiconti-
nuous subset of E’ is compact for o(E’, E) (III, p. 17, cor. 2), hence complete for
o(E’, E). It is now enough to apply th. 2.

§ 5. HYPOCONTINUOUS BILINEAR MAPPINGS

1. Separately continuous bilinear mappings

Let E, F, G be three locally convex spaces. For every bilinear mapping u from
E x F into G, and for every x € E (resp. y € F), we denote by u(x, .) (resp. u(., y))
the mapping y — u(x, y) (resp. x — u(x, y)) from F into G (resp. from E into G).

DEFINITION 1. — A bilinear mapping u from E x F into G is said to be separately
continuous if, for all x € E, the linear mapping u(x, .) from F into G is continuous,
and for all y € F, the linear mapping u(., y) from E into G is continuous.

The following proposition follows immediately from the definition.

ProrosiTION 1. — For a bilinear mapping u from E x F into G to be separately
continuous, it is necessary and sufficient that for all y € F, the linear mapping u(., )
SfromE into G is continuous and that the linear mapping y — u(., y) from F into Z(E ; G)
s continuous.

We can also say that, to every linear mapping v € & (F; Z,(E; G)) is associated
the bilinear mapping (x, y) — v (») (x), then we define a linear bijection from
Z(F; Z,E; G)) onto the vector space of separately continuous bilinear mappings
from E x F into G.

A separately continuous bilinear mapping from E x F into G need not necessarily
be continuous on E x F (III, p. 47, exerc. 2; ¢f however III, p. 30, and IV, p. 26,
th. 2).

The notion of a separately continuous bilinear form on a product E;, x E, of
two locally convex spaces is directly related to that of a continuous linear mapping
when E; and E, are assigned the weak topologies (II, p. 42), Suppose that (E,, F,)
and (E,, F,) are two pairs of real (resp. complex) vector spaces in separating duality
(loc. cit); we assign to E; (resp. F;) the weak topology o(E;, F,) (resp. o(F;, E,))
for i = 1, 2, and denote by B(E,, E,) the vector space of separately continuous
bilinear forms on E; x E,. Applying prop. 1 to the case when G = K, we see that,
for every bilinear form @ € B(E,, E,) and every x, € E,, the mapping x; — ®(x,, x,)
is a continuous linear form on E,, hence (II, p. 43, prop. 3) there exists one element,
and only one ‘®(x,) e F, such that

(0)) D(xy, x,) = <x1,dCI)(x2)>

for every x, € E, and x, € E,; moreover, the mapping ‘®:E, — F, is linear and
continuous for the (weak) topologies of E, and of F;.
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Conversely, for every continuous linear mapping u:E, — F, the mapping
(xq, x3)>®(x,, x,) = {xy, u(x,)) is a separately continuous bilinear form on
E, x E,, and we have u = ‘®. Thus we have defined an isomorphism d:® <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>